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Preface

Competitive Physics grew out of a Physics Olympiad course taught by Wang

Jinhui at Hwa Chong Institution — intended to prepare students for the

annual Physics Olympiads and to imbue deeper knowledge in physics beyond

the typical high school syllabus. It quickly became a collaboration with his

former trainer in the Singapore Physics Olympiad national training team,

Bernard Ricardo.

Competitive Physics is meant to be a theory-cum-problem book. The

first half of each chapter explores physical theories with illustrations of how

they can be creatively applied to problems. The latter half of each chapter

revolves around puzzles that we hope will intrigue readers, as we believe that

problem-solving is a crucial process in grasping the subtleties of the contents.

Therefore, we have included a multitude of problems which are ranked by

increasing difficulty from one to four stars. Some problems are original; some

are taken from the various Physics Olympiads while the others are instructive

classics that have withstood the test of time.

This book is the first part of a two-volume series which will discuss general

problem-solving methods and delve into mechanics and waves — setting a

firm foundation for other topics that will be presented in the second volume.

We envision problem-solving to be a fun process — from the initial excite-

ment of approaching an unfamiliar problem, to the joy of pitting all of one’s

knowledge against it and finally, the satisfaction earned from solving it after

numerous failed attempts. In light of this, our goal is to spread the passion of

problem-solving — an infectious hobby. It is difficult to quantify the factors

that make a problem interesting or elegant but the following have been our

guiding principles in writing Competitive Physics:

1. Physical Significance. Quintessentially, physics is about modeling the

world around us. Therefore, it is gratifying to be able to analyze everyday

phenomena and to leverage on this knowledge to improve such processes.

vii
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For example, a problem in Chapter 3 asks: how should we run towards

a shelter to minimize how wet we get in the rain? Meanwhile, Chapter 6

elucidates the reason behind why two colliding billiard balls leave at right

angles relative to each other.

2. Intuition. There are many overarching themes in physics — symmetry,

the equivalence of different observational frames of reference, reversibility

of processes and many more. Not only are these useful as sleights-of-hand

in problem-solving, they reveal crucial aspects of the common structure

of physical theories. Developing a strong hunch for them — a gut feeling

that constantly bugs you to search for ways to exploit them — may prove

to be beneficial in one’s future physics journey. As such, we have devoted

the entire first chapter, Minimalistic Arguments, to honing this physical

intuition.

3. Insight. Sometimes, a seemingly complex problem can be vastly simplified

by making an astute observation — whether mathematical or physical.

Perhaps, it is to express the solution in terms of vectors or perhaps it is

to observe that two different scenarios “feel” the same to a certain entity

and thus conclude that the entity will respond in the same manner in

both cases. Maybe it is to draw enlightening analogies between two prob-

lems that appear to be completely disparate on the surface. Ultimately,

such problems which require perceptive thought do not have cookie-cutter

approaches and require the reader to invent an appropriate technique on

the spot. They hence implore the reader to really think and are very

rewarding to solve.

4. Fundamentals. The objectives above would not be possible without first

mastering the fundamentals of a theory — the situations that it can be

validly applied to, its assumptions and its ramifications. As such, we have

also included many classic problems to reinforce understanding of the

basics. To this end, we are extremely grateful to Dr. David J. Morin for

allowing us to use some problems from his exemplary textbook: Introduc-

tion to Classical Mechanics.

In summary, our guiding principles are “PIIF”, as in the onomatopoeia

“pffft” when, having read this book, you scoff at a future problem after

swiftly spotting its trick. Jokes aside, it is paramount for the reader to first

attempt the problems before peeking at the solutions. Even when perusing

the solution to a problem, the reader should inspect it line by line until he

or she reaches an inspiration that sets him or her back on track in attempt-

ing the problem again. Only by experiencing the process of problem-solving

yourself can you internalize the clues in a problem that hint at a certain
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approach, understand why certain approaches are incorrect or desirable and

ultimately, improve. There is no short-cut to developing an intuition for

problem-solving besides trudging through an arduous but fulfilling journey

of enigmas.

Despite our best efforts; the probability of this book being error-free

is, unfortunately, akin to the odds of observing a car plate that reads

“PHY51C.” Therefore, if the reader does spot any mistakes or dubious points

in our discussions, we would appreciate if they are highlighted to us via the

email competitivephysicsguide@gmail.com.

mailto:competitivephysicsguide@gmail.com
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Chapter 1

Minimalistic Arguments

This chapter will explore the ramifications of a few elementary physical

principles to develop the necessary intuition in approaching many physics

problems.

1.1 Dimensional Analysis

The units of a quantity essentially encapsulate what it describes. For exam-

ple, if a quantity has units in joules (J), we can surmise that it is referring

to some form of energy. Conversely, if we already know the physical meaning

of the quantity and hence know its units, we can guess a solution for the

quantity in terms of other given parameters — solely by inspecting their

units. This is because the two sides of an equation must first be dimension-

ally homogeneous (i.e. have the same units) in order for the equality to be

valid. Furthermore, operations such as addition and subtraction can only

be performed on commensurable quantities (quantities of the same dimen-

sions). For instance, it makes no sense to say whether 1 second is equal to 1

meter or to add 1 Celsius to 1 Coulomb. Lastly, certain operations such as

trigonometric functions, exponentials and logarithms can only be performed

on dimensionless variables. In any case, there are certain restrictions, per-

taining to the units of variables, imposed on every equation that need to be

fulfilled to procure physical meaning and ensure logical coherency.

The following is a concrete example of applying dimensional analysis to

a problem. If asked to deduce the rest energy of a particle when given its

mass M and the speed of light in vacuum c, one can first observe that the

dimensions of energy are [M ][L]2

[t]2
which can be read as some mass unit mul-

tiplied by some length unit squared and divided by some time unit squared.

Thus, one can guess a solution of the form

Erest =Mc2,

1
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as the right-hand side also has the same dimensions. This is in fact the correct

answer (though we may not even understand what rest energy means, other

than the fact that it refers to some form of energy)! Usually, it is wise to

express every variable in terms of a common basis comprising convenient

dimensions denoted by square brackets before applying dimensional analysis.

A common guess for a quantity Q, given parameters x1, x2, . . . , xn, would

be of the form

Q = xα1
1 xα2

2 . . . xαn
n ,

where the α’s are constants. This is also known as the power law. Then, a

set of linear equations can be derived to solve for the α’s. For example, the

angular frequency, ω of a simple pendulum undergoing small-angle oscilla-

tions can be deduced in terms of its physical variables that include the mass

of the bob m, length of the string l and the gravitational field strength g.

Presuming that ω is independent of the initial angular displacement, we can

guess a solution of the following form:

ω = mαlβgγ ,

where α, β and γ are constants. We observe that the desired variable and

the physical parameters have dimensions of

ω = [t]−1,

m = [M ],

l = [L],

g = [L][t]−2.

Substituting these units into the power law expression for ω would yield

[t]−1 = [M ]α · [L]β · [L]γ [t]−2γ = [M ]α[L]β+γ [t]−2γ .

Comparing the exponents,

α = 0,

β + γ = 0,

−2γ = −1.

Solving,

α = 0,

β = −1

2
,

γ =
1

2
.
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Thus, we surmise that

ω =

√
g

l
,

which happens to be the correct solution! Perhaps, a rather cumbersome

process in dimensional analysis is the conversion of the units of all parameters

into a standardized set of units. For example, one might wish to convert

Joules (J) into SI units. In such cases, considering physical laws can often

be very helpful. Suppose we wish to determine the expression of Joules in SI

units, we can make use of the work-energy theorem which provides us with

the information that the units of force multiplied by that of displacement

give Joules. Furthermore from F = ma, we conclude that the units of force

(a Newton) is kgms−2 in SI units. Thus, Joules can be expressed as kgm2s−2

in terms of SI units or dimensions [M ][L]2[t]−2.

1.1.1 Limitations

Obviously, dimensional analysis is not omnipotent and cannot be applied to

solve all problems accurately. Well, if this were not the case, we will only

be examining the units of variables in every question and do not need any

knowledge of physics. We shall elaborate on the limitations of dimensional

analysis in this section.

Firstly, dimensional analysis will not provide us with any information

about dimensionless parameters, such as constants, trigonometric functions

and exponents. In the previous example, we could have guessed ω = 2π
√

g
l

and it would still have units in s−1. When asked to deduce the formula for the

kinetic energy of an object in terms of its mass M and velocity v, one could

possibly hypothesize a solution of the form K.E. = Mv2 which is obviously

wrong. In light of this fact, we usually include a dimensionless constant k in

front of our power law solution.

Similar to the previous point, if a combination of the physical parameters

in the form of a power law is dimensionless, there is no unique solution to

the set of linear equations. For example, the capacitance of a parallel plate

capacitor is ε0
A
d where A is the area of the plates and d is the separation

between them but it could also be ε0
√
A and even ε0

Aπ+1

d2π+1 if based purely

on dimensional analysis! This is because A
d2 is a dimensionless quantity and

we can multiply any power of this to anything in an expression and it would

not change the overall units. To account for this, one usually multiplies

the power law by an additional factor f( A
d2
) that is an arbitrary function

of the combinations of parameters that are dimensionless ( Ad2 in this case).
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An extreme example where dimensional analysis yields a ludicrous result,

if we miss out this factor, would be in guessing the solution to the instan-

taneous displacement of a simple harmonic motion as x = x0, where x0 is

the initial displacement, and missing out the harmonic part of the solution

completely!

Perhaps, the biggest limitation of dimensional analysis is its inability

to aid in the development of new theories. Suppose that the ideal gas law

has not been discovered yet and we wish to find a relationship between

the pressure, volume, number of moles and temperature of a gas which are

denoted by p, V, n and T respectively. It is impossible to even determine a

non-trivial and homogeneous equality relating the variables in this case via

dimensional analysis alone. No combination of these parameters can yield

a meaningful and valid equation. However, suppose that we already know

that p ∝ nT
V , we can conduct physical experiments to determine whether the

“constant” of proportionality is really a physical constant and find its value.

Then, we can name this physical constant R and state the ideal gas law as

pV = nRT . Essentially, dimensional analysis fails in this case as there is

a need to introduce a new physical constant with non-trivial dimensions in

order to relate the parameters, while dimensional analysis already assumes

that the parameters can already be interconnected in a meaningful way.

Finally, it is important to note that a major pitfall lurks when the quan-

tity that we wish to analyze blows up to infinity. For example, suppose that

we wish to compute the total distance lmax covered by a particle, of mass m

and initial velocity v0, undergoing one-dimensional motion under a quadratic

drag force of the form Fdrag = kv2 where k is the drag constant and v is

the particle’s instantaneous velocity. The possible parameters are m = [M ],

v0 = [L][t]−1 and k = F
v2 = [M ][L][t]−2

[L]2[t]−2 = [M ][L]−1. A natural hypothesis

based on dimensional analysis for lmax = [L] would be

lmax =
m

k

but we know that this must be wrong as lmax does not scale with the initial

velocity v0. We would expect that lmax of a particle with initial velocity

v′0 > v0 would be larger than that with initial velocity v0 as the particle

would have travelled some distance during the time it takes to decelerate to

velocity v0, after which it will traverse the same distance as the particle which

started with v0. The reason behind this absurd answer is that there is in fact

no upper bound on lmax! The particle travels to infinity. Dimensional analysis

becomes useless when quantities blow up as they cannot be meaningfully
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related to given parameters, which are finite most of the time. A useful

sanity check for such cases is discussed in the next section.

1.2 Limiting Cases

In most cases, the validity of a solution for a quantity, whose value is known

or can be computed trivially in certain cases, can be verified by substituting

those specific cases of parameters into them. Then, the solution should reduce

to the same answer if it is indeed correct. In the previous section, we identified

the fact that lmax should scale with v0 to reject the hypothesis. Proceeding

with a new example, perhaps we forgot whether the acceleration of a block

on a smooth, massive inclined plane with an angle of inclination θ is g sin θ

or g cos θ. Then, two limiting cases can be considered — namely θ → 0 and

θ → π
2 . If θ → 0, the plane essentially becomes a horizontal ground and the

acceleration of the block should be zero. If θ → π
2 , the plane is virtually a

vertical wall and the acceleration of the block must thus be g. g sin θ satisfies

both of these criteria while g cos θ does not. Thus, the former should be

chosen.

Besides choosing limiting cases where a parameter x → 0, x → ∞ or

x → c for some constant c, one can also consider the relative sizes of two

parameters x and y. Common limiting cases are x� y, x = y, x� y, x > y

and x < y. Here is an example. Consider the simplest Atwood’s machine with

two masses m1 and m2 connected by an inextensible string wrapped around

a fixed pulley. Let the accelerations of the masses be a1 and a2 respectively,

taking the upwards direction to be positive. Suppose we have obtained the

following expressions for a1 and a2:

a1 =
m2 −m1

m1 +m2
g,

a2 =
m1 −m2

m1 +m2
g.

Let us check the validity of our solution. When m1 � m2, a1 and a2 should

become −g and g respectively as m1 should experience little influence from

m2 and just undergo free fall while m2 should rise upwards at g to maintain

the length of the string. This is indeed the case. If we reverse the relative

magnitudes such that m1 � m2, a1 and a2 should become g and −g respec-

tively — a criterion that is also satisfied. When m1 = m2, we predict that

a1 = a2 = 0 due to the symmetry of the system. This condition is once again

fulfilled. The comparisons m1 > m2 and m1 < m2 can also be used to check
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the signs of a1 and a2 because the heavier mass should fall downwards as

common sense should dictate.

1.3 Physical Principles

1.3.1 Scaling Arguments

A famous interview question goes as follows: suppose you were shrunk uni-

formly into the size of a coin, while retaining your density distribution,

and trapped inside a 20cm jar with an open lid; how would you escape

the jar?

The answer to this question, which may be surprising at first, is to simply

jump out of the jar! An average-sized human can jump 20cm but how can a

coin-sized one possibly attain the same height? The crux of this problem is

to model how the height of one’s jump scales with one’s size, which can be

quantified by a single length dimension L. It turns out that muscle strength is

widely accepted to scale with its cross-sectional area. A crude model behind

this property is as follows. The number of muscle fibers is proportional to the

cross-sectional area such that a larger cross-sectional area enables the pack-

ing of more fibers, which each exert a certain maximum pressure, in parallel.

Therefore, the force F that your muscles can exert scales with L2. Now, to

jump a certain height h given that your mass is m, your muscles must do

W = mgh

amount of work, assuming that the gravitational field strength g is uniform.

Now, the work done by your muscles is the force F exerted multiplied by

the distance that they contract, d i.e.

W = Fd.

Therefore,

h =
Fd

mg
;

d obviously scales with L while m scales with volume and hence, L3, if the

original density distribution (even if it is non-uniform) is retained. Then,

h ∝ L2 · L
L3

= constant.

That is, the height that one can jump is independent of the size of the person!

The reason behind the enormous sizes of basketball players is not that they

can jump higher but because they can easily reach the basket with their long

limbs.
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The most common scaling arguments are related to the length, area and

volume of an object. In general, if all length dimensions of an object are

uniformly scaled up by a factor k, its area is scaled up by a factor k2 while

its volume increases by a factor k3.

Problem: Assuming that the rate of heat loss of a mammal obeys H = cS

where c is a constant and S is the total surface area of the mammal, estimate

the value of the constant b if H = aM b where a is a constant and M is the

mass of the mammal.

By scaling arguments, if all length dimensions of the mammal are uni-

formly increased by a factor of k, S increases by a factor of k2 while M

increases by a factor of k3 if we assume that the density is stretched uni-

formly. Then, it is evident that b = 2
3 .

In certain cases, we may be given predetermined parameters and thus

do not need to model the situation as a quantity of concern can be related

to these parameters via dimensional analysis. For example, given that the

moment of inertia has dimensions [M ][L]2, we can argue that the moment of

inertia of a uniform rod of length 2l about its centroid is eight times that of

a uniform rod of length l and the same mass density, as the moment inertia

of a rod should be proportional to its mass multiplied by its squared length

(as there is only a single length dimension for a rod). The former rod has

twice the mass and twice the length of the latter rod — causing its moment

of inertia to be eight times that of the latter.

Problem: An aircraft A travels at a constant altitude while moving at speed

u relative to the atmosphere. Determine the speed u′ that an aircraft B, with

twice the length dimensions of A and all other parameters held constant,

must travel at, relative to the atmosphere, for it to remain at a constant

altitude. Assume that the lift experienced by an aircraft is independent of

the gravitational field strength g.

For an aircraft to remain at a certain vertical height, its weight must

be balanced by the lift, F . We can determine how F scales with the length

dimension of the aircraft (denoted by l) via dimensional analysis. The pos-

sible parameters are the mean density of the atmosphere ρa = [M ][L]−3, the

speed of the aircraft relative to the atmosphere v = [L][t]−1 and the length

dimension of the aircraft l = [L]. Suppose

F = kραav
βlγ

for some dimensionless constant k. Since F = [M ][L][t]−2,

α = 1,

β = 2,
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γ = 2,

=⇒ F = kρav
2l2.

We have F = mg, where m is the mass of the aircraft, for forces to be

balanced in the vertical direction.

=⇒ v =

√
mg

kρal2
.

As m ∝ l3,

v ∝
√
l

=⇒ u′ =
√
2u.

1.3.2 Symmetry

Next, in certain situations which involve some forms of symmetry, some

parameters are often “indistinguishable” from each other. Even if those

parameters were swapped or permuted, the result should remain unchanged

due to symmetry. Then, this fact can be utilized to eliminate options that

are not symmetric in those variables.

Consider the simple Atwood’s machine with two masses m1 and m2 and

a fixed pulley again. Let the magnitude of the tension in the string be T .

What can we say about the expression for T ? Well, T shouldn’t depend on

whether m1 is on the left or right. In other words, if the two masses were

interchanged such that m1 becomes m2 and m2 becomes m1, T should not

change. Therefore, we can immediately eliminate options such as T = m1
2 g

and T = m1m2
m1+2m2

g which are not symmetric in m1 and m2. The correct

solution for T is

T =
2m1m2

m1 +m2
g.

We see that even if we interchange m1 andm2, T stays the same. Conversely,

if the situation is not symmetric, we can also eliminate options that are sym-

metric. For example, if a particle of massm1 travels at a velocity u and under-

goes an elastic collision with another initially stationary particle of mass m2,

the expression for the final velocities of the particles should not be symmetric.

Moving on, the symmetry of a system can do much more than eliminate

options — it can elucidate the evolution of a system. Systems which start off

symmetrical often maintain their symmetry. For example, if a block travels

in the positive x-direction at speed v and sticks with an identical block

travelling in the negative x-direction at speed v, the velocity of the combined

block can only be zero. There is no reason to prefer a single direction in their

resultant motion by ascribing them a non-zero final velocity.
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1.3.3 Equivalent Frames

The combination of symmetry and the notion that the laws of physics

hold the same for all inertial frames1 can lead to enlightening results. Con-

sider the following problem.

Problem: A block travels in the positive x-direction at speed v and sticks

with an identical block that was initially stationary. What is the final velocity

of the combined block?

We can deduce nothing in the current frame but if we switch to a frame

that travels at velocity v
2 in the positive x-direction, the situation is sym-

metrical. Both blocks travel towards each other at speed v
2 and must thus

have zero final velocity in this frame by the argument in the previous sec-

tion. Switching back to the original frame, we conclude that the combined

block must travel at v
2 in the positive x-direction. In fact, we can extend this

argument to determine the final velocity due to a perfectly inelastic collision

between a block of mass pm and another of mass qm where p and q are

integers — you shall do this in Problem 15.

Another common equivalence to exploit is that between accelerating

frames and gravity. Simply put, systems cannot distinguish if they are placed

in an accelerating frame or a region with a commensurate gravitational field

opposite to the direction of acceleration. The field is uniform in space but is

possibly mutable in time (as the acceleration of the frame varies).

Problem: Given that a pendulum of length l has angular frequency
√

g
l in

an inertial frame, determine the angular frequency of a pendulum of length

l attached to the ceiling of a lift that is accelerating upwards at a constant

acceleration a.

The pendulum cannot distinguish if it is in an accelerating lift or a region

with gravitational field strength g+a. Therefore, its angular frequency must

be
√

g+a
l .

1.3.4 Reversibility

Finally, most processes in which no heat is generated or transferred are

reversible.2 That is, if a movie of the process is captured and we rewind

the tape, the evolution of the process in reverse is perfectly coherent with

the physical laws (i.e. it is permitted by the physical laws). Examples of

1This will be defined in Chapter 4.
2The more formal terminology is actually time reversal symmetry which prevents con-

fusion with the thermodynamic concept of reversibility.
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reversible processes are projectile motion and elastic collisions where no heat

is generated. One can then exploit the symmetry of such systems in time

by considering the reverse process. In the case of projectile motion where

a projectile is tossed from and lands on a flat ground, the horizontal and

vertical distances covered by the projectile must be identical during the first

t seconds and the last t seconds — for the last t seconds of the reversed movie

depicts the first t seconds of the original one, with the projectile travelling

in the opposite direction horizontally. Furthermore, if we are provided with

the additional information that the projectile can only attain a single peak,

the horizontal coordinate of the peak must correspond to the midpoint of the

starting and ending points of the projectile. The time taken for the projectile

to reach the peak from the beginning must also be equal to the time it takes

to reach its final location from the peak.

Problem: A particle travelling at velocity u1 undergoes a one-dimensional

elastic collision with an identical particle initially travelling at velocity

u2 < u1 (both velocities are in the same direction). If their final velocities

are aligned with their initial velocities and are v1 and v2 respectively, show

that v2 − v1 = u1 − u2.

Consider a new frame that travels at velocity u1+u2
2 with respect to the

original one. In this frame, particle 1 travels at velocity u1−u2
2 while particle

2 travels at −u1−u2
2 . By symmetry, particles 1 and 2 must travel at velocities

−v and v after the collision. Now, by dimensional analysis, v should be pro-

portional to u1−u2
2 as that is the only parameter here. Let the dimensionless

constant of proportionality be k. Next, by the equivalence of inertial frames,

the process in this frame should also be reversible. By considering the reverse

process, if particles 1 and 2 had initial velocities v and −v, their final veloc-
ities should be −u1−u2

2 and u1−u2
2 after their collision. Again, u1−u22 must be

proportional to v with the same constant of proportionality k for the same

physical laws hold in this situation. Since v = k u1−u22 and u1−u2
2 = kv, the

only possible solution for k is k = 1 (we reject −1 as the particles cannot

penetrate each other). Therefore, the final velocities of the particles in this

new frame are −u1−u2
2 and u1−u2

2 . The final relative velocity in the original

frame is equal to that in this frame. Thus,

v2 − v1 =
u1 − u2

2
−
(
−u1 − u2

2

)
= u1 − u2.
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Problems

Dimensional Analysis

1. Cooking Time*

Suppose that the time taken to cook a piece of meat of mass m obeys

t =
αcρnm

2
3

k

where α is a dimensionless constant, ρ is the density of the meat, c is the

specific heat capacity of the meat and k is the thermal conductivity of the

meat. Determine the value of the constant n.

2. Projectile Motion*

An experiment is performed on both the surfaces of the Earth and Moon

where a ball is tossed vertically upwards at an initial velocity v0. If the time

taken by the ball to reach its peak is tE, maximum height attained by the

ball is hE and the average speed of the ball between its departure from and

arrival on the ground is vE , determine the corresponding values tM , hM and

vM for the experiment conducted on the Moon in terms of tE, hE and vE
via dimensional analysis.

3. Throwing Off an Inclined Plane*

A ball is thrown from a long inclined plane with an angle of inclination θ

at velocity v1 which makes an angle φ with the slope. When the ball lands

on the inclined plane, its final velocity makes an angle α1 with the slope.

Now, repeat the experiment with a new velocity v2 while maintaining θ and

φ. Compare the magnitudes of α1 and α2.

Limiting Cases

4. Rowing a Boat*

A boat travels at velocity v1 relative to still waters. Suppose that a fisherman

now decides to cross a river bank with water flowing at speed v2 downstream.

If the boat steers perpendicularly to the velocity of the stream, it reaches the

opposite bank after time t1. If the boat steers at a certain angle upstream

such that it reaches the point directly opposite of its starting point, the time

taken is t2. Determine v1
v2

out of the possible options listed below.

A.
t1√
t22 + t21

B.
t2√
t22 + t21

C.
t1√
t22 − t21

D.
t2√
t22 − t21
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5. Stationary Atwood’s Machine*

Determine a special combination ofm1,m2 andm3 that causes the Atwood’s

machine depicted below, to be stationary. All strings and pulleys are massless

and frictionless.

6. Perimeter of Circle**

Suppose that you forgot the formula for the perimeter of a circle. By consider-

ing the perimeter of a regular N-gon (polygon with N sides) and a particular

limiting case, determine the perimeter of a circle with radius r. You will

need a special case of L’Hospital’s rule which states that if lim
x→c

f(x) = 0,

lim
x→c

g(x) = 0 and lim
x→c

f ′(x)
g′(x) exists, lim

x→c

f(x)
g(x) = lim

x→c

f ′(x)
g′(x) .

Scaling Arguments

7. Cooling Time*

Estimate how the time taken for a person to cool down after a run scales

with the size of the person. Ignore any heat generated by the body after

the run and assume that the power radiated from the skin of a person is

much larger than the power due to the heat conduction within the person’s

body. Note that Fourier’s law of conduction states that the power delivered

by conduction between two surfaces is proportional to their contact area A

and temperature gradient.

8. Maximum Velocity**

Estimate how the maximum sprinting velocity of a mammal on frictionless

ice scales with the size of the mammal. Assume that the magnitude of the

drag force on the mammal is proportional to its squared speed, Fdrag = −bv2
where b is independent of v. In determining how b scales with the size of the

mammal, it may be helpful to know that the physical cause of the quadratic

drag is the bombardment of air molecules on the mammal. What about the

maximum velocity that a mammal can stably maintain?
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Physical Principles

9. Bouncing Off a Wall*

A particle is thrown at a vertical wall at a purely horizontal initial veloc-

ity. It travels horizontal distance d1 before undergoing an elastic collision

with the wall which causes its horizontal velocity to reverse and its vertical

velocity to remain unchanged. The particle then covers horizontal distance

d2 before reaching the ground. Determine the horizontal distance that the

particle would have travelled before touching the level ground if the wall were

absent.

10. Projectile Motion on Inclined Plane*

A particle is tossed from an inclined plane of an angle of inclination θ at an

initial velocity that is perpendicular to the slope of the plane. Denote the

start and end points of the particle’s motion, both lying on the plane, to be

A and B. In the midst of its motion, the particle attains a maximum perpen-

dicular distance from the plane. Let P denote the foot of the perpendicular

from the particle to the plane at this juncture. Determine PB
AP

.

11. Pendulum on Train*

A pendulum of length l is attached to the ceiling of a train which undergoes

a constant horizontal acceleration a in the positive x-direction. Given that

the pendulum’s angular frequency of oscillations in an inertial frame is
√

g
l ,

determine its equilibrium position and angular frequency on the train.

12. Pendulum with Strings**

Two strings, which lie in a single plane with the vertical, are attached to

a bob as shown in the figure below. The horizontal separations of the end

points of the strings with the bob are d1 and d2 respectively. The vertical

separation between the end points is h and the bob lies a distance y below

the right end point. If the bob is given a slight push into the page, determine

the angular frequency of small oscillations if the strings remain taut.
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13. Nearest Points**

This problem is not really related to physics and is rather contrived but

it serves to highlight an important problem-solving technique. Consider a

cube of length l with nine particles — eight lie at the vertices of the cube

while one lies at the center. Now, each point inside the cube is ascribed to

its nearest particle. Determine the total volume of points ascribed to the

central particle.

14. Right Angles**

A particle travels at a speed v towards another identical, initially stationary

particle, and undergoes a two-dimensional elastic collision where the particles

are deflected in different directions. Show that the final velocities of the two

particles must be mutually perpendicular.

15. Conservation of Momentum**

It was shown in Section 1.3.3 that a block, initially stationary, approaching

an identical, also initially stationary block, at speed v would result in a

combined block with final velocity v
2 after a perfectly inelastic collision. Now,

define m as the mass of a block. When we refer to a block of mass nm

where n is an integer, we mean n amalgamated blocks. By using induction,

determine the final velocity of the combined block when a block of mass

pm, where p is an integer, and initial speed v undergoes a perfectly inelastic

collision with an initially stationary block of mass m. Then, determine the

final velocity when a block of mass pm and initial velocity v1 undergoes a

perfectly inelastic collision with a block of mass qm, where q is an integer,

and initial velocity v2 < v1 (along the same direction).



July 10, 2018 12:22 Competitive Physics 9.61in x 6.69in b3146-ch01 page 15

Minimalistic Arguments 15

Solutions

1. Cooking Time*

Rearranging, we obtain

ρn =
tk

αcm
2
3

.

The dimensions of the thermal conductivity k can be solved for by consid-

ering Fourier’s law of conduction for one-dimensional heat conduction.

Q̇ = −kAdT
dx
,

where A = [L]2 represents the contact area, dTdx = [T ][L]−1 is the temperature

gradient and Q̇ = [E][t]−1 is the power delivered, where [E] and [T ] represent

dimensions of energy and temperature respectively. Thus, k has dimensions

of [E][L]−1[t]−1[T ]−1 . The dimensions of the specific heat capacity c can be

obtained by considering the equation

ΔQ = mcΔT,

where ΔQ = [E] is the change in internal energy, m = [M ] is the mass of

the substance and ΔT = [T ] is the change in temperature.

=⇒ c =
Q

mΔT
= [E][M ]−1[T ]−1.

The expression for ρn has dimensions of

ρn =
[t] · [E][L]−1[t]−1[T ]−1

[E][M ]−1[T ]−1 · [M ]
2
3

= [M ]
1
3 [L]−1.

Hence, n = 1
3 since ρ = [M ][L]−3.

2. Projectile Motion*

The possible parameters are the mass of ball m = [M ], initial velocity

v0 = [L][t]−1 and gravitational field strength g = [L][t]−2. By dimensional
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analysis, the time taken by the ball t to reach its peak should scale as follows:

t ∝ v0
g
.

The surface gravitational field strength of the Moon is one-sixth of the

Earth’s. Then,

tM = 6tE .

The maximum height attained by the ball h is by dimensional analysis,

h ∝ v20
g

=⇒ hM = 6hE .

Finally, the average speed of the ball 〈v〉 can only be proportional to v0.

〈v〉 ∝ v0

=⇒ vM = vE.

3. Throwing Off an Inclined Plane*

The only possible parameters are the velocity of the ball v = [L][t]−1, the

gravitational field strength g = [L][t]−2, the mass of the ball m = [M ],

θ and φ. We observe that the expression for α should be independent of v

as there is no way to cancel both the length unit [L] and the inverse time

unit [t]−1 of velocity solely by using g. By a similar argument, α should also

be independent of g and m. Therefore, α1 = α2 as the other parameters,

θ and φ, are fixed. Finally, this result agrees with the limiting case θ = 0

where α = φ based on symmetry. Note that one cannot use the limiting case

where θ = π
2 in this case as the ball will not land on the slope (as it is a

vertical wall).

4. Rowing a Boat*

The answer is option D. We can first consider the limiting case where v2 = 0

while v1 is finite. Then, v1
v2

tends to infinity. When v2 = 0, it is evident

that t1 = t2. Thus, the only possible options are C and D. To differentiate

between these, notice that v1 must be larger than v2 for the second scenario

to be possible (as it must have a component v2 upstream). However, option

C suggests the possibility that when t1 is small and t2 � t1 (i.e. v1 ≈ v2
in reality), v1

v2
< 1. Since this is impossible, we eliminate option C and

choose D.
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5. Stationary Atwood’s Machine*

Observe that if m2 = m3 = m, m2 and m3 are indistinguishable, they thus

should both remain stationary due to symmetry. The tension in each of the

strings holding them is then mg to nullify their weight. For the force on the

system comprising the massless pulley and massless string connecting m2

and m3 to be balanced, the tension in the string wrapped around the top

pulley must be 2mg. Then, if m1 = 2m such that its weight balances the

tension 2mg, the entire set-up is stationary.

6. Perimeter of Circle**

Let l denote the length of a line connecting the center of a regular N-gon to

one of its vertices. The angle subtended by a line connecting the center to a

vertex and one connecting the center to the midpoint of an adjacent edge is
π
N . Therefore, half the length of an edge is l sin π

N . Since there are N sides,

the perimeter of a regular N-gon is

2Nl sin
π

N
.

The perimeter of a circle is then obtained from taking the limit N → ∞
(l = r in this case).

lim
N→∞

2Nr sin
π

N
= 2πr lim

N→∞
N

π
sin

π

N
= 2πr lim

x→0

sinx

x
,

where x = π
N . To compute lim

x→0

sinx
x , we apply L’Hospital’s rule:

lim
x→0

sinx

x
= lim

x→0

cosx

1
= 1.

Therefore, the perimeter of a circle is

2πr.

Another method is to note that for large N , π
N is small such that

sin π
N ≈ π

N by the Maclaurin series of sin x. Thus, lim
N→∞

2Nr sin π
N = lim

N→∞
2Nr · πN = 2πr.

7. Cooling Time*

Our objective is to determine how the time taken for a person’s body to cool

from a fixed starting temperature (after running) to his or her normal body

temperature scales with size. The limiting factor in this case is the rate of

heat conduction within the body as the heat carried to the skin is dispersed
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at a much faster rate. Let L be a measure of a person’s length dimension.

Then the area of contact A scales with L2. Though the person does not have

a uniform temperature, let T be a measure of the instantaneous temperature

of the person as we will only be looking at how the temperature scales. If Q

is the instantaneous internal energy of the person, Q ∝ TL3 assuming that

the specific heat capacity of the body is constant as the volume of the person

scales with L3. To clarify the dependence of Q on T , the above statement

means that if the temperature is doubled everywhere within the body, the

stored internal energy will double. Moving on, the rate of heat conduction

Q̇ is proportional to the product of the contact area A and the temperature

gradient — the latter is proportional to T
L . Thus,

Q̇ ∝ −L2 · T
L

∝ −L2 · Q
L4

= − Q

L2

=⇒ Q

−Q̇ ∝ L2

where a negative sign indicates that a hotter body loses heat. Since Q̇ ∝ ṪL3,

T

−Ṫ ∝ L2.

As different people are presumed to start and end with identical temper-

atures, the time taken for a person to cool down should scale with his or

her squared length dimension as the above expression implies that the time

taken for a person’s temperature to be reduced by a unit amount scales with

L2, for any given temperature.

8. Maximum Velocity**

When the sprinting velocity is maximum, the power P delivered by the

ground to the mammal is equal to the power of the drag force.

P = bv3.

Let L be a measure of the mammal’s length dimension. b scales with the

cross-sectional area of the mammal as the volume rate of air molecules swept

by the mammal is proportional to the cross-sectional area (we do not consider

v as the dependence of the drag force on v has already been extracted into

the v2 relationship). Next, we move on to the left-hand side. The maximum

power delivered by the ground is the maximum force F that the mammal
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can exert on the ground (by Newton’s third law) multiplied by its speed.

Fv = bv3

v =

√
F

b
.

F scales with L2 for most mammals. Therefore,

v ∝
√
L2

L2
= constant.

The maximum sprinting velocity should be approximately uniform across

mammals. In modeling the stable running speed of a mammal, there are two

approaches that we can take — biological and thermodynamic. Biologically,

the stable power that a mammal can deliver should be proportional to the

volume rate of air intake by the mammal (we assume that oxygen can be

instantaneously transported throughout the mammal). This is equal to the

cross-sectional area of the windpipe multiplied by the speed of air through

the windpipe vair. vair can be estimated by assuming that the lung becomes

a perfect vacuum when it expands. Then, by Bernoulli’s principle,

patm =
1

2
ρv2air,

where patm is the constant atmospheric pressure and ρ is the density of air in

the windpipe which should also be approximately uniform across mammals.

Then, vair is constant. The volume rate of air intake is thus proportional to

L2 as the cross-sectional area of the windpipe should scale with L2. All-in-all,

for aerobic sustainability,

P ∝ L2

v =
3

√
P

b
∝ 3

√
L2

L2
= constant.

In addition to aerobic sustainability, the mammal must also be able to expel

heat at a sufficient rate. We can assume that the heat generated by the

mammal is proportional to the mechanical power delivered by the mammal

(i.e. constant efficiency). Fourier’s law of conduction states that the power

delivered between two surfaces is proportional to their area of contact and the

temperature gradient between them. The temperatures of mammals should

not differ by much so the latter scales with 1
L while the former scales with

L2. Overall, the power delivered towards the skin of the mammal (where it is

radiated) is proportional to L. The stable mechanical power that a mammal
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can deliver should hence be proportional to L in light of both aerobic and

thermodynamic sustainability (the latter is the limiting factor).

P ∝ L

vstable =
3

√
P

b
∝ 1

3
√
L
.

9. Bouncing Off a Wall*

Since the particle simply reverses its horizontal velocity after colliding with

the wall, the motion of the particle thereafter is equivalent to that of a

particle, located at a horizontal distance d1 behind the wall and the same

vertical height as the initial location of the actual particle (i.e. reflection

about the wall), thrown at the same initial speed towards the wall. Therefore,

the total horizontal distance covered by this virtual particle (assuming that

it penetrates the wall) is d1 + d2. This must also be the distance covered by

the original particle if it is not blocked by the wall due to symmetry (the

virtual particle is simply the original particle with a reversed initial velocity).

10. Projectile Motion on Inclined Plane*

We choose our x and y-coordinate axes to be parallel and perpendicular

to the slope respectively. Choosing the positive x-direction to be down the

slope, the particle experiences an acceleration (g sin θ, g cos θ). Now, consider

a new frame that accelerates at (g sin θ, 0) with respect to the original one.

In this frame, the particle experiences an acceleration (0, g cos θ) — it effec-

tively lives in a world with a modified gravitational field strength g cos θ and

undergoes a one-dimensional projectile motion (akin to tossing a ball directly

upwards). The times taken by the particle to reach its peak (the point where

it attains the greatest perpendicular distance from the slope) from the start

and to drop back to the slope are identical due to the reversible nature of

projectile motion. Let this common time be t. Then, the particle is in the air

for 2t. Now, we analyze the motion of the new frame with respect to the orig-

inal one to determine the motion of the particle along the slope. In the first

t time interval, the particle would have covered AP = 1
2g sin θt

2 horizontal

distance as its horizontal acceleration is g sin θ. In the time interval between

t and 2t, it covers horizontal distance PB = 1
2g sin θ(2t)

2 − 1
2g sin θt

2 =
3
2g sin θt

2 (one can argue that the distance travelled along the slope from

the start of the motion should be proportional to t2 by dimensional analysis
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too). Thus,

PB

AP
= 3.

11. Pendulum on Train*

The pendulum effectively experiences an additional uniform and constant

horizontal gravitational field −a. In order for the pendulum to be at equi-

librium, the string must be aligned with the net gravitational field as the

tension exerted by a string must be directed along the string. Therefore, the

equilibrium position is at a clockwise angle tan−1 a
g from the vertical. Since

the net effective gravitational field is
√
g2 + a2, the angular frequency of the

pendulum is

√√
g2+a2

l .

12. Pendulum with Strings**

If the strings are to remain taut, the bob has to maintain the same dis-

tance with respect to the end points at all times (i.e. the strings are rigid).

Therefore, the bob can only rotate about the straight axis that joins the

two end points. Let θ be the angle subtended by this axis and the hori-

zontal. The component of gravity currently perpendicular to this axis can

be shown to be g cos θ by simple trigonometry and is the effective gravity.

The component parallel to the axis does not matter as it gets absorbed

by the tensions in the strings. Finally, the perpendicular distance between

the bob and the axis, which is the effective length of the pendulum, can

be shown to be (y + hd2
d1+d2

) cos θ. Then, the angular frequency of small

oscillations is

ω =

√√√√ g cos θ(
y + hd2

d1+d2

)
cos θ

=

√
g(d1 + d2)

y(d1 + d2) + hd2
.

13. Nearest Points**

The trick here is to repeatedly duplicate the original cube into an infinite

system of identical cubes with faces stuck together. Each particle in this

system has four nearest neighbours that are
√
3l
2 away. Then, we cannot

distinguish between the particles at the vertices of the cube and the central

particle. That is, the volumes of points ascribed to them should be identical.

Let this common volume be V . Notice that each of the particles located at the

vertices of the original cube are now sandwiched between eight cubes — the
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volume inside the original cube ascribed to each vertex is then V
8 . Equating

the ascribed volume V of the central particle and V
8 of each of the vertices

with the total volume of the original cube,

V +
V

8
· 8 = l3

V =
l3

2
.

14. Right Angles**

Define the velocity of the first particle to be along the positive x-axis. Con-

sider a new frame that travels at velocity v
2 with respect to the original

frame in the positive x-direction. In this frame, particle 1 travels at velocity
v
2 while particle 2 travels at velocity − v

2 . By symmetry, after the collision in

this frame, the velocities of particles 1 and 2 must be −u and u for some

vector u. In order for the process to be reversible in this frame, u = v
2 for the

same reason as argued in Section 1.3.4. The final velocities in the original

frame are

v1 =
v

2
− u

v2 =
v

2
+ u.

Taking the dot product of these velocities,

v1 · v2 =
1

4
v · v − 1

2
v · u+

1

2
v · u− u · u =

1

4
v2 − u2 = 0,

since u = v
2 . This shows that the two final velocities must be perpendicular.

15. Conservation of Momentum**

Let proposition Pn be that the final velocity vn of the combined block when a

block of mass nm and initial speed v undergoes a perfectly inelastic collision

with an initially stationary block of mass m obeys

vn =
n

n+ 1
v.

All velocities are taken to be positive rightwards. The base case is n = 1

which was proven in Section 1.3.3. Given that Pk is true, we shall prove that

Pk+1 is true.
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Situation in lab and last block’s frames

vk+1 is the final velocity of the combined block of mass (k + 2)m after a

perfectly inelastic collision between a block of mass (k + 1)m and another

of mass m. The collision process can be split into two parts. Firstly, the

k front blocks collide with the lone mass m. By the induction hypothesis,

the final velocity of these (k + 1) combined blocks is kv
k+1 . The last mass m

at the back of the original (k + 1) blocks, which still travels at velocity v,

then collides with these (k+ 1) combined blocks. To determine an alternate

expression for vk+1 from this procedure, consider the initial frame of the last

block (which travels at v relative to the original frame). The combined block

of mass (k + 1)m now approaches the stationary block of mass m at speed
v
k+1 leftwards (bottom strip of the figure above). This set-up is identical to

the original collision, except with the initial speed scaled down by a factor

of 1
k+1 . Therefore, the final velocity of the combined (k + 2)m block is

vk+1

k+1

leftwards by scaling arguments. Switching back to the original frame, the

combined (k + 2)m blocks travel at velocity v − vk+1

k+1 rightwards. Equating

this alternate expression for vk+1 with vk+1,

v − vk+1

k + 1
= vk+1

vk+1 =
k + 1

k + 2
v =

k + 1

(k + 1) + 1
v,

which completes our induction. Since P1 is true, Pn is true for all positive

integers n.

vn =
n

n+ 1
v.

Moving on to the next part, consider the initial frame of the block with mass

qm (which travels at v2 relative to the original frame). The block with mass

pm approaches it with velocity v1 − v2. Now, when pm collides with qm,

we can split the collision process into q parts. Firstly, pm collides with the
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front-most block of qm to form a combined block of mass (p+1)m before it

collides with the second block to form a combined block of mass (p + 2)m

and so on until it collides with the block at the back of the original q blocks.

Since vn = n
n+1v from the previous part, the first collision causes the initial

velocity to be scaled by a factor p
p+1 while the second causes it to be scaled

by a factor p+1
p+2 and so on. Therefore, the final velocity of the combined block

of mass (p+ q)m in the frame that travels at velocity v2 with respect to the

original frame is

(v1 − v2)× p

p+ 1
× p+ 1

p+ 2
× · · · × p+ q − 1

p+ q
=
p(v1 − v2)

p+ q
.

It is tempting to exploit the fact that scaling the masses of both original

blocks by the same factor should not change the final velocity to divide the

masses of both blocks by q and apply the previous result (with n = p
q ) to

directly obtain p(v1−v2)
p+q but we cannot do this as the previous result is only

valid for integers and not rationals. Having pointed out this flawed argument,

we obtain the final velocity in the original frame by adding v2 to switch back

to the original frame.

p(v1 − v2)

p+ q
+ v2 =

pv1 + qv2
p+ q

.
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Chapter 2

Infinitesimal Elements

The consideration of infinitesimal elements of a continuous distribution is

an essential mathematical procedure in physics as the contribution due to

each element to a quantity of interest often differs throughout the whole

distribution. For instance, when we wish to calculate the gravitational force

on a point mass due to a rod, every mass element on the rod will contribute a

force with a different magnitude and possibly, different direction (depending

on the orientation). Thus, we must consider infinitesimal elements and use

integration to ensure mathematical rigor in such situations.

2.1 One-Dimensional Elements

In many problems, we wish to calculate a quantity, such as the gravitational

potential, that is influenced by a distribution of particles with factors that

affect it (e.g. mass). Each particle would then contribute a different amount

to the quantity being considered. If the distribution is continuous, it is nec-

essary to integrate the contributions over the entire system. Consider the

following example.

Figure 2.1: Gravitational potential due to a rod

Referring to Fig. 2.1, a uniform thin rod of total mass m and length

l lies along the x-axis with ends at x = 0 and x = l. If the equation for

25
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the gravitational potential at a point due to a point particle of mass M is

−GM
r where r is the distance of the point of concern from M , determine the

gravitational potential due to the rod at point P, (0, h). Now, we consider

infinitesimal elements of the rod. Consider a segment with ends at coordi-

nates x and x+ dx in Fig 2.2.

Figure 2.2: Gravitational potential due to a segment between x and x+ dx

The contribution of this infinitesimal segment of mass dm = m
l dx to the

gravitational potential at P is

dV = − Gdm√
h2 + x2

= − Gm

l
√
h2 + x2

dx.

The total potential due to the rod is obtained by integrating the individual

contribution of each infinitesimal element over the entire rod.

V = −
∫
L

Gm

l
√
h2 + x2

dx

where a symbol L has been written as a subscript of the integral to denote

that we are integrating over a one-dimensional line. Furthermore, note that

the lower limit of the integral with respect to dV has been taken to be zero

as its physical meaning corresponds to the gravitational potential at P due

to a rod of zero length. In this case, the rod is a straight line that spans from

x = 0 to x = l. Thus,

V = −
∫ l

0

Gm

l
√
h2 + x2

dx.

By using the substitution x = h tan θ, dx = h sec2 θdθ,

V = −
∫ tan−1 l

h

0

Gm

lh sec θ
h sec2 θdθ

= −
∫ tan−1 l

h

0

Gm

l
sec θdθ
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=

[
−Gm

l
ln |sec θ + tan θ|

]tan−1 l
h

0

= −Gm
l

ln

(√
l2

h2
+ 1 +

l

h

)
.

Now, consider the case where each segment on the rod contributes to a vector

quantity at P. For example, what is the gravitational field due to the rod

above at P? Note that the gravitational field strength at a point due to a

point mass M is −GM
r2

r̂ where r is the vector pointing from M to the point

of concern.

Figure 2.3: Gravitational field due to a segment between x and x+ dx

Define the xy-plane to be the plane on which the rod and P lie. Now,

notice that the unit vector r̂ in the case of an infinitesimal element of mass

dm = m
l dx between x and x+ dx is

r̂ =

(− cos θ

sin θ

)
=

⎛
⎝− x√

h2+x2

h√
h2+x2

⎞
⎠,

hence the contribution to the gravitational field at P due to this segment is(
dgx
dgy

)
= − Gmdx

l(h2 + x2)

⎛
⎝− x√

h2+x2

h√
h2+x2

⎞
⎠.

The different components of the total gravitational field at P due to the

entire rod can be integrated separately.

gx =

∫ l

0

Gmx

l (h2 + x2)
3
2

dx

=

[
− Gm

l
√
h2 + x2

]l
0
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=
Gm

lh
− Gm

l
√
h2 + l2

gy =

∫ l

0
− Gmh

l (h2 + x2)
3
2

dx

=

∫ tan−1 h
l

0
− Gmh

lh3 sec3 θ
h sec2 θdθ

=

∫ tan−1 h
l

0
−Gm
lh

cos θdθ

=

[
−Gm
lh

sin θ

]tan−1 h
l

0

= − Gm

l
√
h2 + l2

.

Now, it just so happened that our distribution in the previous scenario was

a straight line. What if the mass distribution took on the form of a more

general function f(x) in the xy-plane?

Figure 2.4: Arbitrary curve

Now, we would still need to integrate over individual contributions over

the entire curve. However, we cannot simply integrate over x now as this

does not reflect the physical curve. Thus, we must consider an appropriate

infinitesimal segment to determine what to integrate over. Consider a slanted

segment of mass with its ends at x-coordinates x and x+ dx (Fig. 2.5). The

slanted segment is approximately a straight line in the limit where dx is

small.

ds represents the infinitesimal length of the curve while dx and dy merely

represent the infinitesimal changes in coordinates. The physical quantity of
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Figure 2.5: General infinitesimal line element

concern is ds as it represents the physical curve.

ds =
√

(dx)2 + (dy)2 =

√
1 +

(
dy

dx

)2

dx. (2.1)

Furthermore,

dy

dx
= f ′(x)

=⇒ ds =
√

1 + f ′(x)2dx. (2.2)

This is the infinitesimal length of an infinitesimal line element in a plane.

Suppose that we wish to compute the gravitational potential at the origin

due to mass distributed in the form of a curve f(x) with uniform linear mass

density λ and ends located at x = x0 and x = x1. Then, the contribution

due to an infinitesimal element with its ends at x-coordinates x and x+ dx

and mass dm is

dV = − Gdm√
x2 + f(x)2

.

We can apply the result above to express dm as

dm = λds = λ
√

1 + f ′(x)2dx

V = −
∫ x1

x0

Gλ
√

1 + f ′(x)2√
x2 + f(x)2

dx.

Notice that if we had taken dm = λdx, we would have obtained an invalid

answer as dx does not physically represent an infinitesimal length segment

of the curve.

Polar Coordinates

Instead of assigning every point in a two-dimensional space a (x, y) coordi-

nate in a Cartesian system, every point can be instead defined by its distance

from the origin and its angular position θ which specifies its orientation in

space. Usually θ is defined to be positive anti-clockwise, from an imaginary

x-axis. The basis vectors are now the unit vector pointing towards the point
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Figure 2.6: Polar coordinates

Figure 2.7: Infinitesimal line element in polar coordinates

of concern r̂ and a unit vector tangential to it, denoted by θ̂, which points

in the direction of increasing θ (Fig. 2.6).

Referring to Fig. 2.7, an infinitesimal length segment now has perpen-

dicular components dr and rdθ which represent the change in distance from

the origin and the infinitesimal arc of radius r that subtends angle dθ.

The infinitesimal length segment is then

ds =
√

(dr)2 + r2(dθ)2 =

√
r2 +

(
dr

dθ

)2

dθ. (2.3)

Problem: Compute the total length of the spiral described by the equation

r = θ with limits from θ = θ0 to θ = θ1.

The total length of a curve is simply the integration of the infinitesimal

length segment over the entire curve.

S =

∫ θ1

θ0

√
r2 +

(
dθ

dr

)2

dθ =

∫ θ1

θ0

√
θ2 + 1dθ.



July 10, 2018 12:23 Competitive Physics 9.61in x 6.69in b3146-ch02 page 31

Infinitesimal Elements 31

Using the substitutions θ = tanφ and dθ = sec2 φdφ,

S =

∫ tan−1 θ1

tan−1 θ0

sec3 φdφ.

Now, this is a well-known integral which can be solved via the following

trick. Using integration-by-parts,

I =

∫
sec3 xdx

= tan x sec x−
∫

tan2 x sec xdx

= tan x sec x−
∫

(sec2 x− 1) sec xdx

= tan x sec x+

∫
sec xdx− I

= tan x sec x+ ln |tan x+ secx| − I + c

=⇒ I =
1

2
tanx sec x+

1

2
ln |tan x+ secx|+ c

S =
1

2

(
θ1

√
1 + θ21 − θ0

√
1 + θ20

)
+

1

2
ln

∣∣∣∣∣θ1 +
√

1 + θ21
θ0 +

√
1 + θ20

∣∣∣∣∣.
2.2 Two-Dimensional Elements

If a distribution spans more than a single dimension, infinitesimal elements

of higher dimensions must naturally be considered. In the two-dimensional

case, infinitesimal surface elements must be considered. The following are

some common ones.

Planar Surface

For a planar surface, a Cartesian system can be adopted. Then, the infinites-

imal surface element (Fig. 2.8) is a rectangle of sides dx and dy and area

dA = dxdy. Cartesian coordinates are especially useful if the region that the

distribution spans can be conveniently expressed in terms of x and y. For

example, for a rectangle with edges parallel to the x and y-axes, you know

that y ranges between two values for every x and the entire range of x ranges

between two values.

If the distance of every point on the planar surface to the origin can

be expressed neatly in terms of its angular coordinate, θ, it is convenient to
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Figure 2.8: Planar surface in Cartesian coordinates

Figure 2.9: Planar surface in polar coordinates

adopt a polar coordinate system. Then, the infinitesimal surface elements are

“rectangles” (in the limit of small arc lengths) of sides dr and rdθ (Fig. 2.9).

Surfaces Formed by Rotating a Curve

A common surface is that formed by rotating a curve x(z) in the region x ≥ 0

over one complete revolution about the z-axis (Fig. 2.10). Consider a thin

trapezoid with circular bases parallel to the xy-plane and at z-coordinates z

and z+dz, depicted in Fig. 2.11. The radii of the circular bases are x(z) and

x(z+dz) = x+dx respectively. The relevant infinitesimal surface between z

and z+dz on the original surface is the curved surface of the thin trapezoid.

The most elementary infinitesimal surface element on this surface is a

slanted rectangle1 with area x(z)dφds where φ is the azimuthal coordinate

in the x-y plane (x(z)dφ is the length of an infinitesimal arc) and ds is the

length of a line along the surface between z and z + dz. Now, notice that

1Technically, it is a trapezoid with parallel sides of length x(z)dφ and x(z + dz)dφ but
the difference is third-order after multiplication with ds. Thus, the length of both sides
can be taken as x(z)dφ.
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Figure 2.10: Surface formed by rotating curve x(z) about z-axis

Figure 2.11: Trapezoid between z and z + dz

ds is precisely the one-dimensional length segment that has been analyzed

before.

ds =
√

(dx)2 + (dz)2 =

√(
dx

dz

)2

+ 1 dz.

Therefore, the infinitesimal surface element is

dA = x

√(
dx

dz

)2

+ 1 dzdφ.

Now that the necessary infinitesimal elements have been studied, we will

focus on evaluating the quantities associated with two-dimensional distribu-

tions. In general, a double integral will be necessary.

Double Integrals

As its name implies, double integrals imply integrals over two variables.

They are naturally required if the distribution spans two dimensions. Double

integrals can be evaluated like any normal integral by integrating over one

variable layer by layer. However, care must be taken to ensure that the limits

of integration indeed represent the entire distribution. Another important

fact to understand is that the limits of integration should only depend on
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the region that we are integrating over and not the integrand. Consider the

two following examples.

Problem: Determine the gravitational potential at the origin due to a circu-

lar mass distribution centered about the origin with a possibly non-uniform

surface mass density σ(r, θ) and radius R. Finally, substitute the special case

where σ = αr for some constant α.

Figure 2.12: Circle in polar coordinates

We have to integrate the contributions due to each infinitesimal surface

element. It is natural to adopt polar coordinates in integrating over a circle.

Consider an element at coordinates (r, θ). The mass of this element is σdA =

σrdθdr. Hence, its contribution to the potential at the origin is

−GσdA
r

= −Gσdθdr.
The total gravitational potential is obtained by integrating this quantity over

the entire circle:

V = −
∫∫

S
Gσ(r, θ)dθdr.

In this case, the limits for r and θ are independent. r ranges from 0 to R

while θ ranges from 0 to 2π so

V = −
∫ R

0

∫ 2π

0
Gσ(r, θ)dθdr = −

∫ 2π

0

∫ R

0
Gσ(r, θ)drdθ.

Note that the inner integral is always evaluated first (analogous to the order

of brackets). In the first expression, the integral over θ is evaluated before r

and vice versa for the second expression. The limits of the integrals do not

depend on the order of integration in this case but this is not always true in
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general. In this particular case, integrating over θ before r would correspond

to first computing the contributions due to a thin circular shell of radius r

before summing the contributions due to all circular shells from radius 0 to

radius R. On the other hand, the reverse order of integration would imply

that we first determine the contribution due to a radial line of length R, that

subtends a certain angle θ with the x-axis, before summing the contributions

due to all lines from θ = 0 to θ = 2π. As both orders of integration reflect a

circle of radius R, centered about the origin, the exact order of integration

does not matter. Substituting the special case where σ = αr,

V = −
∫ R

0

∫ 2π

0
Gαrdθdr = −

∫ R

0
2πGαrdr = −πGαR2.

Now, consider the more cumbersome distribution below where the limits

depend on the order of integration.

Problem: Mass is distributed, with a uniform surface mass density σ, over

the area bounded by the x and y axes, and lines x = l and y = f(x). If an

infinitesimal surface element at coordinates (x, y) makes a contribution to

the quantity of concern given by the expression dmx
M where dm is the mass

of the infinitesimal element, and M is the total mass of the distribution that

can be taken as a given, compute this quantity of concern — it physically

represents the x-coordinate of the center of mass of the distribution.

Figure 2.13: Mass under an arbitrary curve

Wemust integrate individual contributions over the entire surface. To this

end, we will consider squares of sides dx and dy in Cartesian coordinates.

Integrating the contributions of all such elements over the relevant region,

Q =

∫∫
S

dmx

M
=

∫∫
S

σx

M
dxdy,



July 10, 2018 12:23 Competitive Physics 9.61in x 6.69in b3146-ch02 page 36

36 Competitive Physics: Mechanics and Waves

where S in the subscript denotes the surface of integration. Now, we must

take care in writing the limits based on the order of integration. We can

first integrate over y and then x. Physically, this represents first finding the

contribution due to a vertical strip at a particular x-coordinate (shaded in

Fig. 2.13 above) and then integrating over all strips. Then, the limits of the

integral over y begin from 0 and end at f(x) for a given x-coordinate. Hence,

the limits of integral over y are now a function of x. After integrating over

a vertical strip at a particular x-coordinate, we perform an integration over

x from 0 to l to sum up the contributions of all strips.

Q =

∫ l

0

∫ f(x)

0

σx

M
dydx =

∫ l

0

σf(x)x

M
dx.

We could have also integrated with respect to x first and then y. This is

equivalent to integrating over a horizontal strip first. However, the limits

for the x integral would now depend on y and cannot be expressed by a

convenient given function. If we absolutely insist on applying this method,

the limits for x for a given y in the region 0 ≤ y ≤ c range from x = 0 to

x = l. Moreover, the limits for x for a given y in the region c ≤ y ≤ f(l)

range from x = f−1(y) to x = l where f−1(y) is the inverse function. That

is, we now have to split the double integral into two parts and determine the

inverse function — a rather troublesome approach.

Let us end this section by analyzing an example of a surface with circular

symmetry.

Problem: In Fig. 2.14, consider a spherical cap that is formed by slicing a

sphere of radius R by a plane. The base of a spherical cap is a circle with

radius a while the altitude from the vertex to the base is h. Determine the

area of the curved surface of this spherical cap.

Figure 2.14: Spherical cap
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Recall that the infinitesimal element to consider in such cases is a rect-

angle of sides ds =
√

(dxdz )
2 + 1dz and xdφ. Since all relevant functions are

independent of φ, the surface area of a thin trapezoid between z-coordinates

z and z + dz in the previous section is

2πxds = 2πx

√(
dx

dz

)2

+ 1dz,

as the integral over φ from 0 to 2π trivially evaluates to 2π. Now we let the

center of the original sphere be located at the origin and let the z-axis pass

through the vertex of the spherical cap. The radius of the cross-section of

the spherical cap x(z) is obtained from the fact that

x2 + z2 = R2

x =
√
R2 − z2

dx

dz
=

−z√
R2 − z2

.

The surface area of the spherical cap, A, is obtained via integrating over all

trapezoids from z = R− h to z = R:

A =

∫ R

R−h
2π
√
R2 − z2 ·

√
z2

R2 − z2
+ 1dz

=

∫ R

R−h
2πRdz

= 2πRh.

Since the question did not give us R, we should express R in terms of a and

h. This can be done through the intersecting chords theorem which states

that

a2 = h(2R − h)

=⇒ 2Rh = h2 + a2.

Therefore, we have a beautiful result:

A = π(h2 + a2).

The surface area of a spherical cap is simply that of a circle with radius√
h2 + a2 (i.e. the length of a line connecting the vertex to a point on the

circumference of the base).
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2.3 Three-Dimensional Elements

In the three-dimensional case, infinitesimal volume elements should be

isolated.

Cartesian Coordinates

In Cartesian coordinates, an infinitesimal box element has lengths dx, dy

and dz (Fig. 2.15).

Figure 2.15: Cartesian coordinates

Spherical Coordinates

For integrations over the volume of a sphere, the following spherical coordi-

nate system should be adopted.

In spherical coordinates, every point in space can be defined by its dis-

tance to the origin r, the angle θ subtended by its position vector and an

imaginary z-axis and φ, the angle subtended by the x-axis and the projection

of its position vector on to the x-y plane (Fig. 2.16).

The infinitesimal volume element in this case is a small box with sides dr,

rdθ and r sin θdφ. rdθ is the infinitesimal arc length in the plane containing

the z-axis and the position vector r. As r sin θ is the radius of the circle cor-

responding to angle θ, labelled as C in Fig. 2.16, r sin θdφ is the infinitesimal

arc length along this circle. Let us familiarize ourselves with the limits of

integration over a sphere by calculating the volume of a sphere. Integrating

the infinitesimal volume element dV = rdθ · r sin θdφ · dr = r2 sin θdrdθdφ,

V =

∫∫∫
V
r2 sin θdrdθdφ.

Similar to double integrals, a triple integral can be evaluated by integrating

from the inner layers while adopting the appropriate limits. Consider the
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Figure 2.16: Spherical coordinates

scenario where we integrate in the particular order of φ, θ and r. In the case

of a complete sphere, φ ranges from 0 to 2π which is tantamount to inte-

grating over the circumference of C at a fixed r (which is a variable and not

the radius of the sphere R) and θ. For fixed r, θ ranges from 0 to π where

0 corresponds to a circle similar to C (but with zero radius) at the pole

of a sphere, of radius r, on the positive z-axis while π corresponds to that

at the pole on the negative z-axis. Performing the above two integrations

would be equivalent to evaluating the contributions due to a thin spherical

shell of thickness dr at radius r. To integrate over the volume of the whole

sphere, we simply have to integrate r from 0 to R to sum the contribu-

tions of shells with radii varying from r = 0 to r = R. Hence, the volume

integral is

V =

∫ R

0

∫ π

0

∫ 2π

0
r2 sin θdφdθdr

=

∫ R

0

∫ π

0
2πr2 sin θdθdr

=

∫ R

0
4πr2dr

=
4

3
πR3.

Actually, all permutations of the order of integration in spherical coordinates

are valid when integrating over a sphere — a fact that one can check for.

Lastly, it is evident that if we are interested in integrating over the surface
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of the sphere, we can consider infinitesimal rectangular elements of sides rdθ

and r sin θdφ.

Cylindrical Coordinates

Every point on a cylinder can be described by polar coordinates r and θ

in the plane of its cross-section and a translational coordinate z along the

cylindrical axis.

Figure 2.17: Cylindrical coordinates

The infinitesimal volume element in cylindrical coordinates is a “box”

of sides dr, rdθ (arc of radius r that subtends dθ) and dz. The order of

integration over r, θ and z again does not matter when it comes to a cylin-

drical distribution. It can also be seen that if we wish to integrate over the

curved surface of a cylinder, we should study infinitesimal elements of sides

rdθ and dz.



July 10, 2018 12:23 Competitive Physics 9.61in x 6.69in b3146-ch02 page 41

Infinitesimal Elements 41

Problems

There aren’t many problems in this chapter as one would naturally get more

practice as one progresses through this book. Rather, the problems in this

chapter are intended to exemplify certain common tricks to exploit as well

as pitfalls to avoid in integrating.

1. Line Element in Polar Coordinates∗

Prove Eq. (2.3) by expressing the position of a point (r, θ) in Cartesian

coordinates and subsequently applying Eq. (2.1).

2. Pyramid**

Prove that the volume of a pyramid is 1
3Bh where B is the area of the base

and h is the height of the pyramid.

3. An Elegant Integral**

Here’s a trick in evaluating the integral

It =

∫ ∞

−∞
e−t

2
dt.

By considering Ix·Iy, where the subscripts x and y indicate the corresponding

substitutions for t, in polar coordinates, evaluate It.

4. Another Elegant Integral**

Compute ∫ ∞

−∞

∫ ∞

−∞
x2e−(x2+y2)2dxdy.

5. Changing Tricks**

Evaluate ∫ 8

1

∫ 3
√
x

1

x

448y − y7 − 26
dydx.

6. Sphere in Cartesian Coordinates**

Write down the limits of integration over a sphere of radius R, centered at

the origin, in Cartesian coordinates. Verify that your limits give the correct

volume of a sphere.
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7. Potential at Center of Cylinder**

Determine the gravitational potential at the center of a uniform cylinder of

radius R, length L and uniform mass density ρ.

8. Potential due to a Uniform Sphere***

Determine the gravitational potential at a point P that is located a distance

s away from the center of a uniform sphere of mass density ρ and radius R.

Consider both cases where s > R and s ≤ R.
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Solutions

1. Line Element in Polar Coordinates*

The position of a point (r, θ) in Cartesian coordinates is

x = r cos θ

y = r sin θ

dx = dr cos θ − r sin θdθ

dy = dr sin θ + r cos θdθ

ds =
√

(dx)2 + (dy)2

=
√

(dr cos θ − r sin θdθ)2 + (dr sin θ + r cos θdθ)2

=
√

(dr)2 + r2(dθ)2

=

√
r2 +

(
dr

dθ

)2

dθ.

2. Pyramid**

Define the x-axis to pass through the vertex of the pyramid (which is set as

the origin) and be parallel to the height of the pyramid. Consider a disk of

infinitesimal thickness dx, whose parallel surfaces are perpendicular to the

x-axis and are at x-coordinates x and x + dx. The two surfaces of the disk

have areas A and A+ dA respectively and the total volume of this element

is

1

2
(A+A+ dA)dx = Adx.

Due to the similarity between the entire pyramid and the pyramid from the

top up to a distance x from the vertex,

A

B
=
x2

h2
.

The volume is obtained by integrating x from 0 to the height of the pyramid

h:

V =

∫ h

0
Adx =

∫ h

0

x2

h2
Bdx =

1

3
Bh.
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3. An Elegant Integral**

Ix · Iy =
∫ ∞

−∞
e−x

2
dx ·

∫ ∞

−∞
e−y

2
dy

=

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)dxdy

=

∫ ∞

0

∫ 2π

0
e−r

2
rdθdr

=

∫ ∞

0
2πe−r

2
rdr

=
[
−πe−r2

]∞
0

= π

where we have expressed the integral in terms of polar coordinates in the

third equality. Since Ix = Iy = It,

It =
√
π.

4. Another Elegant Integral**

Let

I =

∫ ∞

−∞

∫ ∞

−∞
x2e−(x2+y2)2dxdy.

Consider another integral

I ′ =
∫ ∞

−∞

∫ ∞

−∞
y2e−(x2+y2)2dxdy.

By symmetry,

I = I ′.

Adding the two integrals above,

2I =

∫ ∞

−∞

∫ ∞

−∞
(x2 + y2)e−(x2+y2)2dxdy
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=

∫ ∞

0

∫ 2π

0
r2e−r

4
rdθdr

= 2π

∫ ∞

0
r3e−r

4
dr

=
π

2

∫ ∞

0
e−udu

=
π

2
,

where we have adopted polar coordinates en route and the substitution u =

r4. Finally,

I =
π

4
.

5. Changing Tricks**

As hinted by the problem’s title, the crux of this integral is to swap the order

of integration. Let us first visualize the region that we are integrating over

(Fig. 2.18). Plot y = 3
√
x on a graph. The region of concern (shaded below)

is that bounded by lines y(x), y = 1 and x = 8.

Figure 2.18: Region of integration

If we wish to integrate over x first, we have to integrate the integrand

from x = y3 to x = 8 for a given y-coordinate (this corresponds to a single

horizontal strip between y and y+dy). Afterwards, we have to integrate over

y from 1 to 2 to sum over all such horizontal strips. Therefore,

∫ 8

1

∫ 3
√
x

1

x

448y − y7 − 26
dydx =

∫ 2

1

∫ 8

y3

x

448y − y7 − 26
dxdy

=

∫ 2

1

32 − y6

2

448y − y7 − 26
dy.
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At this point, we let the denominator be u = 448y − y7 − 26. Then, du =

(448 − 7y6)dy which is 14 times the numerator. Thus, we need to evaluate

∫ 842

421

du

14u
=

1

14
ln 2.

6. Sphere in Cartesian Coordinates**

Without any loss of generality, let us integrate over a sphere in Cartesian

coordinates in the order of x, y and z. For fixed y and z, the limits of

integration of x are from x = −
√
R2 − y2 − z2 to x =

√
R2 − y2 − z2 (this

corresponds to a chord parallel to the x-axis). For fixed z, y ranges from y =

−√
R2 − z2 to y =

√
R2 − z2. Performing the two integrations above would

be equivalent to integrating over a cross-section of the sphere, perpendicular

to the z-axis, at z-coordinate z. Finally, we have to integrate over z from

−R to R to sum the contributions from all cross-sections. Consequently, the

volume of a sphere can be obtained from integrating dV = dxdydz (a box in

Cartesian coordinates) over the region of the sphere.

V =

∫ R

−R

∫ √
R2−z2

−√
R2−z2

∫ √
R2−y2−z2

−
√
R2−y2−z2

dxdydz

=

∫ R

−R

∫ √
R2−z2

−√
R2−z2

2
√
R2 − y2 − z2dydz

=

∫ R

−R

∫ π
2

−π
2

2
√
R2 − z2 cos θ ·

√
R2 − z2 cos θdθdz

=

∫ R

−R

∫ π
2

−π
2

(Rz − z2)(cos 2θ + 1)dθdz

=

∫ R

−R
π(R2 − z2)dz

= 2πR3 − 2πR3

3

=
4πR3

3
,

where we have adopted the substitutions y =
√
R2 − z2 sin θ and dy =√

R2 − z2 cos θdθ en route.
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7. Potential at Center of Cylinder**

Define the origin at the center. Adopting cylindrical coordinates, an

infinitesimal element dm = ρrdθdrdz at (r, θ, z) contributes − Gdm√
r2+z2

=

− Gρr√
r2+z2

dθdrdz to the potential at the origin as
√
r2 + z2 is the distance

between this element and the origin. The total potential is

V =

∫ L
2

−L
2

∫ R

0

∫ 2π

0
− Gρr√

r2 + z2
dθdrdz

= −2πGρ

∫ L
2

−L
2

∫ R

0

r√
r2 + z2

drdz

= −2πGρ

∫ L
2

−L
2

[√
r2 + z2

]R
0
dz

= −2πGρ

∫ L
2

−L
2

(√
R2 + z2 − z

)
dz.

At this point, we introduce the substitutions z = R tan θ and dz =

R sec2 θdθ. Furthermore, observing that the integral involving z yields zero

as it is an odd function,

V = −2πGρ

∫ tan−1 L
2R

− tan−1 L
2R

R sec θ ·R sec2 θdθ

= −2πGρR2

(
L

2R

√
L2

4R2
+ 1 + ln

∣∣∣∣∣ L2R +

√
L2

4R2
+ 1

∣∣∣∣∣
)
,

where we have substituted
∫
sec3 xdx = 1

2 tan x sec x+
1
2 ln | tan x+secx|+ c

(computed previously in this chapter). Finally, note that integrating over z

before r is much more tedious (always choose the more convenient order of

integration).

8. Potential due to a Uniform Sphere***

Define the origin to be at the center of the sphere. Let point P be located

on the positive z-axis. Then, the distance between an infinitesimal volume

element at spherical coordinates (r, θ, φ) and point P is

l =
√
s2 + r2 − 2rs cos θ



July 10, 2018 12:23 Competitive Physics 9.61in x 6.69in b3146-ch02 page 48

48 Competitive Physics: Mechanics and Waves

by the cosine rule. Note that it does not matter if s > R or s ≤ R. The

contribution by this element dm = ρr2 sin θdθdφdr to the total potential at

P is then

−Gdm
l

= − Gρr2 sin θdθdφdr√
s2 + r2 − 2rs cos θ

.

The total potential at P is obtained by integrating the above over the entire

sphere.

V =

∫ R

0

∫ π

0

∫ 2π

0
− Gρr2 sin θ√

s2 + r2 − 2rs cos θ
dφdθdr

=

∫ R

0

∫ π

0
− 2πGρr2 sin θ√

s2 + r2 − 2rs cos θ
dθdr

=

∫ R

0

[
−2πGρr

s

√
s2 + r2 − 2rs cos θ

]π
0

dr

=

∫ R

0
−2πGρr

s

(
s+ r −

√
s2 + r2 − 2rs

)
dr.

Note that we deliberately integrate over θ before r to greatly simplify the

process. At this point, it matters if s > r or s ≤ r as it will affect the result

from the square root (note that r is a variable and does not refer to the

radius of the sphere). If s > R, s will be larger than all r as 0 ≤ r ≤ R.

Then,

V =

∫ R

0
−2πGρr

s
[s+ r − (s − r)] dr

=

∫ R

0
−4πGρr2

s
dr

= −4G

3s
πρR3

= −GM
s

whereM is the total mass of the sphere. We see that for s > R, the sphere is

essentially equivalent to a point mass M at its center. If s < R, we have to

split the integral over r into two parts — namely from 0 to s (where r ≤ s)
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and from s to R (where r ≥ s).

V =

∫ s

0
−2πGρr

s
[s+ r − (s− r)] dr

+

∫ R

s
−2πGρr

s
[s+ r − (r − s)] dr

=

[
−4πGρr3

3s

]s
0

+
[−2πGρr2

]R
s

=
2πGρs2

3
− 2πGρR2.
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Chapter 3

Kinematics

This chapter deals with kinematics — the study of the motion of objects.

We will not be working with forces, torques and masses here as we are not

concerned about why objects move but rather, the path they take. So, let us

pretend that we have not learnt these and instead, focus on the kinematic

quantities used to describe motion.

3.1 Vectors

Vectors are crucial mathematical tools in our analyses as they can greatly

simplify various formulations. For the sake of our purposes, a vector1 can be

understood as an arrow in space — a line segment with a length and direc-

tion. Diagrammatically, vectors are drawn as arrows with an arrow head and

a tail. In equations, we shall denote vectors with bolded alphabets, such asA.

The utility of vectors stems from their independence from coordinate

systems that describe them. For example, if a corporeal arrow is placed

in space, different coordinate systems may quantify it in terms of different

equations but they all describe the same physical entity! Following from this,

translations which maintain the orientation of a vector do not change it.

Therefore, the two vectors below are the same.

Figure 3.1: Identical vectors

1The vectors in this book are generally assumed to have three dimensions, unless stated
otherwise.

51
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Figure 3.2: Area vector

A concrete example of a vector would be the position vector r of a particle

with respect to a certain origin O. The magnitude of r, denoted as r, is the

length of the straight line connecting O and the particle. r points from O

to the particle. By adopting vector notation, the position of a particle can

be described without any reference to coordinate axes (but obviously, there

must still be an origin that can be used as a reference point).

Another important vector in physics is the area vector of a flat surface.

The area vector A is defined to be perpendicular to the surface and its

magnitude is equal to the area of the surface (Fig. 3.2).

Observe that there are actually two possible directions for A. There is

generally no preference2 for either of them in the case of open surfaces (sur-

faces which do not enclose any volume), which flat surfaces form a subset

of. In the case of closed surfaces — for which an “outside” can be distin-

guished from an “inside” — the area vectors are defined to be outwards by

convention.

Next, a unit vector â is a vector whose magnitude is unity and is denoted

with a “hat” above its alphabet. For example, the unit vector in the direction

of r is

r̂ =
r

r
,

where we have divided by r to ensure that its magnitude is one. Conversely,

we can write a vector A in general as

A = AÂ. (3.1)

3.1.1 Vector Algebra

Multiplication by a Scalar

Multiplying a vector A with a scalar c simply scales the original vector by

a factor of c.

2However, if a line integral is performed over the perimeter of the surface, there is a
conventional direction for A. This will be elaborated when we reach Ampere’s law in
magnetism.
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Figure 3.3: Multiplication by a scalar

If c = −1, the vector is simply reversed. If c is negative, the vector is first

reversed, before it is scaled by a factor of |c|.

Addition of Vectors

To add two vectors A and B, simply stick the head of one vector to the

tail of the other. The dotted lines in Figure 3.4 below depict this procedure.

Then, the resultant vector after addition is the vector emanating from the

tail of the former and ending at the head of the latter.

Figure 3.4: Addition of two vectors

If given the angle θ subtended by the two vectors when they are placed

head-to-head or tail-to-tail, we can compute the magnitude (i.e. length) of

the resultant vector |A+B|, where the absolute brackets signify “taking the

magnitude of”, by applying the cosine rule, i.e.

|A+B|2 = A2 +B2 − 2AB cos(π − θ)

|A+B| =
√
A2 +B2 + 2AB cos θ.

To subtract, simply reverse the relevant vector and perform an addition. The

magnitude of |A−B| can then be obtained from substituting π + θ (which

reverses one vector) for θ in the equation above. An example involving the

subtraction of vectors is as follows: suppose that the position vector of a

particle is r with respect to origin O. Determine its position vector r′ with
respect to another origin O′ whose position is r0 with respect to O. In this

case, r, r0 and r′ are akin to A+B, A and B respectively. Then,

r = r0 + r′,

r′ = r − r0.
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Figure 3.5: Infinitesimal change in a vector

Another example would be the infinitesimal change in a vector (Fig. 3.5).

Suppose that r is a function of time t. Then the infinitesimal change in r is

dr = r(t+ dt)− r(t).

Note that the above does not simply represent a change in the magnitude

r as the vector could also change in direction. That is,

dr = r(t+ dt)r̂(t+ dt)− r(t)r̂(t)

= [r(t+ dt)r̂(t+ dt)− r(t+ dt)r̂(t)] + [r(t+ dt)r̂(t)− r(t)r̂(t)]

= rdr̂ + drr̂.

The first term is associated with the change in direction of r while the second

is due to its change in magnitude.

Dot Product

The scalar or dot product of two vectors is an operation that produces a

scalar. The dot product A ·B is defined as

A ·B = AB cos θ, (3.2)

where θ is the angle defined in the section above. Observe that given vectors

of fixed magnitudes, their dot product is the largest when they are parallel

and zero when they are perpendicular.

Figure 3.6: Projection of B onto A

Notice that A cos θ is the length of the projection of A on B and B cos θ

is the length of the projection of B on A. Thus, the geometric interpretation

of the dot product of two vectors is the signed product of the magnitude of

the projection of one vector on the other, and the magnitude of the other
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vector. Correspondingly, the dot product of a vector with itself produces its

squared magnitude

A ·A = A2.

Lastly, it can be easily shown that the dot product is both commutative,

A ·B = B ·A, and distributive A · (B + C) = A ·B +A ·C. Due to the

distributive property, there is an important identity regarding the derivative

of a dot product:

d(A ·B) = (A+ dA) · (B + dB)−A ·B
= dA ·B +A · dB,

where second order terms have been discarded. The derivative of the dot

product of a vector with itself results in an important expression for A · dA.

Applying the above result,

d(A ·A) = 2A · dA.
Since d(A ·A) = d(A2) = 2AdA,

A · dA = AdA. (3.3)

Problem: Armed with the notion of the dot product, prove the cosine rule

for a triangle.

Let A, B and A+B be vectors along the edges of a triangle. Then,

|A+B|2 = (A+B) · (A+B) = A2 +B2 + 2A ·B
= A2 +B2 + 2AB cos θ = A2 +B2 − 2AB cos(π − θ),

where π − θ is the angle within the triangle, opposite the edge represented

by A+B.

Cross Product

The vector or cross product of two vectors A and B results in a vector C

which is perpendicular to the plane containing A and B. The magnitude of

C is defined as

C = AB sin θ, (3.4)

with the same notation of θ as above. The geometric interpretation of C is

the area vector of the parallelogram formed with A and B as its sides.
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Figure 3.7: Cross product

To select the particular direction of C from the two possible options, we

use the following right-hand grip rule. To determine the direction of A×B,

first point the four fingers of your right hand in the direction of A. Now, curl

your fingers towards the direction of B. If this can be accomplished after

subtending an angle less than π radians, your straightened thumb will point

in the direction of the resultant vector C.

Due to the assignment of a direction, the cross product is not commuta-

tive. In fact,A×B = −B×A. However, the cross product is still distributive,

A× (B +C) = A×B +A×C.

Triple Products

From the definitions of the dot and cross products, it can also be proven

that

A · (B ×C) = B · (C ×A) = C · (A×B). (3.5)

The geometric meaning of this is the volume of a parallelepiped with those

three vectors as its sides. For example, A×B is the area vector of the base

bounded by A and B, while taking the dot product of this with C simply

multiplies the magnitude of the component of C perpendicular to the base

(i.e. the height) with the area of the base.

Figure 3.8: Triple product
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Another useful identity is

A× (B ×C) = B(A ·C)−C(A ·B). (3.6)

This is commonly known as the “BAC-CAB” rule which is a neat mnemonic.

Take note that the cross product is not associative. That is, A× (B×C) �=
(A×B)×C.

Vectors in Coordinate Systems

So far, our analysis has been independent of a coordinate system. To actually

extract any meaning from vector operations, a coordinate system is necessary

though the concept it describes is actually independent of any coordinate

system.

A spatial, three-dimensional coordinate system essentially establishes

three basis vectors. Before we explore the definition of a basis vector, we

introduce the concept of a linear combination. Suppose that we have n vec-

tors which range from e1 to en. A general linear combination of this set of

vectors is

c1e1 + c2e2 + · · ·+ cnen,

where c1 to cn are arbitrary scalars. By definition, basis vectors are linearly

independent3 — that is, one cannot be expressed in terms of a linear com-

bination of the others. Furthermore, for a set of three vectors to qualify as

a basis for three-dimensional space, every three-dimensional vector must be

able to be expressed as a linear combination of the three vectors, that is,

r = r1e1 + r2e2 + r3e3,

for some scalars r1, r2 and r3, for all r in three-dimensional space. Fur-

thermore, this representation is unique.4 r1, r2 and r3 are known as the

components of a vector. For the sake of convenience, most, if not all, coor-

3To check for linear independence, one has to show that c1e1 + c2e2 + · · ·+ cnen = 0–
where 0 is the n-dimensional null vector–only has the trivial solution c1 = c2 = · · · = cn =
0. If this is violated, there is at least one ci that is non-zero. Move that term (e.g. ckek)
to the right-hand side such that c1en + · · ·+ cnen − cken = ckek where the left-hand side
excludes ckek. Evidently, this shows that ek can be expressed as a linear combination of
the other vectors.

4This uniqueness stems from the linear independence property of the basis vectors.
Suppose r = r1e1+r2e2+r3e3 and r = r′1e1+r

′
2e2+r

′
3e3. Then, (r1−r′1)e1+(r2−r′2)e2+

(r3 − r′3)e3 = 0 whose only solution is ri = r′i for i = 1, 2, 3 by the linear independence of
the basis vectors (see previous footnote).
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Figure 3.9: Components of a vector in Cartesian coordinates

dinate systems in physics define basis vectors that are mutually orthogonal

(that is, ei · ej = 0 if i �= j) and are unit vectors. Then, the ith component

of a vector can be extracted by taking the dot product of the corresponding

basis vector with r:

r · ei = r1e1 · ei + r2e2 · ei + r3e3 · ei

=⇒ ri = r · ei.
In Cartesian coordinates, the basis vectors î, ĵ and k̂ are unit vectors

pointing along the x, y and z-axes respectively. Furthermore, a conventional

right-handed Cartesian coordinate system will obey î × ĵ = k̂. Then, a

general vector A in Cartesian coordinates can be written as

A = (A · î)̂i + (A · ĵ)ĵ + (A · k̂)k̂ = Axî+Ayĵ +Azk̂,

where Ax, Ay and Az are its components along the respective directions

(Fig. 3.9). For the sake of convenience, the components of a vector are usually

written as separate terms in brackets to save the need to mention the basis

vectors.

A =

⎛
⎝AxAy
Az

⎞
⎠ .

Multiplication by a Scalar

Multiplying a vector A by a scalar c is equivalent to multiplying each of its

components by c, i.e.

cA = c

⎛
⎝AxAy
Az

⎞
⎠ =

⎛
⎝cAxcAy
cAz

⎞
⎠ .
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Addition of Vectors

The addition of two vectors can be performed by summing their correspond-

ing components.

A+B =

⎛
⎝AxAy
Az

⎞
⎠+

⎛
⎝BxBy
Bz

⎞
⎠ =

⎛
⎝Ax +Bx
Ay +By
Az +Bz

⎞
⎠ .

Dot Product

Since

A = Axî+Ay ĵ +Azk̂,

B = Bxî+Byĵ +Bzk̂,

and due to the facts that the dot product of two different basis vectors

produces zero — as they are perpendicular — and that the dot product of

identical basis vectors results in unity, we can apply the distributive property

of the dot product to conclude that

A ·B = (Axî+Ay ĵ +Azk̂) · (Bxî+Byĵ +Bzk̂) = AxBx +AyBy +AzBz

A ·B =

⎛
⎝AxAy
Az

⎞
⎠ ·

⎛
⎝BxBy
Bz

⎞
⎠ = AxBx +AyBy +AzBZ . (3.7)

A convenient way of remembering this result is that the dot product of two

vectors is simply the sum of the product of their corresponding components.

Substituting B = A into the above equation, the magnitude of a vector is

simply the square root of the sum of its squared components.

A =
√
A2
x +A2

y +A2
z.

Cross Product

Expressing the vectors in terms of the basis vectors and applying the dis-

tributive property of the cross product as above, it can be shown that the

cross product of A and B evaluates to

A×B =

⎛
⎝AxAy
Az

⎞
⎠×

⎛
⎝BxBy
Bz

⎞
⎠ =

⎛
⎝AyBz −AzBy
AzBx −AxBz
AxBy −AyBx

⎞
⎠ . (3.8)

Note that in the derivation, we would have to use the facts that î× ĵ = k̂,

k̂ × î = ĵ and ĵ × k̂ = î. An easy way to remember the above result is as
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follows. To determine a particular component of the cross product A ×B,

cover up that particular row. Then, multiply the component of A in the row

below (loop to the top if necessary) with the diagonal component of B and

subtract it by the product of the component of A two rows below, and the

diagonal component of B. For example, for the y-component⎛
⎝Ax−
Az

⎞
⎠×

⎛
⎝Bx−
Bz

⎞
⎠ ,

the second row is covered. Then, we take Az multiplied by the diagonal

component Bx and subtract it by Ax multiplied by Bz, such that the

y-component of the cross product is AzBx −AxBz.

3.2 Kinematic Quantities

Observational Frames of Reference

Firstly, kinematic quantities, such as velocity and acceleration, must be mea-

sured with respect to an observational frame of reference. This simply means

that the motion is viewed from the perspective of a certain observer. Different

observers can lead to vast differences in the quantities measured. Consider a

system of three people labelled A, B and C respectively. From the perspec-

tive of C, A and B are running at speeds va and vb (vb > va) in the positive

x-direction respectively. Then, it is intuitive from common experience that

in the frame of A, B travels at a speed slower than vb.

In light of the necessity of a reference frame, the lab frame is defined to

be the frame where the laboratory, in which the “experiment” is conducted,

is at rest. For most of this book, we shall omit mentioning “with respect to a

frame of reference” for the sake of convenience and assume that all quantities

are observed with respect to the lab frame, by default.

Coordinate Systems

A coordinate system is a construct we use to quantify positional measure-

ments made in an observational reference frame. Note that a single observa-

tional reference frame can have multiple coordinate systems. The benefit of a

coordinate system is that we can decompose spatial vectors into solely their

components in the direction of the spatial coordinate axes. This is because

the coordinate system implicitly implies direction, via its basis vectors. For

example, (x, y, z) really means x̂i + yĵ + zk̂. Common spatial coordinate
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systems include the Cartesian and polar coordinate systems which will both

be introduced later.

Finally, location alone is not sufficient to define an event. After all, there

is a need to know where and when something happens. Therefore, an event

should also be described in terms of its time of occurrence. Furthermore,

this should be a property of the frame of reference and independent of the

spatial coordinate system.

Time

In the context of physics, the time of an event is the reading of the observer’s

clock5 in that frame, when the event occurs. In classical mechanics, time is

deemed as an invariant property which does not depend on the frame of

reference. That is, if two observers synchronized their clocks at a certain

instant and began to exhibit various forms of motion — which include trav-

eling at a certain velocity and accelerating — the readings of their clocks

will still be the same when they compare it at a later instant. Therefore,

time unequivocally delineates the sequence of events that occur in all frames

of reference.

That said, time is also relative in the sense that we usually mean the

time elapsed between now and a previous instance when referring to time.

Measuring elapsed time is akin to measuring length with a ruler — we take

the difference between two measurements at separate points. For purposes of

convenience however, we usually insinuate that the reading of the observa-

tional clock is set to zero when the experiment begins such that the elapsed

time between now and the start is simply its current reading.

Displacement

The displacement of a particle, s, is the change in the particle’s position

vector r, from an initial state to a final state.

s = Δr.

To underscore the importance of displacement as a vector, consider a parti-

cle which has completed one full round of a circular track. In this case, the

particle’s position vector remains unchanged — implying that its displace-

ment is the null vector. However, the distance travelled by the object is 2πR

5Technically, the time of an event is the reading of a clock at the position of the event.
However, the exact location of the clock does not matter for our current purposes as time
is assumed to be universal in classical mechanics.
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where R is the radius of the circle — a quantity that is non-zero. Evidently,

displacement is starkly different from distance — the latter simply means

the total ground covered during its motion and is a scalar.

Velocity

Velocity is defined as the rate of change of displacement and is also the rate

of change of a particle’s position vector (as r = s + r0 where the last term

is the constant initial position vector that disappears upon differentiation).

v =
ds

dt
=
dr

dt
.

Hence, the displacement of an object can be written as

s =

∫ t

0
vdt,

where we have set the reading of the clock to t = 0 at the start of the

motion. If the object travels purely rectilinearly, the signed magnitude of

displacement (i.e. the magnitude with a sign which denotes positive or neg-

ative) between times t = t0 and t = t1 is simply the positive area below the

velocity-time graph between the two times (a negative velocity corresponds

to a negative area).

To again differentiate between the velocity of a particle and its speed

(which is a scalar), consider the case where it undergoes uniform circular

motion. Note that speed is defined as the rate of change of distance covered.

Though the particle’s speed is constant in uniform circular motion, its veloc-

ity is varying as the direction of its velocity changes. Therefore, speed only

reflects the magnitude of the velocity and not its direction.

Now, a common trap that many fall into is to hastily conclude that

since dr
dt gives the velocity v, dr

dt should give the speed. This reasoning is

fallacious as the latter gives the rate of change of the magnitude of the

position vector which is the rate of change of the particle’s distance from

the origin dr and not the rate of change of distance |dr|. Instead, the speed

should be computed as |drdt |. To emphasize the difference between speed and
dr
dt , consider the following example.

Problem: A particle moves along the xy-plane at a constant velocity of

10ms−1 in the positive x-direction. When the particle is at (3, 4), determine
dr
dt , its speed and dr

dt .
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Let (x, y) denote the particle’s instantaneous coordinates, so that

dr

dt
=
d(x̂i + yĵ)

dt
=
dx

dt
î+

dy

dt
ĵ,

where the derivatives of î and ĵ have not been considered as they are con-

stant.6 Since dx
dt = 10ms−1 and dy

dt = 0,

dr

dt
= 10 îms−1.

The speed of the particle at this juncture is∣∣∣∣drdt
∣∣∣∣ =√102 + 0 = 10ms−1.

Now, the physical meaning of r is the particle’s distance from the origin.

r2 = x2 + y2

=⇒ 2r
dr

dt
= 2x

dx

dt
+ 2y

dy

dt
.

Substituting r = 5 as (x, y) = (3, 4), dxdt = 10 and dy
dt = 0,

dr

dt
= 6ms−1,

which is evidently an ineffective descriptor of the particle’s motion.

Problem: Determine the condition for two particles with initial position

vectors r1 and r2 and constant velocities v1 and v2 to collide.

The position vectors of the two particles after time t are r1 + v1t and

r2 + v2t respectively. For them to coincide,

r1 + v1t = r2 + v2t

=⇒ r1 − r2 = (v2 − v1)t.

Since tmust be a positive scalar (which excludes the possibility of the vectors

being anti-parallel), the above implies that v2 − v1 is parallel to r1 − r2.

That is, their unit vectors must be identical.

r1 − r2
|r1 − r2| =

v2 − v1

|v2 − v1| .

6Note that not all basis vectors are constant — we shall see so when we encounter polar
coordinates later.
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Acceleration

Acceleration is defined as the rate of change of velocity,

a =
dv

dt
.

The velocity is thus related to the acceleration as∫ v

u
dv =

∫ t

0
adt

v = u+

∫ t

0
adt,

where u is the initial velocity of the object. Similarly, if the object only accel-

erates along a straight line, the signed magnitude of the change in velocity

between times t = t0 and t = t1 is simply the positive area below the

acceleration-time graph between the two times.

Well, we could continue differentiating to get quantities such as the rate

of change of acceleration (known as the jerk), but further derivatives are

not physically meaningful. This is because, the state of a classical system

of particles can be uniquely defined by their coordinates (which may be

angular) and the first time-derivative of these coordinates. As long as an

initial state is defined in terms of these quantities, all future states can

be predicted via the physical laws. However, it is useful to define second

time derivatives of these coordinates (which are akin to the accelerations)

as the physical laws are often expressed in terms of these variables (and not

further derivatives) — indirectly allowing us to determine the future states

of a system. Ultimately, as the physical laws do not encode any information

about the higher-order derivatives of a system, they are strictly derived from

previously known quantities and are not illuminating.

Quantities in Terms of Scalars

Often, the dynamical laws generate vector equations which actually encapsu-

late three independent quantities along three independent spatial directions.

Then, it is convenient to divide the vector equations into three components,

relative to a coordinate system, to produce three separate scalar equations

in most cases. For example v could become (vx, vy, vz) in terms of Cartesian

coordinates. Then the equations of motion, which describe how the motion

of a system evolves over time and are derived from dynamical laws, can often

be solved in a simpler fashion.
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3.3 Constant Acceleration

We shall now derive the kinematic equations for the one-dimensional motion

of a particle with an initial velocity u, undergoing a constant acceleration

a along the direction of u. Since the problem is one-dimensional, we can

simply consider the relevant components along this direction. The velocity,

v is then

v = u+

∫ t

0
adt = u+ at. (3.9)

The displacement is

s =

∫ t

0
vdt = ut+

1

2
at2. (3.10)

Interestingly, we note that the average velocity, v̄ which is defined as the

total displacement divided by the total time elapsed, is

v̄ =
s

Δt
= u+

1

2
at =

v + u

2
. (3.11)

Hence, the average velocity between two instances is simply the average

of the initial and final velocities. Lastly, there is another useful relationship.

Multiplying Eq. (3.10) by 2a,

2as = 2aut+ a2t2.

Furthermore, we know that

v2 = (u+ at)2 = u2 + 2aut+ a2t2.

Then,

v2 = u2 + 2as. (3.12)

These four equations form the kinematics equations that describe the

motion under a constant acceleration. They enable us to solve for relevant

quantities in terms of one another.

Problem: Two cars are traveling towards each other at speeds u1 and u2
respectively. If their brakes apply a constant deceleration a, what must the

minimum initial distance between the cars be so that they can stop before

colliding into each other?
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The final speeds of the car are zero. Applying Eq. (3.12) to the first car,

0 = u21 − 2as1.

The distance that the first car travels before stopping is

s1 =
u21
2a
.

Similarly for the second car, s2 =
u22
2a . The minimum initial distance is

then the sum of s1 and s2:

s1 + s2 =
u21 + u22

2a
.

Projectile Motion

Projectile motion refers to the motion of a body under the influence of a

gravitational force. An object under free-fall undergoes an approximately

constant acceleration g downwards in the regime that we are considering.

We shall not inquire about the force that causes this acceleration for now

and will only deal with the trajectory of the particle. This is a general trend

in mechanics. One first obtains the equations of motion of a system from the

dynamical laws, after which, the problem is strictly a kinematic one.

As the acceleration of a projectile is constant, the motion of the pro-

jectile is strictly confined to a plane.7 Hence, only two spatial coordinates

are required to define the location of the projectile. An important prop-

erty is that the motions of the body along any two perpendicular directions

are independent as its acceleration is constant. Hence, this two-dimensional

motion can be effectively divided into two separate one-directional motions

whose kinematics equations can each be solved for. Along the vertical

y-direction, the evolution of the particle’s y-coordinate is akin to that of

a particle undergoing a constant acceleration in a one-dimensional motion.

Along the horizontal x-direction, the evolution of the particle’s x-coordinate

is equivalent to that of a particle travelling at a constant velocity in one

dimension.

Let x(t) and y(t) be the horizontal and vertical coordinates of the projec-

tile and let ux and uy be its horizontal and vertical velocities at time t = 0.

We take the positive direction of the y-axis to be vertically upwards. Then,

7The reader should try to prove this. Hint: define the origin at the initial position of the
particle and show that the position vector of the particle thereafter is always perpendicular
to a certain vector (to find this vector, apply a certain vector operation to u and a).
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Figure 3.10: Trajectory of a projectile

if we let x0 and y0 be the horizontal and vertical coordinates of the projectile

at time t = 0, the kinematics equations yield

x = x0 + sx = x0 + uxt, (3.13)

y = y0 + sy = y0 + uyt− 1

2
gt2. (3.14)

There are certain interesting properties regarding the trajectory of a

projectile.

Property 1: The general shape of the trajectory is a parabola with its

vertex at (x0 +
uxuy
g , y0 +

u2y
2g ).

Proof: t can first be expressed in terms of x:

t =
x− x0
ux

.

Substituting this expression for t into y(t),

y = y0 +
uy
ux

(x− x0)− g

2u2x
(x− x0)

2. (3.15)

Completing the square,

y = y0 +
u2y
2g

− g

2u2x

(
x− x0 − uxuy

g

)2

,

which is the equation of an inverted parabola. Of course, the particle will

probably not traverse the entire parabola due to impediments such as the

ground. However, this parabolic equation is valid for the regime in which the

particle is still under free-fall. It can be seen that the vertex of the parabola is

at (x0+
uxuy
g , y0+

u2y
2g ). Hence, the maximum y-coordinate that the projectile

can reach is y0 +
u2y
2g , assuming that it has not passed this point yet. Often,

the more edifying form of the above expression is obtained by expressing the

initial velocity in polar coordinates. u is the initial speed of the projectile
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while θ is the angle subtended by the initial velocity and the positive x-axis

(Fig. 3.10). Substituting uy = u sin θ and ux = u cos θ into Eq. (3.15),

y = y0 + tan θ(x− x0)− g sec2 θ

2u2
(x− x0)

2. (3.16)

The usefulness of this expression is evident in problems where the angle θ

is a variable. Lastly, since the parabola is defined by the velocity at a single

state along the path, if the projectile starts at a different position along the

parabola and possesses the corresponding velocity, the resultant parabola

will be the same as before.

Property 2: Projectile motion is reversible. That is, if the direction of the

velocity of the projectile at a certain juncture is reversed, the trajectory will

still take the form of the same parabola.

Proof: Replacing θ with π+ θ in Eq. (3.16) does not modify the trajectory

equation.

Property 3: Given a fixed vertical displacement s, the time elapsed during

projectile motion is independent of its horizontal motion. In fact, the time

elapsed can be represented in terms of s and h, the maximum height above

the initial vertical level. We still adopt the same definition for h in the case

where the particle has already crossed the point of maximum height.

Proof:

s = uyt− 1

2
gt2.

Furthermore, the maximum height, h, can be computed by setting v = 0 in

Eq. (3.12):

0 = u2y − 2gh

h =
u2y
2g
.

We wish to express uy in terms of h.

uy = ±
√

2gh.

The positive value corresponds to situations where the projectile has yet to

reach the maximum height at t = 0 (i.e. it is traveling vertically upwards).
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The negative value corresponds to the converse. Then,

s = ±
√

2ght− 1

2
gt2

t2 ∓ 2

√
2h

g
t+

2s

g
= 0

t = ±
√

2h

g
±
√

2(h − s)

g
.

If uy > 0 and s > 0 (i.e. the projectile is initially traveling upwards and

ends its trajectory at a higher position),

t =

√
2h

g
±
√

2(h− s)

g
.

In the case where uy > 0 and s < 0 (i.e. the projectile is initially travel-

ing upwards and ends its trajectory at a lower position), there is only one

physically reasonable solution:

t =

√
2h

g
+

√
2(h− s)

g
.

Lastly, when uy < 0, the only physically possible range for s is s < 0 (i.e. the

projectile is initially traveling downwards and ends up at a lower position).

Then,

t = −
√

2h

g
+

√
2(h − s)

g
.

Hence, given a starting and ending point on the parabola of a projectile’s

trajectory, the time elapsed between these two points can be expressed in

terms of the vertical displacement s and the vertical distance between the

starting point and the vertex of the parabola, h. Note that there was com-

pletely no mention of the horizontal coordinates. We can then analyze how

t varies with h.

In the positive case of the first situation and the second situation, the

time t is evidently smaller when the maximum height h is smaller. In the

negative case of the first situation and the last situation, the time t is smaller

when the maximum height h is larger. This can be seen by considering the
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derivatives. For example, in the negative case of the first situation,

t =

√
2h

g
−
√

2(h− s)

g
.

Differentiating this with respect to h,

dt

dh
=

1√
2gh

− 1√
2gh − 2gs

< 0.

This also shows that dt
dh < 0 in the third equation, which is negative of the

equation we have just differentiated but with s < 0. In conclusion, if the

particle will cross the point of maximum height, t decreases with a smaller

height h. This is intuitive as it is expeditious for the particle to have a smaller

velocity upwards to swiftly reach the maximum point before falling down.

Otherwise if it has already passed or will not reach the point of maximum

height, t decreases with a larger height h. This is also intuitive as it implies

that the particle has a greater initial velocity and will reach the required

point in a shorter time interval.

Problem: Tom stands on top of a tower that is of a height s above the

horizontal ground. He then tosses two darts, A and B, simultaneously at two

corresponding targets A and B that are at horizontal distances x1 and x2
relative to the tower, respectively, with x1 < x2. These two targets are

stationed on the ground. If the maximum heights attained by darts A and B

are y1 and y2, relative to the ground, respectively, with y1 > y2, which dart

hits their corresponding target first?

Since the darts cross their respective points of maximum height and

traverse the same vertical displacement, dart B takes a shorter time to reach

its target, despite the larger horizontal distance that it has to cover, as it

attains a lower maximum height.

3.3.1 Projectile Motion with Drag

When an object travels in a fluid medium such as air, it experiences a drag

force of the form

F drag = −bvv̂ − cv2v̂ = F lin + F quad

which is opposite in direction to v, the object’s velocity relative to the

medium. b and c are constants that depend on various parameters. There

are two components, one with a linear dependence on the speed and one

with a quadratic dependence on the speed. These have different physical
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origins. The linear term is attributed to the viscosity of the fluid medium

while the quadratic term is due to the collisions of the object with neigh-

boring fluid molecules — accelerating them in the process. Most of the time,

one component will be dominant over the other.

Generally, when the speed of the object is small and the fluid medium

is highly viscous, the linear term dominates. However, when the speed of

the object is large, the quadratic term tends to dominate. Hence, in most

problems involving drag, only one component of the drag force is considered.

Unfortunately, in most realistic situations of projectile motion with drag, the

quadratic term dominates. The trajectory equation cannot be analytically

solved from the nasty coupled differential equation. However, we can still

make a few qualitative arguments.

Qualitative Properties of Projectile Motion with Drag

The following summarizes several important properties:

• The maximum height attained by the projectile in a situation with drag is

lower than that in an ideal situation without drag. This is due to the fact

that the vertical component of the drag force is directed downwards while

the projectile is traveling upwards, causing the projectile to decelerate

vertically at a magnitude greater than g.

• The trajectory is now asymmetric about the vertical line crossing the point

of maximum height. If the projectile is launched from a flat ground, the

time taken for the projectile to reach the maximum height is less than

the time required for the projectile to land back onto the ground from the

maximum height. This is due to the fact that the drag force is directed

downwards as the projectile travels upwards (reinforcing its deceleration

due to g) but is directed upwards as the projectile falls downwards (oppos-

ing the acceleration due to g).

• The horizontal range of the projectile is generally smaller. Unfortunately,

there is no rigorous justification of this. That said, consider the following

factors. Firstly, the horizontal speed decreases with time. Next, the total

time of flight is likely to be less than that of projectile motion without drag.

Though, the time required for the ascent is less while that for descent is

more than the corresponding cases without drag. The additional decrease

in time is likely to be more significant than the additional increase in time

as the magnitude of the drag force during the ascent (when the speed of

the object is large) is likely larger than that during the descent (when

the speed of the object is small). All-in-all, though these factors are not
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perfectly rigorous arguments, they provide a rough explanation for the

decrease in range observed in numerical computations.

3.4 Polar Coordinates

So far, we have been considering a Cartesian coordinate system. In this

section, a different coordinate system, known as the polar coordinate system

will be introduced. In polar coordinates, we can describe each point in two-

dimensional space with a magnitude r corresponding to the distance of that

point from the origin and an angle θ subtended by the position vector r of

that point and a fixed axis which is usually the x-axis. Referring to Fig. 3.11

below, the basis vectors used to describe a spatial position are r̂ and θ̂, which

are the radial and tangential unit vectors respectively.

Figure 3.11: Polar coordinates

The advantage of this coordinate system is that spatial positions are

directly described by their distances to the origin, r, as opposed to the indi-

rect distance
√
x2 + y2 in the case of a Cartesian coordinate system. Polar

coordinates are especially convenient when we know how the distance r or

angle θ varies. However, this convenience is at the expense of the basis vectors

r̂ and θ̂ changing as θ varies (but not r).

The position vector of a particle at a distance r away from the origin is

r = rr̂,

while the velocity of the particle is the rate of change of its position vector,

i.e.

v =
dr

dt
= ṙr̂ + r ˙̂r,

where a dot refers to a total time derivative. Note that there is a need to

consider the derivative of the radial unit vector as it is no longer a constant.
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We can evaluate the derivatives of the basis vectors by first expressing them

in Cartesian coordinates.

r̂ = cos θî+ sin θĵ,

θ̂ = − sin θî+ cos θĵ.

A quick derivation of the above is to observe that r̂ and θ̂ are î and ĵ

rotated anti-clockwise by θ. Consequently, we can apply the rotation matrix

to (̂i ĵ).

(
r̂ θ̂

)
=

(
cos θ − sin θ

sin θ cos θ

) (̂
i ĵ

)
=

(
cos θ − sin θ

sin θ cos θ

)(
1 0

0 1

)

=

(
cos θ − sin θ

sin θ cos θ

)
,

which just returns the rotation matrix8

=⇒ r̂ =

(
cos θ

sin θ

)
θ̂ =

(− sin θ

cos θ

)
.

Differentiating the polar basis vectors with respect to time,

˙̂r = − sin θθ̇î+ cos θθ̇ĵ = θ̇θ̂,

˙̂
θ = − cos θθ̇î− sin θθ̇ĵ = −θ̇r̂.

Hence,

v = ṙr̂ + rθ̇θ̂.

How can we understand these two components? The first term can be seen

as the radial velocity

vr = ṙr̂, (3.17)

whose magnitude describes the rate of change of the “radius” of the particle

to the origin. The second term is the tangential velocity

vθ = rθ̇θ̂, (3.18)

8A slick derivation of the rotation matrix is as follows: define (x, y) and (x′, y′) as the
coordinates of a point before and after an anti-clockwise rotation of it over angle θ. Next,
define new complex variables η = x+iy and η′ = x′+iy′ which represent these coordinates
in the complex plane. Since an anti-clockwise rotation of a complex number in the complex
plane by angle θ is performed by multiplying eiθ to it, η′ = eiθη = (cos θ+ i sin θ)(x+ iy) =
cos θx − sin θy + i(sin θx + cos θy). x′ and y′ can then be retrieved from η′ by taking its
real and complex components. x′ = cos θx− sin θy while y′ = sin θx+ cos θy.
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whose magnitude indirectly describes the rate of change of θ and indirectly

quantifies how fast the position vector of the particle is “rotating” about the

origin. θ̇ is known as the angular velocity. Next, the acceleration is the rate

of change of velocity.

a =
d(ṙr̂ + rθ̇θ̂)

dt

= r̈r̂ + ṙ ˙̂r + ṙθ̇θ̂ + rθ̈θ̂ + rθ̇
˙̂
θ

= (r̈ − rθ̇2)r̂ + (rθ̈ + 2ṙθ̇)θ̂.

Splitting the acceleration into radial and tangential components,

ar =
(
r̈ − rθ̇2

)
r̂, (3.19)

aθ =
(
rθ̈ + 2ṙθ̇

)
θ̂. (3.20)

θ̈ is known as the angular acceleration. Perhaps, two facts that we would

need to get used to are that the radial acceleration is not directly equal to r̈

and that the tangential acceleration is not directly equal to rθ̈. These are due

to the fact that the direction of the velocity vector also varies with respect

to time. We can understand each term in the two equations above in greater

detail.

r̈ is the rate of change of the radial speed, ṙ. Next, −rθ̇2 is known as the

centripetal acceleration and corresponds to the instantaneous radial acceler-

ation required for the particle to instantaneously travel in an arc of constant

radius about the origin. The negative sign indicates that this acceleration is

directed radially inwards.

rθ̈ indirectly describes the angular acceleration θ̈. It is the component of

the tangential acceleration that causes the angular velocity θ̇ of the particle

to change. 2ṙθ̇ is known as the Coriolis acceleration and unfortunately does

not have an intuitive physical meaning.

Problem: A particle moves at a constant θ̇ = ω and with r = r0e
αt. Show

that for some values of α, ar = 0.

ar = r̈ − rθ̇2 = α2r0e
αt − ω2r0e

αt

=⇒ ar = 0 when α = ±ω.
It may be surprising to many that ar can be zero even though the radial

velocity ṙ = αr0e
αt is increasing with time — an apparent paradox. This
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underscores the ramifications of the changing directions of the basis vec-

tors. This apparent paradox arises from the misconception that ar solely

contributes to r̈, which is not true as we have neglected the centripetal

acceleration. In other words

ṙ �=
∫
ar(t)dt,

as ar = r̈ − rθ̇2 �= r̈.

Problem: A particle moves at an angular velocity described by θ̇ = αt for

some constant angular acceleration α. If its radius from the origin evolves

with respect to time according to the equation r2 = k
θ̇
for some constant k,

show that the tangential acceleration aθ is zero.

aθ = rθ̈ + 2ṙθ̇ =

√
k

αt
· α− 2 · 1

2

√
k

αt3
· αt = 0.

This may also be surprising in the sense that the angular velocity of the

particle is increasing though there is no tangential acceleration. However,

this is due to the fact that

aθ = rθ̈ + 2ṙθ̇ �= rθ̈.

The tangential acceleration does not solely contribute to the angular accel-

eration. The Coriolis acceleration must also be accounted for. In fact, we can

prove something more general; if the quantity r2θ̇ is a constant, aθ = 0.

aθ = rθ̈ + 2ṙθ̇ =
r2θ̈ + 2rṙθ̇

r
=

dr2θ̇
dt

r
= 0.

Referring to the next problem, polar coordinates are especially useful when

certain kinematic quantities, such as velocity or acceleration, are always

radial or tangential.

Problem: A rabbit is running at a constant velocity v rectilinearly in the

x-direction. A tiger chases the rabbit at instantaneous velocity u (u > v)

of constant magnitude and its direction is always pointing from the instan-

taneous position of the tiger to the instantaneous position of the rabbit.

What is the time taken for the tiger to catch the rabbit? The initial distance

between them is l and the initial position vector of the rabbit relative to the

tiger makes an angle θ0 with the positive x-axis (the tiger and the rabbit lie

on the same plane).

Well, a natural step to take would be to consider the frame of the tiger

(we will use the same x and y-axes as the lab frame). Even though we have
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Figure 3.12: Frame of tiger

not introduced the principle of Galilean relativity yet, it should be intuitive

that if two objects A and B are traveling at velocities vA and vB in the lab

frame, the velocity of B in the frame of A is given by vB − vA. Hence the

velocity of the rabbit in the frame of the tiger is v − u, as depicted in the

figure above. Well, if we solely consider Cartesian coordinates, we can write

down the following integrals by letting τ be the time the tiger takes to catch

the rabbit. In order for them to meet at the same y-coordinate,

ẏ = −u sin θ,

−
∫ τ

0
u sin θ dt = −l sin θ0. (3.21)

Similarly, for them to coincide at the same x-coordinate,

ẋ = v − u cos θ,∫ τ

0
(v − u cos θ) dt = −l cos θ0. (3.22)

Evidently, we have reached a impasse as these integrals cannot be evalu-

ated explicitly. The trick here is to consider the situation in both Cartesian

and polar coordinates. Consider the velocity of the rabbit along the radial

direction in the frame of the tiger,

ṙ = v cos θ − u∫ τ

0
(v cos θ − u) dt = −l. (3.23)

Now, we can see a way out of this mess. By multiplying Eq. (3.22) by v and

adding it to Eq. (3.23) multiplied by u,∫ τ

0
(v2 − u2) dt = −l(v cos θ0 + u).
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Since the integrand is constant, the integral on the left-hand side can be

evaluated trivially. Then,

τ =
l(v cos θ0 + u)

u2 − v2
.

Let’s retrace how we solved this problem. Usually, to ensure that two point

particles are coincident, we must check that both their x and y-coordinates

are the same. However, applying this method to this situation would only

generate a pair of integrals that are impossibly difficult to solve for. Instead,

we can ensure that the x and r coordinates of those particles coincide. This

is due to the fact that the r coordinate is not completely dependent on the

x-coordinate and is also a function of the y coordinate. As such, if the r and

x coordinates of two objects are identical, their y coordinates must also be

the same. Hence, we have witnessed how some problems are naturally suited

to be expressed in polar coordinates.

3.4.1 Uniform Circular Motion

Uniform circular motion refers to the motion of an object in a circle of con-

stant radius at a constant tangential speed and thus angular velocity. Note

that though the object’s tangential speed is constant, it is still undergoing

acceleration as the direction of its velocity is constantly changing. Expressing

these conditions in polar coordinates (ṙ = 0, r̈ = 0 and θ̈ = 0), we obtain

ar = r̈ − rθ̇2 = −rθ̇2,
aθ = rθ̈ + 2ṙθ̇ = 0.

We find that the object must undergo an acceleration radially inwards which

we term as the centripetal acceleration. −rθ̇2 is the amount of radial accel-

eration necessary for the object to remain traveling in a circle of radius r

when it has an angular velocity θ̇. We shall also present a geometric proof

of the required centripetal acceleration as follows.

Let the origin be at the center of rotation. Then, consider two points

on the circular path that are separated by a small angular distance dθ and

consider the position and velocity vectors at both points. The change in

the position vector is simply the vector obtained from joining the heads of

the position vectors — pointing from the object’s initial position to its final

position. A similar statement can be made about the change in the velocity

vector. Then, if we group these vectors into triangles as shown on the right
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Figure 3.13: Uniform circular motion

of Fig. 3.13 above, we see that they are in fact similar (SAS). Thus,

|dv|
|dr| =

v

r
=⇒

∣∣∣∣dvdt
∣∣∣∣ = v

r

∣∣∣∣drdt
∣∣∣∣.

Denoting |dvdt | as ac and because |drdt | = v,

ac =
v2

r
= rω2,

where we have used ω to denote the particle’s angular velocity. Note that

|dr| and |dv| refer to the magnitude of the vectorial change in r and v. In

the limit where dθ → 0, the vector dv also points radially inwards. Hence, it

is evident that there must be a centripetal acceleration for uniform circular

motion.

3.4.2 Circular Motion with Tangential Acceleration

Now, consider the case in which the particle’s tangential velocity is allowed

to increase. However, it must still travel in a circle of constant radius r. Then,

by setting ṙ = 0 and r̈ = 0, its kinematics equations in polar coordinates

become

ar = −rθ̇2,
aθ = rθ̈.

This means that there must be an instantaneous centripetal acceleration

−rθ̇2, where θ̇ is the instantaneous angular velocity, for the particle to remain

along the circular path. However, if a tangential acceleration is present, there

will be an angular acceleration, causing the instantaneous angular velocity at

the next instant to be different from that at the current instant. This means

that the centripetal acceleration has to constantly change in magnitude to

adapt to the changes in the angular velocity. In summary, the instantaneous
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angular velocity θ̇ may now be a function of time but the centripetal accel-

eration must always be −rθ̇2 for the particle to remain in a circular path of

radius r.

3.5 Kinematics of a Rigid Body

The previous sections analyzed the motion of a single, discrete particle. In

this section, we shall consider the motion of a special system of particles.

A macroscopic body is made up of myriad particles which each have three

translational degrees of freedom. If it consists of n particles, a total of 3n gen-

eralized coordinates (translational or angular) is required to define a unique

state of the system. However, this immense complexity is greatly simplified

in the case of a rigid body.

A rigid body is a body whose particles maintain a constant distance rel-

ative to each other. This rigid body constraint is merely an idealization.

Consider the following situation. When one end of a moving object is sud-

denly blocked by an impregnable wall, the other end of the object cannot

instantaneously know that it must stop too, as there is a limit to the speed

of “signals” in the material which is by definition, the speed of sound in that

medium. Then, at the next instant, the particles that constitute the body will

definitely be closer together, violating the criterion of a rigid body. Despite

such impracticalities, the notion of a rigid body is still a rather convenient

approximation.

Chasles’s theorem states that the most general rigid body motion can be

represented in terms of a translation of an arbitrary point P on the body

and a rotation of the entire body about P. This is a result of the rigid body

constraint and drastically reduces the number of coordinates9 required to

describe a state of a rigid body from 3n to 6. We will not prove this theorem

but the result should be intuitive and believable.

3.5.1 Angular Speed and Velocity

Supposing that we choose a particular particle P in applying Chasles’s the-

orem, consider the frame of P and define the origin at its location. Since the

motion of the rigid body in P’s frame is a rotation, define the xy-plane to

be the instantaneous plane of rotation.

In cylindrical coordinates, every point on the body can be ascribed a

coordinate θ, the angle between the projection of its position vector on the

9Usually, three coordinates describe the position of an arbitrary point P and the other
three define the orientation of the body about P.
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Figure 3.14: Rotation of a rigid body

xy-plane and the x-axis (Fig. 3.14). By definition of a rotation, if the θ

coordinate of one off-axis particle increases by dθ during a time interval dt,

the θ coordinate of every off-axis particle on the rigid body must also increase

by dθ. Note that we are considering infinitesimal rotations as the plane of

rotation may change over time.

It can be seen that the quantities dθ and dθ
dt are representative of the

entire rigid body. ω = dθ
dt is the angular speed of the rigid body — it is the

rate of change of the azimuthal angular coordinate of all points on the rigid

body, relative to an arbitrary point. Now, you may think that ω is associated

with a certain point (such as the point P that was chosen) or axis (such as

the z-axis). However, this is not the case.

In the frame10 of a different particle Q, the body still undergoes a rota-

tion at the same angular speed ω in the same direction (clockwise or anti-

clockwise). This is evident from the fact that if the velocity of Q in the

original frame is v, the velocity of the particle P in the frame of Q is −v.

Since the distance between P and Q is the same in both frames, the angular

speeds are identical in both frames. One can also easily check that the direc-

tions of rotation are also identical. Therefore, the angular speed is truly an

intrinsic characteristic of the entire rigid body.

Finally, the angular speed of a rigid body, ω, is most importantly invari-

ant (i.e. not changing) across frames that are non-rotating with respect to

each other as it describes the relative motion of particles.

Next, the angular velocity vector of a rigid body, ω, is defined to be

a vector perpendicular to the plane of rotation. Its magnitude reflects the

angular speed ω. Notice that there are two possible directions for ω. By

convention, the direction of ω is defined by the right-hand grip rule. If you

10Note that the frame we choose is not rotating with respect to the frame of P.
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Figure 3.15: Angular velocity of a rigid body

point your right thumb in the direction of ω, your other fingers will curl in the

direction of rotation (clockwise or anti-clockwise). For example, an angular

velocity in the positive z-direction would imply an anti-clockwise rotation in

the x-y plane. Finally, similar to the angular speed, ω is a characteristic of

the entire rigid body that is invariant across non-rotating frames.

With this definition, there is an elegant way of expressing the velocity

of every point on the rigid body in the frame of an arbitrary particle P.

Referring to the previous analysis, the angular velocity ω is in the z-direction.

Now, consider a particle that is instantaneously at a position vector r

from the reference particle. r makes an angle φ with the angular velocity

vector ω (Fig. 3.15). Then, after a time dt, the particle travels an angle

dθ = ωdt along a circular path of radius r sinφ. Hence, the magnitude of the

infinitesimal displacement is

|dr| = r sinφdθ,

and is directed azimuthally. The magnitude of this displacement, in combi-

nation with its direction, can be expressed cogently in terms of vectors as

dr = ω × rdt

dr

dt
= ω × r. (3.24)

In fact, r could be any vector in general that is rotating at an angular

velocity ω and the above derivation would still hold. Moving back to the main

topic, drdt is the velocity of a particle in the frame of particle P. Suppose that

particle P has a velocity vref in the lab frame, the velocity of a point on

the rigid body, with respect to the lab frame, that is at a position vector r
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relative to P is

v = vref + ω × r. (3.25)

This is an extremely important equation that relates the velocity of an arbi-

trary point on a rigid body to that of a reference point. Though the reference

point can be taken to be any point on the rigid body, it is usually defined

to be located at the center of mass or some fixed point in the lab frame, in

practice. This is because the dynamical laws only enlighten us on the accel-

eration, and thus velocity, of the center of mass and not any other point on

the rigid body. Therefore, the evolution of vref is impossible to determine

directly for other non-fixed points that are not the center of mass.

In most cases, we will be dealing with objects moving and rotating in

a single plane. It is then ideal to express the above equation in terms of

two-dimensional polar coordinates attached to the reference point. r is then

the position vector of a particle of concern. Since ω is defined to be positive

along the positive z-direction, which is perpendicular to the plane of motion,

ω × r = rωθ̂ where θ̂ is the tangential unit vector.

v − vref = rωθ̂.

Define vr and vref, r as the respective speeds of the particle of concern and

the reference particle in the lab frame, along the radial direction. Similarly,

let vt and vref, t be those in the tangential direction respectively,

vr − vref, r = 0,

vt − vref, t = rω.

Therefore, the components of the velocities of two particles on a rigid body,

along the line joining them, must be identical. This is rather intuitive: sup-

pose that this were not the case, then the distance between them will change

in the next instance. Furthermore, the relative tangential velocities must

correctly reflect the angular speed. Notice that we could have also obtained

these equations by substituting ṙ = 0 and r̈ = 0 in the kinematics equation

in polar coordinates.

Problem: If the angular velocity vector of rod AB is ωAB = −ωk̂, find the

velocity of the pinned connection C in Fig. 3.16. All rods are assumed to be

rigid. Note that all connections are pinned — implying that the connected

components can rotate with respect to each other. The x and y-axes are

positive rightwards and upwards.
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Figure 3.16: Connected rods

Let us first solve this problem by analyzing the velocities of the con-

nection points. Points A and D are fixed to the ground and thus have zero

velocity. The velocity of B is simply

vB = lω,

in the positive x-direction. Now, consider the components of the velocity of

point C parallel and perpendicular to rod BC, which we conveniently label

as vCx and vCy. As two points on a rigid body cannot have a relative velocity

along the line connecting them,

vCx = vB = lω

for rod BC to remain rigid. Lastly, we impose this condition on rod CD.

Since D is stationary, the component of point C’s velocity along CD must

be zero. That is,

vCy cos 60
◦ = vCx cos 30

◦

vCy =
√
3lω.

Therefore,

vC = lωî+
√
3lωĵ.

Instantaneous Center of Rotation

Equation (3.25) can be further simplified if we choose the reference point

to be a point known as the instantaneous center of rotation (ICoR). The

instantaneous center of rotation is defined as the point that is fixed to the

frame of the rigid body — but not necessarily lying on the body — that has

zero velocity in the lab frame at that particular instant. If the ICoR is chosen

to be the reference point, the velocity of a point on the body is described by

v = ω × r

as vref = 0. Hence, all points on the rigid body are seemingly rotating

about the ICoR at this particular instant. Perhaps, the concept of a point
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that is fixed to the frame of the rigid body but not on the body itself is quite

confusing. Consider attaching an infinite plane onto the body like a giant

sheet of paper. This paper is fixed to the rigid body (i.e. it rotates with the

body) and represents space as observed in the frame of the rigid body. If the

point on this sheet of paper that has zero velocity in the lab frame is outside

of the original rigid body, it is an ICoR that is fixed to the frame of the rigid

body but external to it. Hence, Eq. (3.25) is still valid when using this point

as a reference point as it is on the “extension” of the original rigid body.

To determine the ICoR of a rigid body, either the velocities of two points

on the rigid body or the combination of the velocity of one point and the

angular velocity of the body is required. The crux in locating the ICoR lies

upon the fact that the vector joining it to a point on a rigid body must be

perpendicular to the instantaneous velocity of that point (as v = ω × r).

In all cases, the angular velocity of the body can be computed as well —

enabling us to determine the velocities of all points on the rigid body. Let

us consider the following two-dimensional cases:

Parallel Velocities of Two Points on the Body

Figure 3.17: Parallel velocities

In such situations, the velocities of two points on the body are given and

are known to be parallel. They are also perpendicular to the line joining

them. Then, the ICoR must be along the line joining the two velocities as

the position vector of these two points relative to the ICoR is perpendicular

to their velocities, which are along the same direction. Without loss of gen-

erality, let the velocity of B, vB be larger than that of A, vA. Let rA be the

distance between the ICoR and point A and let the distance between A and

B be d. Note that the ICoR lies on the side closer to A. As v = ω × r and

ω is the same for both points,

vA
rA

=
vB

rA + d
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rA =
vAd

vB − vA

ω =
vB − vA

d
.

Non-parallel Velocities of Two Points on the Body

Figure 3.18: Non-parallel velocities

When two non-parallel velocities of two points on a rigid body are given,

the ICoR is the point of intersection of the two lines perpendicular to the

velocity of the two points — it is the only point from which emanating

vectors to the two points are perpendicular to the corresponding velocities.

Then, the two distances between the two points and the ICoR, rA and rB
can be computed via geometric means. Consequently, the angular velocity is

ω =
vA
rA

=
vB
rB
.

The direction of ω (clockwise or anti-clockwise) has to be determined by

considering the direction of the velocity of either point and that of the vector

joining the ICoR to that particular point.

Velocity of One Point on the Body and the Angular Velocity

When the velocity of a certain point A and the angular velocity of the entire

rigid body are given, the ICoR again lies along the line perpendicular to A’s

velocity. Then, we can find the position of the ICoR from the fact that

vA = ω × rA.

The distance between A and the ICoR can be easily computed as

rA =
v

ωA
.

There are two points along the perpendicular that satisfy this. The correct

location is determined by considering the cross product.
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For a three-dimensional object, define the xy-plane to be perpendicular

to ω. Then, if we are given any of the above properties of two points, consider

their projections on the xy-plane such that they are essentially on the same

plane. Then, the above analysis can be applied once again as one can easily

show that the z-coordinate of those points are inconsequential when applying

v = ω×r. Once we have found the ICoR, all points along the axis parallel to

ω and passing through the ICoR in fact have zero velocity in the lab frame.

Thus, we have an instantaneous axis of rotation in the three-dimensional

case.

Lastly, note that in most cases, the ICoR changes with the motion of the

rigid body. This is true even in the case when the velocity of the reference

point and the angular velocity of the rigid body remains constant. This is

due to the fact that the object is physically translating through space. Hence,

the utility of the ICoR only lies in determining the velocity of a general point

on the body at a particular instant.

Problem: Solve the previous problem again by considering the ICoR.

Figure 3.19: ICoR of rod BC

Since the velocities of B and C are constrained to be perpendicular to

rods AB and CD respectively, the ICoR, which lies on the intersection of

the two lines perpendicular to the velocities of two points on a rigid body, is

the point of intersection I obtained from extending lines AB and DC. Now,

the angular velocity vector of rod BC, ωBC can be computed as

ωBC =
vB

IB
k̂ =

ωl

IB
k̂

pointing out of the page. However, note that ω of rod AB is pointing into the

page. Use the right-hand grip rule to verify these if necessary. The velocity

of point C, vC , is perpendicular to line IC and is of magnitude

vC = IC · ωBC =
IC

IB
· ωl = ωl

sin 30◦
= 2ωl.
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The vector vC makes an angle of 60◦ with the positive x-axis. Hence,

vC = lωî+
√
3lωĵ.

Additive Property of Angular Velocities

It is beneficial to underscore the additive property of angular velocities here,

once and for all. Let a rigid body B have angular velocities ωB1 and ωB2

relative to frames 1 and 2 which have origins O and O’ respectively (that do

not necessarily coincide). If the axes of frame 2 have angular velocity ω21 in

frame 1, we claim that

ωB1 = ωB2 + ω21. (3.26)

Proof: A major part of our proof would rely on the following theorem.

If a point P has velocities v1 and v2 as observed in frames 1 and 2, with the

axes of frame 2 rotating at angular velocity ω21 relative to frame 1, and if

the instantaneous position vector of P relative to the origin of frame 1 is r,

we have

v1 = v2 +ω21 × r. (3.27)

The origins of frames 1 and 2 need not coincide. This equation has a haunting

resemblance to Eq. (3.25) but the reader should understand that these are

two vastly different equations. Equation (3.25) describes the velocity of a

point on a rigid body and, at most, describes the transformation of the

velocity of that point as seen by a reference particle to that in the lab frame

(the axes of these frames do not rotate relative to each other) while Eq. (3.27)

represents the transformation of velocities across relatively rotating frames.

This transformation is evidently necessary in this case as axes that are fixed

to frame 2 are now rotating with respect to frame 1. Actually, the tools

required to prove this equation have already been developed but readers

who wish to directly read the proof can skip ahead to Section 11.2.

Proceeding with the actual proof, pick an arbitrary point P on the rigid

body and let the instantaneous center of rotation11 of the rigid body in frame

1 be R. Choosing R as the reference point to apply Eq. (3.25) to, the velocity

11Actually R can be any point on the rigid body and this proof would still hold. However,
choosing it as the ICoR simplifies matters here.
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of P in frame 1 is

vP1 = ωB1 × rRP ,

where rRP is the vector pointing from R to P. Meanwhile, the velocity of P

in frame 2 is

vP2 = vR2 + ωB2 × rRP

by Eq. (3.25), where vR2 is the velocity of R as observed in frame 2. vR2 can

be computed by applying Eq. (3.27).

vR1 = vR2 + ω21 × rOR,

where vR1 = 0 is the velocity of R as observed in frame 1 and rOR is the

position vector of R in frame 1. Therefore,

vP2 = ωB2 × rRP − ω21 × rOR.

Finally, we can relate vP1 and vP2 by applying Eq. (3.27) again.

vP1 = vP2 + ω21 × rOP ,

where rOP is the position vector of P in frame 1. Combining these expres-

sions, we obtain

ωB1 × rRP = ωB2 × rRP + ω21 × (rOP − rOR)

=⇒ ωB1 × rRP = (ωB2 + ω21)× rRP .

Since P is arbitrary and rRP follows suit, we must have

ωB1 = ωB2 + ω21.

Problem: A toy consists of some blades attached to a common center O’.

The blades rotate at an angular speed ω2 about the center. Now, the center

of the toy is constrained to undergo uniform circular motion about a center

O at anti-clockwise angular velocity ω1, while its blades rotate about the

center O’ at anti-clockwise angular velocity ω2. If the position vector of O’

with respect to O is R at this instance, determine the velocity of a point

on the blades that has position vector r relative to the center O’ in the lab

frame in which O is stationary.

The important observation here is that the angular velocity of the blades

in the lab frame is ω1+ω2 and not ω2. To convince yourself that this is the

case, consider the specific scenario where ω2 = 0 and the center O’ simply

rotates at ω1 about O. Mark a point P on the blade — you will observe that
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when O’ has rotated an angle θ, P would have also rotated by θ (refer to the

question pertaining to Fig. 3.23 for an illustration).

In this scenario, frame 2 is a set of coordinate axes fixed to O’ that will

rotate with O’ at angular velocity ω1 relative to the lab frame (we define this

as frame 1). Since the angular velocity of the blades as observed in frame 2

is ω2, the angular velocity ω of the blades with respect to frame 1 is then

ω = ω1 + ω2.

Applying Eq. (3.25) and choosing the center O’, which travels instanta-

neously at velocity ω1 × R, as the reference point yields the velocity of a

point on the blade at a position r from O’ as

v = ω1 ×R+ (ω1 + ω2)× r,

in the lab frame. For those who are still confused about why we could not

directly add the velocity of the point as seen in frame 2, ω2 × r, to the

velocity of the origin O’ of frame 2 as observed in frame 1, ω1×R, stand up

and spin on the spot. Objects in your room will appear to possess a certain

velocity in your frame (frame 2) but you know that a friend (frame 1) who is

not rotating would observe them to be stationary, even though your friend

observes that you remain on the same spot on the ground — contradicting

the previous statement! The resolution here is that we have applied the

additive property of velocities wrongly. It is right to say that the velocity

of a point in frame 1 is the addition of the velocity of O’ in frame 1 and

the velocity of that point relative to O’ as observed in frame 112 but it

is fallacious to say that it is the addition of the velocity of O’ in frame

1 and the velocity of that point relative to O’ as observed in frame 2,

which is rotating relative to frame 1. The moral of the story is that a real

danger lurks in rotating frames and we shall explore how to tackle them in

Section 11.2.

Angular Acceleration

The angular acceleration vector of a rigid body is defined to be the rate of

change of the angular velocity vector.

α =
dω

dt
. (3.28)

Since ω is a property of the entire body that is invariant across non-rotating

frames, α follows suit. Like any other time derivative of a vector, α can

12Any frame that is non-rotating relative to frame 1 works too.
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change in two ways — a change in the magnitude ω or the direction ω̂.

Rewriting α in a more suggestive way,

α =
dωω̂

dt
= ω̇ω̂ + ω

dω̂

dt
.

In this book, only fixed axis rotations will be analyzed. That is, the direction

of the angular velocity vector does not change. Then, the second term is zero

and

α = ω̇ω̂ = αω̂.

Finally, the acceleration of an arbitrary point on a rigid body, relative to

that of a reference point can be obtained by differentiating Eq. (3.25),

dv

dt
=
dvref
dt

+
dω

dt
× r +ω × dr

dt
.

Note that dr
dt is the rate of change of the vector joining the reference point

to the point of concern, which is v − vref = ω × r. Hence, the instanta-

neous acceleration of an arbitrary point on the body, a, in relation to the

instantaneous acceleration of the reference point, aref is

a = aref +α× r + ω × (ω × r), (3.29)

where ω and α are the instantaneous angular velocity and acceleration vec-

tors, respectively. This equation is entirely general and is not restricted to

fixed axis rotations. In the case of fixed axis rotations,

a = aref + αω̂ × r + ω × (ω × r).

If the translational motion and the plane of rotation of the rigid body strictly

lie in a two-dimensional plane, one can evaluate the cross products easily as

r and ω are perpendicular, where r points from the reference point to the

point of concern. It is easy to verify that ω̂× r = rθ̂ while the last term can

be simplified via the BAC-CAB rule (Eq. (3.6)).

ω × (ω × r) = ω(ω · r)− r(ω · ω) = −ω2r,

since ω · r = 0. Applying these simplifications yields

a− aref = rαθ̂ − rω2r̂.

Similarly, splitting the terms into the radial and tangential directions,

ar − aref, r = −rω2,

at − aref, t = rα.
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That is, the relative radial acceleration must provide the necessary cen-

tripetal acceleration for the particle of concern to continue traveling at a

constant distance away from the reference point. Furthermore, the relative

tangential acceleration must reflect the angular acceleration.

Problem: With regards to the previous problem, if rod AB has an angular

acceleration vector αAB = −αk̂, determine the acceleration of point C. Rod

A still has an angular velocity vector ωAB = −ωk̂. The lengths of AB, BC

and CD are l, 2l and 2l respectively.

Figure 3.20: Acceleration of points

Consider the components of the accelerations of points B and C as labeled

in Fig. 3.20 above. The respective accelerations along rods AB and CD are

simply the centripetal acceleration terms.

aBr =
v2B
l

= ω2l,

aCr =
v2C
l

= 4ω2l.

From the kinematics equation in polar coordinates,

aBθ = lα.

Lastly, we need to determine aCθ by imposing the condition that the relative

acceleration of points B and C along rod BC must provide the necessary

centripetal acceleration. Thus, the relative velocity between points B and C

in the direction perpendicular to rod BC, or the angular velocity of rod BC,

must first be determined. The former shall be utilized as it is simply vCy that

we have calculated previously. As the relative acceleration between B and C

along rod BC must correspond to the necessary centripetal acceleration,

aBθ − aCθ cos 60
◦ =

v2Cy
2l

=
3

2
lω2

aCθ = 2lα− 3lω2.
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Having determined aCr and acθ, the acceleration of point C can be resolved

into its x and y components.

aC =

(
lα+

4
√
3− 3

2
lω2

)
î+

(√
3lα− 4 + 3

√
3

2
lω2

)
ĵ.

3.5.2 Rolling

Consider a rigid circular wheel of radius R exhibiting both translational

motion in the x-direction and rotational motion on a surface. It is rotating

clockwise at an angular velocity ω (i.e. the angular velocity vector is −ωk̂
with the z-axis pointing out of the page).

Figure 3.21: Rolling wheel

Usually, the center of the wheel is a pivotal reference point in describing

its motion. Let the velocity of the center be v. Then, the instantaneous center

of rotation is a distance

d =
v

ω
,

below the center of the wheel. Then, the velocity of an arbitrary point on

the wheel can be determined. Consider a point P on the wheel, a distance r,

r ≤ R, away from the center of the wheel, O and at an angular coordinate θ

(Fig. 3.21). Defining the x and y-axes to be positive rightwards and upwards,

the position vector of P relative to the instantaneous center of rotation, I, is

given by

r′ =

⎛
⎝ r sin θ

v
ω + r cos θ

0

⎞
⎠ .

The angular velocity vector of the body is

(
0
0

−ω

)
— the negative sign

arises from the fact that ω is defined to be clockwise. Then, the velocity of
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point P is

v′ =

⎛
⎝ 0

0

−ω

⎞
⎠×

⎛
⎝ r sin θ

v
ω + r cos θ

0

⎞
⎠ =

⎛
⎝v + rω cos θ

−ωr sin θ
0

⎞
⎠ . (3.30)

This formula can also be obtained from applying Eq. (3.25) which effec-

tively apportions the net velocity of point P to contributions by the velocity

of the center of the circle and the component due to the rotation of P about

O. This will be illustrated diagrammatically in the following scenario.

Rolling Without Slipping

Slipping occurs when there is relative motion between surfaces. Hence, there

must be no relative velocity and acceleration between the corresponding

points of contact on the object and on the surface for there to be no slipping.

Naturally, failure in satisfying such conditions engenders slipping.

Consider the set-up in the previous section with a stationary ground.

Rather than applying Eq. (3.25) directly, we shall decompose the motion

of a point on the body into a translation of O and a rotation of the point

about O. Let us just consider the top and bottom of the circle for the sake

of illustration.

All points on the wheel move at a velocity v towards the right due to the

translation of the wheel with respect to the center. This, in addition to the

rotational component of the motion of the point, determined by the distance

between the center and the point and the point’s angular position relative

to the object, fully describes the motion of each individual point. We notice

that the top of the wheel travels at velocity v+Rω while the bottom travels

at velocity v −Rω (Fig. 3.22).

Slipping occurs when two surfaces have a non-zero relative velocity with

respect to one another. Thus, assuming that the surface is stationary at

the bottom of the wheel, the wheel rolls without slipping when the bottom

Figure 3.22: Rolling without slipping
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of wheel has zero velocity (i.e. v = Rω) and slips whenever v > Rω or

v < Rω. Note that we do not need to assume that the surface is flat (as

depicted in Fig. 3.22) as we just require the circle to roll without slipping

instantaneously. Hence, the non-slip condition is

v = Rω.

To obtain the relationship between the acceleration of O, a, and the

angular acceleration, defined to be α clockwise, the above equation can be

differentiated with respect to time. That is,

a = Rα.

Lastly, performing an integration on the previous equation with respect to

time, the distance travelled by the center of the circle is related to the angular

distance according to

d = RΔθ,

if the circle rolls without slipping throughout the motion.

Problem: A coin of radius r rolls without slipping on the interior of a hollow

circle of radius kr for one revolution and returns to its original position. How

many rounds did the coin rotate about its center?

Well, one might think that since the contact point between the coin and

the circle travels a distance 2πkr and because the circumference of the coin

is 2πr, the coin must have rotated k rounds.

However, notice that the center of the coin only traveled a distance 2π(k−
1)r (i.e. in a circle of radius (k−1)r). Hence the coin only rotates k−1 rounds

around its center.

There is another way to understand this. Without the loss of generality,

assume that the coin revolves around the circle in the clockwise direction.

Then it must rotate anti-clockwise to prevent slipping. If the coin traveled

on a flat surface for a distance 2πkr, it rotates k rounds anti-clockwise.

However, in this case, even if the coin simply translated with a fixed contact

point (represented by the black dot in Fig. 3.23) clockwise in the interior of

the hollow circle, it would have rotated one clockwise round about its center.

Since, the motion of the coin is the composition of both translational and

rotational components, the coin rotates a total of k−1 rounds anti-clockwise.

Problem: A spool consists of a cylindrical axle of radius r and a larger

cylindrical rim of radius R. A weightless rope is wound around the axle. The

loose end of the rope is pulled at this instant and has a velocity v0 in the
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Figure 3.23: Additional clockwise round

Figure 3.24: Pulling a spool

configuration shown in Fig. 3.24. If the spool rolls without slipping on the

flat ground, what is the velocity of the center of the spool at this instant?

The velocity of the point of intersection between the loose part of the

rope and the axle is obtained by substituting α for θ in Eq. (3.30),

v′ =

⎛
⎝v + rω cosα

−rω sinα

0

⎞
⎠ .

Then, the component of this velocity along the direction of the rope is

−v′x cos β + v′y sin β = −(v + rω cosα) cos β − rω sinα sin β = v0.

Lastly, the non-slip condition implies that v = Rω. Note that the rim is a

distance R from the center and not r. Then

−v cos β − r

R
v cos(α− β) = v0

v =
−v0

r
R cos(α− β) + cos β

.

The negative sign indicates that the center of the spool travels in the negative

x-direction (towards the left).
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3.5.3 Constrained Motion

In some problems, the motion of a rigid body is constrained to move in a

certain manner. These restrictions provide additional equations that must be

satisfied by the system and often reduce the number of coordinates needed

to define a unique state of the system. Consider the following ubiquitous

set-up.

Kinematics of a Leaning Ladder

Consider the motion of a rigid ladder of length 2l that is leaning on an

impenetrable vertical wall with its leg supported by a horizontal floor.

Figure 3.25: Leaning ladder

Evidently, the ladder is constrained to move along the surfaces of the

wall and the floor. Hence, there must be a relationship between its angular

velocity and the velocity of each point on the ladder. This relationship can

be easily determined by finding the ICoR of the ladder. As the velocity of

the ends of the ladder are restricted to be along the surface of the floor

and ground, the ICoR, denoted by I, is the point of intersection of the lines

perpendicular to these surfaces. Now let ω be the angular velocity of the

ladder. Then,

ω = θ̇k̂.

The positive sign in the equation above arises from the fact that an anti-

clockwise rotation of the ladder increases θ (recall that an angular velocity

vector in the positive z-direction represents an instantaneous anti-clockwise

rotation). If we had defined θ to be ∠ABO instead, a negative sign must be

included in front of θ̇. Now, consider a particular point P on the ladder that

is at a distance x from the top of the ladder. Its coordinates are (x sin θ,

(2l − x) cos θ). The coordinates of I are (2l sin θ, 2l cos θ). Therefore,

�IP =

⎛
⎝ x sin θ

(2l − x) cos θ

0

⎞
⎠−

⎛
⎝2l sin θ

2l cos θ

0

⎞
⎠ =

⎛
⎝(x− 2l) sin θ

−x cos θ
0

⎞
⎠ .
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Hence, the velocity of P is

v =

⎛
⎝0

0

θ̇

⎞
⎠×

⎛
⎝(x− 2l) sin θ

−x cos θ
0

⎞
⎠ =

⎛
⎝ x cos θθ̇

(x− 2l) sin θθ̇

0

⎞
⎠ .

As we will be dealing with the center of a ladder frequently (especially if the

ladder has a uniform mass distribution), let us compute its velocity in terms

of θ̇. Substituting x = l,

vcenter =

⎛
⎝ l cos θθ̇

−l sin θθ̇
0

⎞
⎠ .

This expression can also be obtained by dividing the velocity of the ends

of the ladder into translational and rotational components while using the

center of the ladder as the reference point.

Figure 3.26: Components of velocities

Let the center of the ladder possess horizontal and vertical components of

velocity vx and vy. The velocity of the ends of the ladder is the composition

of the velocity of the center of the ladder and their corresponding velocities

due to their rotation about the center (Fig. 3.26). In order for the velocity

of the top end of the ladder to be strictly along the wall,

vx = lω cos θ = l cos θθ̇.

Similarly, for the bottom end of the ladder to remain on the ground,

vy = −lω sin θ = −l sin θθ̇.
It is then natural to ponder about the dependence of the acceleration

of the center of the ladder on θ̈. However, it is much more convenient to

differentiate the above equations with respect to time than to consider the

accelerations of the ends of the ladder, via Eq. (3.29) relative to the center

of the ladder. This will be elaborated on in the following section.
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Obtaining Relationships between Kinematic Quantities

via Differentiation

Often, when there are constraints on a system, it is much easier to obtain

the relationship between certain kinematic quantities and their time deriva-

tives at all instances by progressively differentiating the equation governing

the restriction imposed by the constraints. Referring to the previous situ-

ation pertaining to the leaning ladder, the coordinates of the center of the

ladder are

rcenter =

(
l sin θ

l cos θ

)
.

Taking the derivative of this with respect to time,

vcenter =

(
l cos θθ̇

−l sin θθ̇
)
,

which is consistent with our result in the previous section. Further differen-

tiating this with respect to time, the acceleration of the center of the ladder

as a function of θ and its time derivatives is

acenter =

(−l sin θθ̇2 + l cos θθ̈

−l cos θθ̇2 − l sin θθ̈

)
.

Note that in the steps above, we have implicitly used the fact that the

basis vectors, î and ĵ, are immutable. If this were not the case, the time

derivatives of these basis vectors must also be included, in a fashion similar

to the derivation of the kinematics equations in polar coordinates. Lastly,

there is also an interesting geometrical property of this set-up — the motion

of the center of the ladder traces out a circular arc of radius l about the

origin O. This is evident from rcenter which implies that the center of the

ladder is at a constant distance
√
l2 sin2 θ + l2 cos2 θ = l from the origin.

Next, let us consider a scenario in which objects are to remain in contact.

Three identical cylinders of radius R are initially held in contact on the

ground in the configuration shown below.

Figure 3.27: Three cylinders
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The cylinders are then released. If cylinder A remains in contact with

B and C for a certain period of time, what is the relationship between the

velocities of the cylinders and their displacements during this period?

The resultant velocity of cylinder A is solely along the vertical direction

due to symmetry. Define a coordinate system as depicted in the figure above.

Let y be the y-coordinate of cylinder A and let x be the x-coordinate of

cylinder C. Then, for cylinders A and C to remain in contact,

x2 + y2 = 4R2.

Differentiating this equation with respect to time,

2xẋ+ 2yẏ = 0

xẋ = −yẏ.
This is the equation relating the velocities of the cylinders and their displace-

ments. Note that the displacement and velocity of cylinder B are simply −x
and −ẋ respectively due to symmetry. Next, we can differentiate the above

equation with respect to time again to extract information about further

derivatives. Here,

ẋ2 + xẍ = −ẏ2 − yÿ.

All-in-all, this method of differentiating equations to relate certain variables

is extremely useful in determining their relationships at all instances in time.

However, in the case where the relationship between certain quantities are

needed at only a particular instant, akin to the example of the connected rigid

rods, this method may prove to be somewhat tedious, especially for systems

with a large number of degrees of freedom. In such cases, it is expeditious

to use the kinematics equations such as Eqs. (3.25) and (3.29). Ultimately,

the equations in this chapter are not physically insightful by themselves,

as they are mostly mathematical consequences that have little relation to

the laws of physics. The dynamical laws, which stem from observations and

deductions of the world, provide the equation of motion, after which the

problem is merely a kinematic one. However, the study of kinematics and

the inherent relationships between quantities in a system with constraints

provides valuable equations which are paramount in solving for the system

of equations obtained from the dynamical laws.

3.6 Univariate Differential Equations

This section will cover the tricks in solving various differential equa-

tions involving a single variable that is a function of an independent
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parameter — an essential component in solving for the kinematic quantities,

after the dynamical laws have been applied. For the rest of this section, we

hope to solve for a dependent variable y(x) in terms of an independent vari-

able x. dy
dx will be denoted as y′. Though many physical examples will be

included, note that this section will be purely mathematical and is hence

highly general.

3.6.1 Separable Differential Equations

A separable differential equation takes the form

y′ = f(x),

where f(x) is some arbitrary function of x. As implied by the term

“separable”, we can solve for y by shifting the dx term in the denomina-

tor of y′ to the right-hand side.

dy = f(x)dx.

Integrating, we solve for y.

y =

∫
f(x)dx+ c,

where the constant of integration c, also captures the constant of integration

from
∫
f(x)dx, for the sake of convenience.

One-Dimensional Motion with Linear Drag

Though we have not formally introduced Newton’s laws, consider the one-

dimensional motion of an object under the influence of a linear drag force

and a constant external force. Its initial velocity is in the same direction as

the external force. Then, its equation of motion will be of the form

ma = mA− bvv̂,

where A is a constant vector which represents the constant acceleration

that the object will undergo if there was no drag. Aligning the x-axis along

the line of motion, we can rewrite the vector equation above in terms of a

single scalar variable, the x-coordinate of the object. Let a and v denote the

acceleration and velocity of the particle, respectively. Then,

a = A− kv,

where k = b
m . Using the fact that a = dv

dt ,

dv

dt
= A− kv.
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Observe that this differential equation is separable. Separating the variables

and integrating, ∫ v

v0

1

v − A
k

dv =

∫ t

0
−kdt

ln

∣∣∣∣∣ v −
A
k

v0 − A
k

∣∣∣∣∣ = −kt,

where v0 is the initial velocity. To remove the absolute value signs, observe

that if the initial velocity v0 ≥ A
k , then v ≥ A

k at all later instances as a,

which is the signed magnitude of acceleration, is negative until v attains the

value A
k , after which the acceleration will be zero. A similar logic can be

used to deduce that if v0 ≤ A
k , then v ≤ A

k at all later instances. Hence,

we can simply remove the absolute value sign as the numerator and the

denominators are ensured to be of the same sign. Then,

v =

(
v0 − A

k

)
e−kt +

A

k
.

Notice that as time tends to infinity, the object reaches the velocity A
k , which

is known as the terminal velocity of the object. Next, the equation above can

be integrated again to solve for the x-coordinate of the particle as a function

of time.

x =

(
A

k2
− v0
k

)(
e−kt − 1

)
+
A

k
t+ x0,

where x0 is the initial x-coordinate of the object. An interesting result occurs

when A = 0 (i.e. there is no other external force besides the drag force) as

the total distance traveled by the object converges to v0
k , though the process

takes an indefinitely long time.

One-Dimensional Motion with Quadratic Drag

Consider an object that travels solely along the x-direction, under the sole

influence of a quadratic drag force. Its equation of motion is

a = −kv2,
where k = c

m and c is the constant in F quad. Writing a as dv
dt and separating

variables, ∫ v

u

1

v2
dv =

∫ t

0
−kdt
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1

u
− 1

v
= −kt

v =
u

1 + ukt
.

Separating and integrating again,∫ x

x0

dx =

∫ t

0

u

1 + ukt
dt

x− x0 = u ln |1 + ukt|
x = u ln |1 + ukt|+ x0.

It is rather interesting to compare this result with that of the linear case

without a constant acceleration. As t → ∞, both velocities tend to zero.

However, the velocity in the linear case decays much faster (exponentially)

as compared to that in the quadratic case which is approximately inversely

proportional13 to t for large t.

This subtle difference manifests itself in the x-coordinate of the object

as a function of time. As t → ∞, the linear case produces a convergent

result. However, in this quadratic case, the x-coordinate of the particle also

tends to infinity, implying that it is not “bounded”. This discrepancy can be

understood qualitatively. As the speed of the object becomes small, v2 is even

smaller, causing the deceleration of the object to be smaller in magnitude

than the linear case.

3.6.2 Making Equations Separable

Since separable equations can be solved directly, the goal of this section is to

express differential equations in a more illuminating form via certain tricks.

y′′ in terms of y

Consider a differential equation of the form

y′′ = f(y).

Observe that

y′′ =
dy′

dx
=
dy′

dy
· dy
dx

= y′
dy′

dy
. (3.31)

13As t is large, we can simply ignore the additional term of 1 in the denominator of v.



July 10, 2018 12:23 Competitive Physics 9.61in x 6.69in b3146-ch03 page 103

Kinematics 103

Then,

y′
dy′

dy
= f(y).

This is a separable equation! Separating variables and integrating,∫
y′dy′ =

∫
f(y)dy

y′2 = 2

∫
f(y)dy + c,

where c is a constant of integration. If we are given the exact function f(y),

we can square root both sides of the above equation and separate variables

again to solve for x(y) and therefore, y(x), if x(y) can be inverted. Finally,

note that another way of expressing y′′ is 1
2
dy′2
dy as y′dy′ = 1

2d(y
′2).

Integrating Factor

A rather ubiquitous differential equation takes the form

y′ + f(x)y = g(x). (3.32)

Here’s the idea behind solving this differential equation. Suppose that we

could find a function h(x) such that when both sides of the equation are

multiplied by h(x), the left-hand side becomes

d(h(x)y)

dx
.

The entire equation will become

d(h(x)y)

dx
= g(x)h(x),

which is a separable differential equation. Separating the variables and inte-

grating, ∫
d(h(x)y) =

∫
g(x)h(x)dx

h(x)y =

∫ x

x0

g(x)h(x)dx + h(x0)y0

y =

∫ x
x0
g(x)h(x)dx + h(x0)y0

h(x)
. (3.33)
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Hence, the only task left is to find such a function h(x), which is known as

the integrating factor. Observe that

d(h(x)y)

dx
= h(x)y′ + h′(x)y.

Comparing this to the left-hand side of the original equation multiplied by

h(x),

h(x)y′ + h′(x)y = h(x)y′ + h(x)f(x)y.

Hence,

h′(x)
h(x)

= f(x).

Making the astute observation that the left-hand side of this equation is
d(ln h(x))

dx , ∫
d(ln h(x)) =

∫
f(x)dx

lnh(x) =

∫
f(x)dx+ c,

where we have also “pulled out” the constant of integration from the∫
f(x)dx and absorbed it into c. Then,

h(x) = Ae
∫
f(x)dx,

where A = ec. Now, observe that the exact values of c and A do not matter.

If h(x) is increased by a factor of A, the expression for y given by Eq. (3.33)

does not change as the additional factors in the numerator and denominator

cancel out. Hence, for the sake of convenience, c is usually set to zero. The

expression for the integrating factor is then

h(x) = e
∫
f(x)dx. (3.34)

In practice, Eq. (3.33) is rarely used as it is often less taxing on your memory

to find the integrating factor and go through the process of solving the

differential equation.

Problem: Solve the following differential equation with the initial condition

y = 0 when x = 0.

y′ + xy = x.
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The integrating factor is

h(x) = e
∫
xdx = e

x2

2 .

Multiplying the integrating factor to both sides of the original differential

equation,

d(e
x2

2 y)

dx
= e

x2

2 x.

Separating variables and integrating,

e
x2

2 y =

∫ x

0
e

x2

2 xdx.

The expression on the right can be integrated using the substitution u = x2

2

and du = xdx. Then,

∫ x

0
e

x2

2 xdx =

∫ x2

2

0
eudu = [eu]

x2

2
0 = e

x2

2 − 1

e
x2

2 y = e
x2

2 − 1.

Therefore, this differential equation has the solution

y = 1− e−
x2

2 .

A Sneaky Case of an Integrating Factor

A rather common, but intimidating differential equation arises in problems

where a system progressively gathers mass. It takes the form

y′′ + f(y)y′2 = g(y). (3.35)

This equation can actually be simplified via an integrating factor. Since

y′′ = 1
2
dy′2
dy ,

dy′2

dy
+ 2f(y)y′2 = 2g(y).

This equation is of the same form as that in Eq. (3.32) with y → y′2 and

x→ y such that y′ → dy′2
dy . Thus, the integrating factor is

e2
∫
f(y)dy .

Then, one can multiply the above by the integrating factor, separate variables

and simplify the differential equation above.



July 10, 2018 12:23 Competitive Physics 9.61in x 6.69in b3146-ch03 page 106

106 Competitive Physics: Mechanics and Waves

Problems

Vectors

1. Lots of Practice

(a) The magnitude of the addition of two vectors is four times the shorter

one, and makes an angle of 60◦ with the shorter one. What is the ratio

of the magnitudes of the vectors? What is the angle between them?

(b) Two vectors a and b subtend an angle θ. If |a| = 2|b| and |a + b| =√
3|a− b|, determine θ.

(c) If |a + b| = |a − b|, prove that a ⊥ b. Conversely, if (a + b) ⊥ (a − b),

show that |a| = |b|.
(d) If |a| = 1 and |b| =

√
6+

√
2

2 , and the angle between a and b is 45◦, what
is the angle between a+ b and a ?

(e) Consider two points located at position vectors r1 and r2, separated by

a distance r12 = |r1 − r2|. Find a vector A from the origin to the point

on the line between the two points at a distance m
m+nr12 from the point

at r1, where m and n are some real numbers. This result is known as

the ratio theorem.

(f) In a methane molecule CH4, each hydrogen atom is at the corner of a

tetrahedron with the carbon atom at the centre. In a coordinate system

centered about the carbon atom, if the direction of one of the C-H bonds

is described by the vector a = î+ ĵ+ k̂ and the direction of an adjacent

C-H bond is described by the vector b = î − ĵ − k̂, what is the angle θ

between these two bonds?

(g) The dot product can be extended to n-dimensional vectors in Rn such

that a · b = a1b1 + a2b2 + · · · + anbn is again the sum of the products

of their corresponding components and |a|2 = a · a. Prove the Cauchy-

Schwartz inequality |a · b| ≤ |a| · |b|. Hint: consider |a|b − |b|a and

|a|b+ |b|a.

2. Perpendicular Velocities*

Two particles move in a uniform region of downwards gravitational field g.

They begin at the same location with initial velocities v1 to the left and v2
to the right, respectively. Find the distance between the two particles when

their velocities are perpendicular to each other. Assume that they do not

collide with each other nor with other entities.
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3. Halving Speed*

A particle moves with constant acceleration. At t = 0s, its speed is v. At

t = 1s, its speed is v
2 . At t = 2s, its speed is v

4 . What is its speed at t = 3s?

4. Sixth Collision**

An isolated system contains four particles that travel at constant velocities.

Assuming that the particles pass through each other when they coincide and

that a maximum of two particles can meet at a single point at every instance,

there are a total of six possible intersections of particles. If you know that

there are at least five encounters, can you predict if there will be a sixth

(either at an earlier or later instance)?

Miscellaneous

5. Catching Rain*

A stationary cylindrical bucket of radius r and height l is initially empty. It is

currently raining and raindrops are evenly distributed about all space. The

raindrops now travel vertically downwards at a constant speed v. Let the

rate of volume of rain collected by the bucket now be r1. Then, a horizontal

wind now imparts the raindrops with a horizontal velocity u in the positive

x-direction. Let the rate now be r2. Compare r1 and r2.

6. Running in the Rain*

Considering the second situation in the previous question, if the bucket is

now replaced by a human running at a constant speed v0 in the positive

x-direction with the same dimensions as the cylinder, find the rate of volume

of rain swept by the person, r. Note that the person can now “collect” rain

sideways. Now, assuming that there is a shelter a distance d away, find the

total volume of rain collected by the person as a function of v0 (as he runs

for shelter). Consider different cases. When is it not ideal to run faster?

7. Smart Target*

A target takes the form of a two-dimensional square of side length l and can

translate on the two-dimensional ground (but it cannot rotate). Supposing

the center of the target can move a maximum distance l during the time that
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an arrow takes to land onto the ground, determine the minimum number of

arrows that need to be fired simultaneously to guarantee a hit on the target.

Constant Acceleration and Projectile Motion

8. Dropping Masses*

A mass with zero initial velocity is dropped from a height h1 above the

ground at time t = 0. At time t = τ , another mass is dropped from rest

from a height h2. If the two masses first attain the same velocity at time

t = (k + 1)τ where k is a positive integer, show that the value√
h1
h2

must be rational. The balls do not collide with each other. Assume that the

balls are reflected at the same speed after colliding with the ground.

9. Times Times*

A particle is thrown from a level ground at a certain fixed initial speed and

variable elevation angle. There are two possible paths which result in the

same range R. Let the times taken by the paths be t1 and t2 respectively.

Find t1t2.

10. Ball on Inclined Plane*

A ball is thrown with velocity, v, horizontally off the surface of a plane with

an angle of inclination θ as shown in the figure below. Find the angle α.

11. Tossing over a Circle*

A vertical circular obstacle of radius R is placed on a horizontal ground.

If a person is to toss a projectile at speed v such that its parabolic path

is symmetrical about the vertical line through the center of circle and the

projectile just touches the top of the circle, determine the maximum R for

which the obstacle does not collide with the circle.
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12. Maximum Range**

A particle is thrown from an initial vertical coordinate y0 at a fixed speed u

and a variable angle θ with respect to the horizontal. If the landing ground

is at y = 0, determine the maximum range and the angle θ that leads to this

maximum range. Be careful about the case where y0 < 0.

13. Maximum Range along Inclined Plane**

A ball is tossed up an inclined plane with an angle of inclination θ, at an

angle φ relative to the slope and fixed speed v. It then collides again with

the plane at a later instant. Find φ that maximizes the distance between

the initial position of the ball and the point of collision of the ball along the

plane.

14. Throwing over a Thin Wall**

A person wishes to throw a projectile over a wall on level ground. The

projectile is thrown at coordinates (0, 0) and is supposed to land at (R, 0),

R > 0. If there is a vertical wall with height h at x-coordinate x0 > 0, what

is the minimum initial speed at which the projectile must be thrown?

15. Watering a Garden***

An isotropic point source on the ground sprays water droplets at speed v

uniformly in directions which make an angle between 0 and π
4 radians with

the vertical. Define the origin to be at the point source and consider the

plane of the ground. Suppose that the wetness at a point on the ground that

is a distance r away from the origin is proportional to the number of water

droplets impinging the immediate neighborhood of that point per unit area.

Determine the radial coordinate r of a point that is 2
(
√
6−√

2)
times as wet as

the point that is a distance v2

2g away from the origin.

Polar Coordinates

16. Regular N-gon**

Consider a system of N ≥ 3 particles which are seemingly like the vertices

of an imaginary regular polygon. The initial distance between adjacent par-

ticles is l. Number the particles from 1 to N in the clockwise direction. In

the motion thereafter, the instantaneous velocity of the ith particle is always

along the vector from the ith particle to the (i+1)th particle (the (N +1)th
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particle is taken to be the first particle). If the speeds of the particles are

a constant v, determine the time when the distance between the particles

becomes l
2 . Furthermore, imagine an intangible polygon formed by connect-

ing adjacent particles by intangible lines. Argue that the N particles must

always be arranged in the shape of a regular N -gon, which is contracting.

Furthermore, determine the angle that the imaginary N -gon has rotated

about, by the time the adjacent distances become l
2 .

17. Constant Magnitude of Acceleration**

A particle wishes to travel in a circle of radius r and begins at rest. Supposing

that its acceleration has a constant magnitude a, determine the distance

travelled by the particle between the initial instance and the juncture when

the particle attains its maximum angular velocity. Hint: In polar coordinates

about the center of rotation, define α to be the instantaneous angle that the

acceleration vector makes with the tangential direction. Then, differentiate a

certain kinematic equation in polar coordinates. (“Introduction to Classical

Mechanics”)

18. Searching in Fog***

In this two-dimensional problem, you are a ship operator and a pirate ship

currently rests right next to you (the ships can be approximated as point

particles). A dense fog suddenly emerges such that you are unable to locate

the pirate ship. However, you know that the pirate ship will only travel at a

constant velocity v in a particular direction. If you start your engine t0 after

the pirate ship begins moving, and travel at a speed u (u > v), what is the

optimal path that you should take to guarantee catching the pirate in the

minimum amount of time? What is this minimum amount of time? Assume

that you can change the direction of your ship’s velocity instantaneously.

Rigid Body Kinematics

19. Two Velocities*

Two points on a rigid body are traveling at the same velocity v. However, v

is not perpendicular to the vector joining the two points. What can you say

about the velocity of an arbitrary point on the rigid body?

20. Two Plates*

A rotating circular wheel of radius R is sandwiched between two parallel

plates which are tangential to the wheel. The top plate travels at a velocity
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v1 while the bottom plate travels at a velocity v2. Both velocities are along

the x-direction. If there is no slipping between the wheel and the plates,

determine the velocity of the center of the wheel and the wheel’s angular

velocity ω, which is defined to be positive anti-clockwise in the plane of the

wheel.

21. Pulling a Square*

Consider four identical rigids rods of length l connected by pinned con-

nections in the form of a square. Suppose that you pull two diametrically

opposite pins at velocities v1 and v2, respectively as shown in the figure

below. Determine the velocity of the pin at the top. The entire motion lies

in a single plane.

22. Moving Wheel*

Consider a wheel of radius r, rolling away from a wall with velocity v(t) at

its center. Define a coordinate system as shown in the figure below. Find

the rate of change of the angular coordinate of the center of the wheel, θ̇,

as a function of v(t) and x, the x-coordinate of the center of the wheel with

respect to the wall.

23. H-Shape**

Consider 6 identical rods of length l that are connected by fixed connections

to form a rigid “H”-shape as shown in the figure on the next page. At the

current instance, a particle is right next to the center of mass of the H-shape



July 10, 2018 12:23 Competitive Physics 9.61in x 6.69in b3146-ch03 page 112

112 Competitive Physics: Mechanics and Waves

as depicted. If the constant velocity and angular velocity of the H-shape

are vCM rightwards and ω clockwise respectively, determine the minimum

rightwards velocity of the particle v, such that it can escape without colliding

with the structure.

Differential Equations

24. Inverse-Squared Force*

Suppose you obtain the equation of motion r̈ = k
r2 . Solve for the particle’s

velocity ṙ as a function of r.

25. Bernoulli’s Equation**

Consider a differential equation of the form

y′ + f(x)y = g(x)yn.

Show that the substitution z = y1−n yields an equation that can be simplified

by an integrating factor. Determine the integrating factor.

26. Bug on Rubber Band***

A bug is initially located at the fixed, left end of a rubber band of initial

length l. The right end is then pulled away at a velocity v. If the rubber

band stretches uniformly and the bug travels at a velocity u relative to the

rubber band, determine the time taken for the bug to reach the other end

of the rubber band. (BAUPC)
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Solutions

1. Lots of Practice

(a) Let the two vectors be a and b with |b| < |a| and define θ as the angle

subtended by the two vectors.

|a+ b| = 4|b| =⇒ a2 + b2 + 2a · b = 16b2

(a+ b) · b = |a+ b| · |b| cos 60◦

=⇒ a · b+ b2 = 2b2

as |a+ b| = 4|b|. Shifting b2 to the right-hand side,

a · b = b2.

Substituting this expression into the first equation,

a2 = 13b2

|a| =
√
13|b|

θ = cos−1 a · b
|a||b| = cos−1 1√

13
.

(b) Since |a+ b| = √
3|a− b|,

(a+ b) · (a+ b) = 3(a − b) · (a− b)

8a · b = 2(a2 + b2) = 6b2

a · b =
3

4
b2

θ = cos−1 a · b
|a||b| = cos−1 3

8
.

(c)

|a+ b| = |a− b|
=⇒ a2 + 2a · b+ b2 = a2 − 2a · b+ b2

=⇒ a · b = 0,

which shows that they are perpendicular. Moving on to the next part, since

(a+ b) ⊥ (a− b),

(a + b) · (a− b) = 0
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=⇒ a2 = b2

=⇒ |a| = |b|.

(d) Let θ denote the angle between a+ b and a.

θ = cos−1 (a + b) · a
|a+ b||a|

= cos−1 a2 + a · b√
a2 + b2 + 2a · b · |a|

= cos−1 12 + 1×
√
6+

√
2

2 × cos 45◦√
12 +

(√
6+

√
2

2

)2
+ 2× 1×

√
6+

√
2

2 × cos 45◦ · 1

= cos−1 1 +
√
3+1
2√

2
√
3 + 4

= cos−1

√
3+3
2√
3 + 1

= cos−1

√
3

2

= 30◦.

(e)

A = r1 +
m

m+ n
(r2 − r1) =

mr2 + nr1
m+ n

.

(f)

θ = cos−1

⎛
⎝1

1

1

⎞
⎠ ·

⎛
⎝ 1

−1

−1

⎞
⎠

|a||b| = cos−1 1− 1− 1

3
= cos−1−1

3
= 109.5◦ (4s.f.).

(g) If a or b is the null vector, the equality case of the Cauchy-Schwartz

inequality evidently holds so we only need to consider the non-trivial cases.

Firstly, observe that the dot product of any arbitrary vector A with itself

must be non-negative as

A2
1 +A2

2 + · · ·+A2
n ≥ 0.
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The equality case only occurs when A = 0 is the null vector. Applying this

inequality to |a|b− |b|a,

(|a|b− |b|a) · (|a|b− |b|a) ≥ 0

2a2b2 − 2|a||b|a · b ≥ 0

a2b2 ≥ |a||b|a · b
=⇒ |a||b| ≥ a · b.

Repeating this process with |a|b+ |b|a, one can also show that

|a||b| ≥ −a · b,

which shows that

|a||b| ≥ |a · b|.

Evidently, the equality case only occurs when |a|b − |b|a = 0 or |a|b+
|b|a = 0. That is, the two vectors a and b must either be parallel or

anti-parallel.

2. Perpendicular Velocities*

Define the x and y-axes to be positive rightwards and upwards. The velocities

of the particles at time t are respectively (−v1,−gt) and (v2,−gt). For these
to be perpendicular,

(−v1
−gt

)
·
(
v2
−gt

)
= 0

=⇒ v1v2 = g2t2

t =

√
v1v2
g

.

The distance between the particles is simply their difference in x-coordinates

which is

(v1 + v2)t =
(v1 + v2)

√
v1v2

g
.
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3. Halving Speed*

Let the initial velocity be v and the constant acceleration be a. The condi-

tions of the question imply

|v + a| = v

2
=⇒ 2a · v + a2 = −3

4
v2

|v + 2a| = v

4
=⇒ 4a · v + 4a2 = −15

16
v2.

Solving these equations simultaneously,

a · v = −33

64
v2

a2 =
9

32
v2

=⇒ |v + 3a| =
√
v2 + 6a · v + 9a2 =

√
7

4
v.

4. Sixth Collision**

Without the loss of generality, number the particles from 1 to 4 and suppose

that only particles 1 and 2 have yet to collide. Defining ri and vi as the

initial position vector and velocity of the ith particle and tij to be the time

of the collision between the ith and jth particle, we have

r1 − r3 = (v3 − v1)t13,

r1 − r4 = (v4 − v1)t14,

r2 − r3 = (v3 − v2)t23,

r2 − r4 = (v4 − v2)t24,

r3 − r4 = (v4 − v3)t34,

as these pairs of particles collide. Subtracting the first equation from the

second,

r3 − r4 = t14v4 − t13v3 + (t13 − t14)v1 = t14(v4 − v3) + (t13 − t14)(v1 − v3).

Equating this with the fifth equation,

(t13 − t14)(v1 − v3) = (t34 − t14)(v4 − v3).

Applying a similar process to the third and fourth equation, we obtain

(t23 − t24)(v2 − v3) = (t34 − t24)(v4 − v3).
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The last two equations show that

v1 − v2 =

(
t34 − t14
t13 − t14

− t34 − t24
t23 − t24

)
(v4 − v3),

where we have used the fact that t13 �= t14 and t23 �= t24 as a maximum of

two particles can coincide at a single location at every juncture.

r1 − r2 = (r1 − r3)− (r2 − r3) = (v3 − v1)t13 − (v3 − v2)t23

=

(
t34 − t14
t14 − t13

t13 − t34 − t24
t24 − t23

t23

)
(v4 − v3).

Therefore,

r1 − r2 =

t34−t14
t13−t14 t13 − t34−t24

t23−t24 t23
t34−t14
t13−t14 − t34−t24

t23−t24
(v2 − v1),

which shows that particles 1 and 2 collide. A more intuitive solution would

be to observe that there exists a particle X which is guaranteed to collide

with the other three particles. Consider the frame of X and define the origin

at X. Since there are at least five collisions, there are at least 2 pairs of other

particles (of which all three other particles are included at least once each)

which intersect. Since these three particles must also pass through the origin,

their trajectories must be along a single straight line through the origin (the

other alternative is for them to pass through the origin at the same time but

this is forbidden by the fact that a maximum of two particles can cross at

any location) — implying that all 6 pairs must collide.

5. Catching Rain*

In both situations, consider the amount of rain collected by the bucket in a

time interval Δt. In the first situation, the volume collected is a cylinder of

radius r and length vΔt. Hence, the additional volume collected in a time

interval Δt is

ΔV = πr2vΔt

r1 =
ΔV

Δt
= πr2v.



July 10, 2018 12:23 Competitive Physics 9.61in x 6.69in b3146-ch03 page 118

118 Competitive Physics: Mechanics and Waves

In the second scenario, the volume collected is of the following shape

The volume of this object is still the area of the base multiplied by the

perpendicular height.

ΔV = πr2 · h = πr2vΔt

r2 =
ΔV

Δt
= πr2v.

This becomes obvious when we consider the fact that a flat surface with an

area vector A sweeps out volume in a medium at a rate A · v where v is its

relative velocity with the medium. Hence,

r1 = r2.

6. Running in the Rain*

The rate r has two contributions — due to the rain pouring on his head,

similar to the situation with bucket, and due to the additional rain he runs

into sideways. Let these two rates be r1 and r2 respectively. Then,

r = r1 + r2.

r1 has been computed in the previous question as

r1 = πr2v.

r2 is simply the rate at which raindrops are swept up by the side of the

human. The relative horizontal velocity between the human and the rain-

drops is v0−u. Hence, in time Δt, the volume of rain colliding with the side

of the human is

ΔV = 2lr|v0 − u|Δt,

where 2lr is the cross-sectional area of the cylinder. Note that the absolute

value sign is necessary as the raindrops may impinge on the human from
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both sides.

r2 = 2lr|v0 − u|.
The total rate is

r = πr2v + 2lr|v0 − u|.
The person takes a time t = d

v0
to reach the shelter. Hence, the total volume

of rain swept by the person is

V = r · t = πr2vd+ 2lr|v0 − u|d
v0

.

Next, a few cases must be considered. When v0 ≥ u, |v0 − u| = v0 − u.

V = 2lrd+
dr

v0
(πrv − 2lu).

If v > 2l
πru, the term in the bracket is positive and the total volume swept, V ,

decreases as v0 increases. It is ideal to travel at a large velocity to minimize

the amount of time spent in the rain. However, if v < 2l
πru, V increases as v0

increases. In this situation, it is better to reduce v0. However, v0 must still

be greater than u. Hence, the minimum value amount of rain swept in this

regime occurs when v0 = u. Then,

V =
dπr2v

u
.

In this situation, the person is traveling at the same horizontal velocity as

the raindrops such that no rain hits the person from the side. The only rain

gathered by the person is that pouring onto his head.

For the case where v0 ≤ u, |v0 − u| = u− v0.

V =
dr

v0
(πrv + 2lu)− 2lrd.

Hence, it is still better to run faster in this case. The maximum value of v0
in this regime is also u. Then, the total volume of rain collected is

V =
dπr2v

u
.

7. Smart Target*

The final position of the target’s center can be anywhere within a circle of

radius l, centered about the initial location of its center. Observe that an

arrow shot at a particular point P eliminates the possibility of the center of
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mass falling within a square of side length l, centered at P. Thus, we just

need to cover a circle of radius l with squares of length l. It is easy to see

that this is possible with 4 squares. We can also prove that this is impossible

with three squares by considering their areas. The area of three squares is

3l2 which is smaller than the area of the circle πl2. Thus, four arrows are

necessary to guarantee a hit.

8. Dropping Masses*

Define the positive direction to be upwards. The crucial observation is that

the two balls first attain the same velocity when the ball with the smaller

maximum speed attains its maximum positive velocity. To see why this is

so, suppose that we observe the two balls to have the same velocity at the

current instance. Then, we can rewind their motions slightly and observe

their velocities at an earlier instance — their velocities will still be identi-

cal unless one ball has just rebounded from the ground. Furthermore, this

reflected ball must be the ball with the smaller maximum speed as it would

take less time for it to decelerate from its maximum positive velocity to

its current velocity. Therefore, the earliest juncture at which the two balls

possess the same velocity is when the ball with the smaller maximum speed

has just rebounded from the ground and when the other ball simultaneously

attains this velocity. As such, we have to consider two cases — when h1 ≥ h2
and h1 < h2. In the case of the former, the balls first satisfy the required

condition when the second ball just rebounds from the ground. Observing

that the “periods” of the balls’ velocities are
√

2h1
g and

√
2h2
g respectively,

kτ = (2m+ 1)

√
2h2
g
,

where m is an integer for the second ball to just rebound from the ground.

Furthermore,

(k + 1)τ = 2

√
2h1
g

−
√

2h2
g

+ 2n

√
2h1
g

= (2n + 2)

√
2h1
g

−
√

2h2
g
,

where n is an integer for the first ball to attain the velocity
√
2gh2. Note

that 2
√

2h1
g −

√
2h2
g is the time that the first ball takes to first attain this

velocity. Eliminating the τ ’s,√
h1
h2

=
(k + 1)(2m+ 1) + k

k(2n + 2)
.
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When h2 > h1, one can similarly show that the required conditions are

(k + 1)τ = 2n

√
2h1
g

kτ = (2m+ 2)

√
2h2
g

−
√

2h1
g

=⇒
√
h1
h2

=
(k + 1)(2m + 2)

2kn+ k + 1
.

9. Times Times*

Define the origin at the launching point. The vertical displacement at

time t is

sy = vyt− 1

2
gt2,

where vy is the initial vertical velocity. The non-trivial solution to sy = 0 is

t =
2vy
g
.

Another way to obtain this answer would be to compute the time the particle

takes to reach the peak and then multiply it by two due to the symmetrical

property of projectile motion. Moving on, the range is simply the horizontal

distance that the projectile has travelled at this juncture.

R = vxt =
2vxvy
g

.

Expressing vx = v cos θ and vy sin θ in terms of the speed v and elevation

angle θ,

R =
v2 sin 2θ

g
.

Evidently, the other angle is π
2 −θ as sin(π−x) = sinx. The two times taken

are then

t1 =
2v sin θ

g

t2 =
2v cos θ

g

t1t2 =
2v2 sin 2θ

g2
=

2R

g
.
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Another way is to first express sin θ and cos θ via

t =
2v sin θ

g
=⇒ sin θ =

gt

2v

R = v cos θt =⇒ cos θ =
R

vt
,

where we have eliminated the possibility of t = 0. Squaring the trigonometric

terms and adding them together,

g2t2

4v2
+

R2

v2t2
= 1

t4 − 4v2

g2
t2 +

4R2

g2
= 0.

This is a quadratic equation in t2 and should only have two solutions t21 and

t22 (the squares of the two times of interest). By Vieta’s theorem, we know

that the product of the roots of a quadratic equation yields

t21t
2
2 =

4R2

g2

t1t2 =
2R

g
,

where the times must be positive.

10. Ball on Inclined Plane*

Define the x and y-axes to be positive rightwards and downwards respec-

tively. From the kinematics equations,

sy =
1

2
gt2,

sx = vt.

When the ball collides with the plane, sy = sx tan θ.

t =
2v tan θ

g
.

Thus, the vertical and horizontal velocities at this juncture are

vy = gt = 2v tan θ,

vx = v.
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The components of the ball’s velocity parallel and perpendicular to the

plane are

v‖ = vy sin θ + vx cos θ = v

(
2 sin2 θ

cos θ
+ cos θ

)
,

v⊥ = vy cos θ − vx sin θ = v sin θ,

α = tan−1 v⊥
v‖

= tan−1 sin θ cos θ

1 + sin2 θ
.

11. Tossing over a Circle*

The vertical velocity of the projectile must be zero at the top of the

circle. This implies that the vertical component of the initial velocity of

the projectile obeys

v2y = 4gR.

The horizontal component of the squared velocity, which remains constant

throughout the motion, is then

v2x = v2 − 4gR.

Since the path of a projectile is reversible, the projectile will not collide with

the circle if and only if the same projectile tossed off the top of a circle with

only a horizontal velocity vx (and no vertical velocity) is found to not collide

with the circle too. The latter condition is satisfied if the distance between

the projectile and the center of the circle is greater than R at all times.

(vxt)
2 +

(
R− 1

2
gt2
)2

> R2,

where t is measured from the juncture where the particle is at the top of the

circle. Simplifying,

1

4
g2t2 + (v2 − 5gR) > 0.

We obtain the desired result if R < v2

5g . Another way of seeing this is to

require the centripetal acceleration at the top of the circle to be greater

than g (so that the particle instantaneously travels along an arc with a
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larger radius of curvature).

v2x
R
> g

=⇒ v2

R
> 5g

R <
v2

5g
.

12. Maximum Range**

The trajectory of the particle is described by the parabola:

y = y0 + tan θx− g

2u2
sec2 θx2.

Let the maximum range be R. When x = R, the trajectory equation satisfies

y0 + tan θR− g

2u2
sec2 θR2 = 0.

Well, we could solve for R to get

R =
tan θ +

√
tan2 θ + 2gy0

u2
sec2 θ

g
u2 sec

2 θ
. (3.36)

This is an important equation that determines the range of a projectile in

terms of u and θ (we have rejected the other solution which is smaller). We

could continue to differentiate it with respect to θ and solve for dR
dθ = 0 but

there is a slick method. Implicitly differentiating the previous equation with

respect to θ and using the fact that dR
dθ = 0 when R is a stationary point,

sec2 θR− g

u2
sec2 θ tan θR2 = 0

R =
u2

g
cot θ,

as we reject the trivial solution R = 0. Technically, we can check that this is

indeed a maximum point by finding the second derivative of R with respect
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to θ via Eq. (3.36) but we shall avoid this tedium. When R is a maximum,

tan θ =
u2

gR
.

This expression for tan θ can be substituted into the trajectory equation to

obtain

y0 +
u2

g
− g

2u2

(
u4

g2R2
+ 1

)
R2 = 0,

where we have used the fact that sec2 θ = tan2 θ + 1. Then,

R =
u

g

√
u2 + 2gy0,

and

tan θ =
u2

gR
=

u√
u2 + 2gy0

θ = tan−1 u√
u2 + 2gy0

.

Lastly, there is another slight technicality. In the case of y0 < 0, how do we

know which x-coordinate this R–which is a maximum point–corresponds to

(as there are two x-coordinates where y = 0)? That is, is it really the range

of the projectile? Well, one can solve the quadratic trajectory equation for

two values of x — substituting the above expression for tan θ will show that

R indeed corresponds to the larger root and is hence the range. Finally,

this range assumes that the particle is able to reach that larger x-coordinate

without facing any blockages.

A direct corollary of the above result is that the maximum range in the

case of a level ground (y0 = 0) is

R =
u2

g
,

and occurs when θ = π
4 radians.

13. Maximum Range along Inclined Plane**

Define the x-axis to be parallel to the slope, pointing upwards, and the y-

axis to be normal to the slope, pointing away from the slope. Then, the
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ball experiences constant accelerations −g sin θ and −g cos θ in the x and y

directions, respectively. The coordinates of the ball at a time t are given by

y = v sinφt− 1

2
g cos θt2,

x = v cosφt− 1

2
g sin θt2.

When y = 0, the non-trivial solution is

t =
2v sinφ

g cos θ
.

At this juncture,

x =
2v2

g cos θ
(sinφ cos φ− sin2 φ tan θ) =

2v2

g cos2 θ
sinφ(cos φ cos θ− sinφ sin θ).

Applying the trigonometric identities cos(A+B) = cosA cosB− sinA sinB

and 2 sinA cosB = sin(A+B) + sin(A−B),

x =
2v2

g cos2 θ
sinφ cos(φ+ θ) =

v2

g cos2 θ
[sin(2φ+ θ)− sin θ] ,

which is evidently maximum when

2φ+ θ =
π

2

φ =
π

4
− θ

2
.

Other values of φ — namely the above expression plus an integer multiple

of π
2 — are infeasible as φ and θ must obviously be acute and larger than

zero. When φ = π
4 − θ

2 ,

x =
v2(1− sin θ)

g cos2 θ
.

14. Throwing over a Thin Wall**

Note that since the starting and ending points are fixed and three points

define a parabola of the form y = ax2 + bx + c, if we choose a particular

y-coordinate of the projectile at x0, we will have fixed the parabola and

hence will be able to determine the initial speed and angle the projectile

was thrown at. Furthermore, we know that θ = π
4 should correspond to the

smallest initial velocity if the particle along this trajectory can pass over the

wall. Hence, we must determine if this is so.
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From the trajectory equation,

y = tan θx− g sec2 θ

2u2
x2.

The range on a level ground is obtained when y = 0.

R =
2u2 sin θ cos θ

g

=⇒ u2 =
Rg

2 sin θ cos θ
.

Substituting this into the trajectory equation,

tan θx− tan θ

R
x2 = y.

If we let y(x0) = y0,

tan θ =
y0

x0 − x20
R

.

Note that the denominator is strictly greater than zero as 0 < x0 < R. If we

let the denominator be k where k > 0,

sec2 θ =
y20
k2

+ 1

cos2 θ =
k2

y20 + k2

cos θ =
k√

y20 + k2
.

We reject negative values of cos θ as 0 < θ < π
2 . Similarly,

sin θ =
y0√
y20 + k2

.

Then,

u2 =
Rg

2 sin θ cos θ
=
Rg(y20 + k2)

2y0k
=
Ry0
2k

+
Rk

2y0
.

To minimize u2, we find its first derivative with respect to y0.

d(u2)

dy0
=
Rg

2k
− Rkg

2y20
.
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The stationary point occurs when

y0 = k = x0 − x20
R
,

where we have rejected the negative solution as the ground is at y = 0. Then

cos θ =
1√
2

=⇒ θ =
π

4

u =

√
gR

2
.

Hence, the minimum speed that the projectile should be thrown at is
√

gR
2 ,

at an angle θ = π
4 when y0 = x0 − x20

R ≥ h. (i.e. the projectile is above h at

x0 when θ = π
4 ). This is as expected. In the case where h > x0 − x20

R , the

minimum speed occurs when y0 = h as

d(u2)

dy0
=
Rg

2k
− Rkg

2y20
> 0,

for all y0 > x0 − x20
R . Then, substituting y0 = h into the expression for u2,

the minimum speed is

u =

√
Rg(h2 + k2)

2hk
,

and occurs when

tan θ =
h

k
,

where k = x0 − x20
R .

15. Watering a Garden***

Consider a sphere that represents the possible directions of the velocities of

the water droplets.

Let θ be the angle between the velocity of a water droplet and the vertical

axis. Then, we can ascribe all water droplets a θ coordinate from 0 to π
4

radians. Notice that the amount of water droplets between angles θ and

θ + dθ is proportional to 2π sin θdθ (proportional to the curved surface area

of the disk in Fig. 3.28). Suppose that the final radial coordinate of the water

droplets between angles θ and θ + dθ, after they have fallen to the ground,
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Figure 3.28: Area between θ and θ + dθ

lies between r and r+ dr. The area on the ground that they occupy is then

2πrdr. Thus, the wetness at a radial coordinate r is proportional to sin θdθ
rdr .

Our objective is to determine this function. It can be easily proven that the

range of a droplet at angle θ is

r =
v2 sin 2θ

g
.

Evidently, r = v2

2g corresponds to θ = π
12 . Furthermore,

dr

dθ
=

2v2 cos 2θ

g

rdr

sin θdθ
=

2v4 sin 2θ cos 2θ

g2 sin θ
=

4v4

g2
cos θ cos 2θ.

This is inversely proportional to the wetness. Thus, our desired θ obeys

cos θ cos 2θ =
(
√
6−√

2)

2
cos

π

12
cos

π

6
=

√
3

4
,

where we have used the fact that cos π
12 =

√
6+

√
2

4 . Expressing the left-hand

side in terms of cos θ only,

2 cos3 θ − cos θ −
√
3

4
= 0(

cos θ −
√
3

2

)(
2 cos2 θ −

√
3 cos θ +

1

2

)
= 0.
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Therefore, the only solution is θ = π
6 as the discriminant of the expression

in the second bracket is negative. The corresponding radial coordinate is

r =

√
3v2

2g
.

16. Regular N-gon**

Let r(t) be the instantaneous distance between adjacent particles. The rela-

tive radial velocity between adjacent particles is

ṙ = v

(
cos

2π

N
− 1

)
.

Then,

r = l + v

(
cos

2π

N
− 1

)
t.

When r = l
2 ,

t =
l

2v
(
1− cos 2π

N

) .
To argue that the particles maintain the shape of a regular N -gon, notice

that all adjacent distances must be r by symmetry — implying that they

form a regular N -gon. To calculate the angle that this imaginary N -gon has

rotated, we observe that the center (more technically, centroid) must be the

center of rotation. We then calculate the angular velocity of the imaginary

N -gon. The distance between the center and a particle can be proved by

geometrical means to be

r

2 sin π
N

.

The component of velocity tangential to the line joining the center and a

particle is

v cos
π

N
.

Hence, the angular velocity is

ω =
v cos π

N
r

2 sin π
N

=
v

r
sin

2π

N
=

v

l + v
(
cos 2π

N − 1
)
t
sin

2π

N
.
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The total angle that it has rotated between t = 0 and t = l
2v(1−cos 2π

N
)
is then

Δθ =
v sin 2π

N

l

∫ l

2v(1−cos 2π
N )

0

1

1 + v
l

(
cos 2π

N − 1
)
t
dt =

sin 2π
N

1− cos 2π
N

ln 2.

17. Constant Magnitude of Acceleration**

Using α defined in the hint above (with the radial component of acceleration

pointing inwards when α is positive), the kinematics equation for circular

motion in polar coordinates is

−a sinα = −rθ̇2,
a cosα = rθ̈.

Differentiating the first equation with respect to time t,

−a cosαα̇ = −2rθ̇θ̈.

Dividing this by the second equation,

α̇ = 2θ̇.

α starts off at zero (as the particle does not require any centripetal accel-

eration yet) and ends at π
2 as the acceleration must point purely radially

inwards when the particle’s angular velocity is maximum. Integrating the

above,

π

2
= 2Δθ

Δθ =
π

4
.

Thus, the required distance travelled by the particle is πr
4 .

18. Searching in Fog***

Due to the impossibility of identifying the direction of the pirate ship’s veloc-

ity, you have to search the entire 2π radians in polar coordinates in the min-

imum amount of time — for which the following plan is optimal. Define the

origin to be at your initial position. First, you move in an arbitrary direction

for a distance l0 which corresponds to the distance you need to cover if the

pirate ship indeed traveled in that direction. After covering this distance, you



July 10, 2018 12:23 Competitive Physics 9.61in x 6.69in b3146-ch03 page 132

132 Competitive Physics: Mechanics and Waves

can guarantee that the pirate ship did not follow this direction. Afterwards,

you travel tangentially and radially such that your radial coordinate r follows

r = l0 + vt,

where t is the time after you have traveled a distance l0. If your angular

position is θ at time t, you can eliminate the possibility of the angular direc-

tion of the pirate ship’s velocity being θ. As you cover θ = 0 to θ = 2π with

your non-zero tangential velocity, you would have considered all possibilities

and are guaranteed to have found the ship. Now, we proceed to calculate the

required time for this strategy. Due to the time delay t0, the initial distance

between you and the pirate ship is vt0. The time taken for you to catch up,

if you anticipated its direction of motion correctly is

τ =
vt0
u− v

,

l0 = uτ =
uvt0
u− v

.

We have computed the required time for the first process. For the second

process, your radial and tangential velocities are related by

ṙ2 + r2θ̇2 = u2.

Since r = l0 + vt =⇒ ṙ = v,

θ̇ =

√
u2 − v2

l0 + vt∫ 2π

0
vdθ =

∫ τ ′

0

√
u2 − v2

l0
v + t

dt

2πv =
√
u2 − v2 ln

∣∣∣∣ l0 + vτ ′

l0

∣∣∣∣
τ ′ =

l0
v

(
e

2πv√
u2−v2 − 1

)
=

ut0
u− v

(
e

2πv√
u2−v2 − 1

)
.

The total required time is

ttotal = τ + τ ′ =
ut0
u− v

e
2πv√
u2−v2 − t0.

19. Two Velocities*

The instantaneous center of rotation must be the point of intersection of the

lines passing through the two points that are perpendicular to their veloc-

ities. In this case, the instantaneous center of rotation must be at infinity,
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implying that the angular velocity of the rigid body is zero else v will be

infinite. Hence, all points on the body travel at the same velocity v.

20. Two Plates*

Let vCM denote the velocity of the center of mass, positive rightwards. Then,

vCM − ωR = v1,

vCM + ωR = v2,

vCM =
v1 + v2

2
,

ω =
v2 − v1
2R

,

where ω is positive clockwise.

21. Pulling a Square*

Define the x and y-axes to be positive rightwards and upwards. Consider the

two rods above. Let the angular velocities of the left and right rods be ω1

and ω2 respectively, positive anti-clockwise. Then, we can apply Eq. (3.25)

twice to relate v1 to v2 in terms of the angular velocities.

⎛
⎜⎜⎝
v2

0

0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
v1

0

0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0

0

ω1

⎞
⎟⎟⎠×

⎛
⎜⎜⎜⎝

√
2
2 l
√
2
2 l

0

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎝

0

0

ω2

⎞
⎟⎟⎠×

⎛
⎜⎜⎜⎝

√
2
2 l

−
√
2
2 l

0

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝
v1 −

√
2
2 lω1 +

√
2
2 lω2

√
2
2 lω1 +

√
2
2 lω2

0

⎞
⎟⎟⎟⎠ .

Comparing the first and second entries,

ω1 = −ω2

v1 −
√
2ω1l = v2

ω1l =
v1 − v2√

2
.
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The velocity of the top pin is then

⎛
⎜⎜⎝
v1

0

0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0

0

ω1

⎞
⎟⎟⎠×

⎛
⎜⎜⎜⎝

√
2
2 l
√
2
2 l

0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
v1+v2

2

v1−v2
2

0

⎞
⎟⎟⎟⎠ .

A slick solution would be to consider a frame that travels at velocity v1+v2
2

with respect to the lab frame. Then, the velocities of the left and right pins

are v1−v2
2 and − v1−v2

2 . Due to the symmetry of this set-up, the top pin can

only have a vertical velocity, whose value must be v1−v2
2 upwards to maintain

the rigid body condition, in this frame. Therefore its velocity in the original

frame is (v1+v22 , v1−v22 , 0).

22. Moving Wheel*

Using the coordinate system defined in the problem, we find that

tan θ =
r

x
.

Differentiating with respect to time,

sec2 θθ̇ = − r

x2
v.

Using the fact that tan2 θ + 1 = sec2 θ,

θ̇ = − r

x2 sec2 θ
v = − r

r2 + x2
v.

Another method that does not use differentiation is to observe that θ̇ is the

tangential velocity − v
sin θ (negative as it tends to reduce θ) divided by the

radial distance x
cos θ such that θ̇ = − v

x sin θ cos θ = − v
x · rx

r2+x2
= − r

r2+x2
v.

23. H-Shape**

If the particle has not exceeded the right-most point of the H-shape after it

has rotated by π
4 radians, the particle will not be able to escape the structure.

This can be easily visualized through Fig. 3.29.

If the particle is still within the structure at this instant, the H-shape

will rotate further and block off all paths of exit in the subsequent motion.
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Figure 3.29: Configuration after a π
4
radians rotation

Furthermore, the particle would have definitely collided with the middle

segment of the H-shape after it has rotated by π
2 radians. Thus, the particle

must have traveled at least
√
2l rightwards, relative to the center of mass of

the H-shape by the time it rotates by π
4 radians. This requires

π

4ω
(v − vCM ) ≥

√
2l

v ≥ vCM +
4
√
2ωl

π
.

24. Inverse-Squared Force*

Using r̈ = ṙ dṙdr and separating variables,∫
ṙdṙ =

∫
k

r2
dr

ṙ = ±
√
c− 2k

r
,

where c is a constant.

25. Bernoulli’s Equation**

z = y1−n implies that

z′ = (1− n)y−ny′,

where a prime denotes differentiation with respect to x. Dividing the original

equation by yn,

y′y−n + f(x)y1−n = g(x)

z′

1− n
+ f(x)z = g(x).
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Multiplying the above by 1− n,

z′ + (1− n)f(x)z = (1− n)g(x).

Hence, the appropriate integrating factor for this equation is

e
∫
(1−n)f(x)dx.

26. Bug on Rubber Band***

Let x(t) be the distance between the bug and the right end of the rubber

band at time t. At time t, the length of the rubber band is l+ vt. Therefore,

at time t+ dt,

x+ dx = x · l + v(t+ dt)

l + vt
− udt.

In the time interval dt, the rubber band is stretched by a distance vdt which

causes x to increase by a factor corresponding to the first term on the right-

hand side. Furthermore, the bug also crawls a distance udt in this time

interval — decreasing x by udt. The exact order of these two events does not

matter as the differences are second-order. Simplifying the above equation,

ẋ− v

l + vt
x = −u.

Multiplying the above by the appropriate integrating factor v
l+vt ,

v

l + vt
ẋ− v2

(l + vt)2
x =

d
(

v
l+vtx

)
dt

= − uv

l + vt
.

Separating variables and integrating,∫ v
l+vt

x

v
d

(
v

l + vt
x

)
= −

∫ t

0

u
l
v + t

dt

v

l + vt
x− v = −u ln

∣∣∣∣ l + vt

l

∣∣∣∣
x = l + vt− u(l + vt)

v
ln

∣∣∣∣ l + vt

l

∣∣∣∣ .
When x = 0,

t =
l

v

(
e

v
u − 1

)
.
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Translational Dynamics

In the next few chapters, we will explore the dynamical laws that describe

the behavior of objects under the influence of forces and torques. In this

chapter, we will be focusing on forces and Newton’s three laws.

4.1 Linear Momentum

The concept of a force should not be discussed in isolation. We shall first

introduce the notion of linear momentum. The linear momentum p of a

particle is defined as

p = mv,

where m and v are the particle’s mass and velocity respectively. The total

momentum of a system of particles is simply the sum of the individual con-

tributions due to each particle. This definition of linear momentum arises

from an interesting empirical observation — the conservation of momentum

of a system under certain conditions. This will be elaborated on in a later

chapter but for now, the reader should understand that linear momentum is

a useful and convenient quantity that has certain unique properties.

4.2 Newton’s Three Laws

4.2.1 The First Law and Inertial Frames

Newton’s first law states that objects tend to continue in a state of constant

velocity unless acted upon by a net external force. The first law actually

defines an inertial frame of reference; an inertial frame of reference is one

where the first law holds true. An inertial frame of reference is one that does

not possess an absolute acceleration (i.e. an accelerometer placed in that

frame will measure no acceleration).

137
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This absoluteness of acceleration is one of the salient features of

Newtonian physics, as opposed to velocity which is relative. Consider the

following set-up which is similar to Newton’s renowned thought experiment

involving a rotating bucket of water: suppose that you have a glass of water

and are traveling on a train. When the train is moving at a constant velocity,

the water surface remains flat. However when the train accelerates, the water

surface begins to tilt which reflects the magnitude of acceleration. All exter-

nal observers, accelerating or moving at a constant velocity, will observe the

same tilt of the water surface and conclude that you have an acceleration of

a certain magnitude which is consistent with all observers. Thus, an absolute

acceleration exists from a Newtonian perspective.

Adding on to the previous definition regarding non-accelerating frames,

inertial frames of reference are a set of frames that travel at constant velocity

with respect to each other. That is, a frame that travels at a constant velocity

relative to an inertial frame is also an inertial frame. Newton hypothesized

the existence of an absolute space which is truly stationary. He used the

frame of distant stars as a reference from which all other inertial frames

could be derived.

Ultimately, the first law establishes the context in which Newton’s laws

are valid. It is definitely not a limiting case of the second law — a common

misconception. To illustrate this, there exist frames in which free particles

(i.e. free from forces) experience an acceleration. For example, passengers

in an accelerating train will observe their external surroundings to acceler-

ate. Clearly, this “violates” Newton’s second law but this is perfectly fine.

Newton’s laws cannot be applied to this reference frame in the first place as

it is not an inertial frame.

4.2.2 The Second Law

Newton’s second law states that the net external force on a particle
∑

F is

directly proportional to the rate of change of its momentum p:∑
F =

dp

dt
. (4.1)

Substituting the expression for the momentum of a particle,∑
F =

d(mv)

dt
= m

dv

dt
= ma, (4.2)

where a is the acceleration of the particle. For a system of particles, an anal-

ogous
∑

F = ma equation exists but a refers to a different physical quantity

now (this is expected as we cannot simply fit the acceleration of a particular
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particle into the equation). This shall be analyzed after a discussion of the

third law.

4.2.3 The Third Law

It is common sense that when you punch a wall, the wall “hits” you back as

you feel an impact on your knuckles. The third law formulates this explicitly:

FAB = −FBA, (4.3)

where FAB refers to the force on object A by object B. Thus when object A

applies a force on object B, it also experiences an equal and opposite force

due to object B. The first two laws do not explicate the motion of the source

of the force but the third law weaves it in intricately. However, keep in mind

that there are exceptions to the third law such as the magnetic force.1

The third law is also known as the weak law of action and reaction —

in direct contrast with the strong law which requires the equal and opposite

forces to lie on the same line of action. Most forces such as gravity and the

normal force in fact obey the strong law of action and reaction.

4.3 Net External Force on a System of Particles

The combination of Newton’s second and third laws implies an elegant

restatement of the second law for a system of particles. Let us analyze a

system of N particles, while using (
∑

F )i to denote the net external force

on the ith particle and f ij to denote the internal force on the ith particle

due to the jth particle. Applying the second law to the ith particle,(∑
F
)
i
+
∑
j,j �=i

f ij =
dpi
dt
.

Summing over all particles,

N∑
i=1

(∑
F
)
i
+
∑
i,j i �=j

f ij =
d

dt

(
N∑
i=1

pi

)
. (4.4)

The first term represents the total net external force acting on the system∑
F ext while the second term evaluates to zero as Newton’s third law states

1Consider two positive charges traveling along the x and y-axes respectively. The mag-
netic forces on the particles due to the other particle are directed along different directions
(in the y and x directions). However, linear momentum is still conserved if a momentum
is associated with the electromagnetic field.
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that

f ij = −f ji.

Equation (4.4) becomes

∑
F ext =

dP

dt
=

N∑
i=1

miai. (4.5)

That is, the rate of change of the total momentum of a system of particles
dP
dt is equal to the net external force on the system

∑
F ext. Furthermore, if

we define a positional attribute of the system, known as its center of mass,

whose position vector is given by

R =

∑N
i=1miri∑N
i=1mi

, (4.6)

where ri is the position vector of the ith particle and the total mass of the

system is

M =
N∑
i=1

mi,

then,

P =
N∑
i=1

mi
dri
dt

=M
dR

dt
=MvCM , (4.7)

where vCM = dR
dt is the velocity of the center of mass. Furthermore, Eq. (4.5)

yields

∑
F ext =M

d2R

dt2
=MaCM , (4.8)

where aCM = d2R
dt2

is the acceleration of the center of mass. We see that

a system of particles translationally responds to a net external force as if

it were an imaginary mass M located at the center of mass of the system,

R. Equation (4.8) has profound ramifications for a rigid body as it implies

that we no longer need to write down F = ma for each particle. We can

simply analyze the translational motion of the center of mass which defines

the translational motion of the entire body, as relative distances between

particles must be preserved (the rotational motion about the center of mass

still needs to be studied in a different manner to determine the orientation

of the rigid body).
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For a continuous mass distribution, a similar procedure would lead to the

conclusion that

R =

∫
rdm∫
dm

, (4.9)

where r denotes the position vector of the infinitesimal mass element dm

under consideration. That is,
∫
rdm represents integrating the position vec-

tor of each infinitesimal mass element r, with weights given by its infinites-

imal mass dm, over the entire distribution (the integral could be a line,

surface or volume integral).

4.3.1 Center of Mass

The computation of the center of mass of a system shall be illustrated with

a few examples. We first begin with a simple system of two particles m and

M , which are located at coordinates (x1, y1, z1) and (x2, y2, z2) respectively.

From Eq. (4.6),

R =
1

m+M

⎛
⎜⎝
mx1

my1

mz1

⎞
⎟⎠+

1

m+M

⎛
⎜⎝
Mx2

My2

Mz2

⎞
⎟⎠ =

1

m+M

⎛
⎜⎝
mx1 +Mx2

my1 +My2

mz1 +Mz2

⎞
⎟⎠ .

Next, as a consequence of the linearity of R, a trick in calculating the center

of mass of a system of discrete particles or for a system with multiple con-

tinuous mass distributions is to calculate the center of mass of a few selected

particles or distributions and replace them with a point mass, equal to the

sum of their masses, at that exact position. Then, you can proceed to cal-

culate the center of mass of the whole system with the point mass replacing

some of the original particles or distributions. The proof of this shall be left

as an exercise to the reader.

Now, let us apply this sleight-of-hand to another simple example.

Suppose we wish to calculate R for the system of two uniform spheres

depicted in Fig. 4.1. No amount of ingenuity in the selection of coordinates

will lead to a simple integration with continuous limits. However, we can use

symmetrical arguments2 to argue that the center of mass of each individual

2The center of mass must lie along lines/planes of symmetry of a uniform mass distri-
bution as a direct corollary of its definition. For example, in the two-dimensional case,
define the origin along a line of symmetry (we define the y-axis to be parallel to this line)
and consider the direction perpendicular to this line (x direction). For every particle at
coordinates (x, y), there will be a corresponding particle at coordinates (−x, y) due to
symmetry. The weighted sum of the x-coordinates of the distribution must consequently
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Figure 4.1: Center of mass of two spheres

sphere must be at its center and then reduce the system to two point masses,

m andM , at the corresponding centers. Then we can directly apply the result

of the previous problem.

The above method can also be applied to problem involving “missing

masses.” Firstly, wisely introduce imaginary masses to the system. Subse-

quently, replace the combined system, comprising the original system and

the imaginary masses, with the total mass of the combined system at its cen-

ter of mass and a negative mass, commensurate with the imaginary masses

that have been added, at the center of mass of the imaginary system. Then,

the center of mass of this new set-up is equivalent to that of the original

set-up.

Problem: Referring to Fig. 4.2, a uniform circle of radius R has a circular

hole of radius R
2 . If the uniform surface mass density is σ, determine the

center of mass of the system.

Figure 4.2: Circle with a hole

To determine the center of mass of this object, we can first “fill up” the

hole to produce a complete circle which can be reduced to a massM = σπR2

be zero and hence, the center of mass must lie along this line of symmetry. As seen from
this example, the intersection of lines and planes of symmetry can be used to determine
the center of mass.
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at its center. To counteract the effect of this additional mass, contributions

due to the mass in the hole must be subtracted. This is equivalent to adding

“negative mass” in the region of the hole which is equivalent to a mass

−m = −1
4σπR

2 at the center of the hole. If we define the origin to be at the

center of the complete circle, xCM of the circle with a hole is

xCM =
−m · R2
M −m

= −R
6
.

Center of Mass of a Continuous Distribution

For continuous mass distributions, integration is generally required to deter-

mine the center of mass. The main mathematical difficulty in this process

concerns choosing a convenient coordinate system and adopting the correct

limits of integration that physically correspond to the mass distribution.

Chapter 2 analyzes these aspects in greater detail. Hopefully, the following

two examples can provide some form of intuition.

Problem: Determine the center of mass of a right-angled triangle of a uni-

form surface mass density σ and with an angle of inclination θ in the xy-

plane. Let the length of its base be l.

Figure 4.3: Center of mass of a triangle

To solve this problem, we consider infinitesimal rectangular elements in

Cartesian coordinates with sides dx and dy. Then, dm = σdxdy. Applying

Eq. (4.9), we need to perform the double integral

R =
1

M

∫∫
S

(
x

y

)
σdxdy

over the surface S, which is the triangle in this case. M , as always, refers to

the total mass of the triangle. This is a case where the limits of integration
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depend on the order of integration. We can choose to integrate over y before

x. Diagrammatically, this corresponds to first integrating over a vertical strip

of mass at a particular x-coordinate x (right of Fig. 4.3) before integrating

over all strips. The limits for y for a vertical strip at horizontal coordinate

x are evidently 0 and x tan θ while the limits of x are 0 and l.

R =
1

M

∫ l

0

∫ x tan θ

0

(
x

y

)
σdydx.

Performing the integrals for the two coordinates separately,

xCM =

∫ l
0

∫ x tan θ
0 xσdydx

M
=

∫ l
0 x

2 tan θσdx

M
=
l3 tan θσ

3M
=

2l

3
,

yCM =

∫ l
0

∫ x tan θ
0 ydydx

M
=

∫ l
0 x

2 tan2 θσdx

2M
=
l3 tan2 θσ

6M
=
l tan θ

3
,

where the last equalities are obtained from usingM = l2 tan θσ
2 . Note that we

could have stopped after calculating xCM and argued that the y-coordinate

of the center of mass of the triangle should be one-third of the y-coordinate

of the right tip by symmetry (as the result for xCM is independent of θ).

Observe that the center of mass, in this case, is the intersection of the three

medians which divides each median into two segments in the ratio 2:1 (the

shorter segment is closer to the base). This is in fact true for a general

triangle and is a well-known geometrical result.

Problem: Determine the center of mass of a semi-circle with a uniform

surface mass density σ and radius R.

Figure 4.4: Semi-circle

It is convenient to adopt polar coordinates. Then, the infinitesimal mass

element at polar coordinates (r, θ) is a rectangle of sides dr and rdθ (dm =
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σrdθdr). Its position vector r in Cartesian coordinates is (r cos θ, r sin θ).

This step of expressing the position coordinate in terms of Cartesian coordi-

nates is pivotal, because an integration over the perpetually changing basis

vectors in polar coordinates is extremely cumbersome. Following from this,

R =
1

M

∫ R

0

∫ π

0

(
r cos θ

r sin θ

)
σrdθdr.

We shall just evaluate yCM as xCM is zero due to symmetry.

yCM =
1

M

∫ R

0

∫ π

0
r2 sin θσdθdr =

1

M

∫ R

0
2r2σdr =

2σR3

3M
=

4R

3π
.

Rotations

Actually, for rotationally symmetric objects, such as the semi-circle in the

previous section, we can visualize the effects of rotating the object by a small

angle φ (so that some mass is transferred from one end to another end) to

determine the center of mass. This change is best illustrated via the change

in potential energy in a uniform gravitational field (though it is solely due

to the changes in the coordinates of the masses and has nothing to do with

the dynamics of the system).

Figure 4.5: Rotated sector

Let’s say we wish to determine yCM of a uniform sector of angle 2θ and

radius R that is initially placed symmetrically about the y-axis and centered

at the origin. Suppose that we rotate the sector by a small clockwise angle φ.

A thin isosceles triangle of equal sides R and apex angle φ is effectively

displaced from the left to the right (Fig. 4.5). Since the centre of mass of an

isosceles triangle is known to be at two-thirds of its height to the lone base
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with a different length,3 the change in the vertical height of center of mass

of the small triangle is

Δy =
2

3
R

[
cos

(
θ +

φ

2

)
− cos

(
θ − φ

2

)]
=

2

3
R·−2 sin θ sin

φ

2
≈ −2

3
R sin θφ,

as sinx ≈ x for small x. Since the area of the triangle is 1
2R

2 sinφ ≈ 1
2R

2φ

by the sine rule, the change in the potential energy of the entire sector due

to this rotation is

ΔU = σ
1

2
R2φ · g · −2

3
R sin θφ = −1

3
σR3g sin θφ2,

where σ 1
2R

2φ is the mass of the triangle. We can evaluate ΔU in another

way4 by considering the change in the vertical coordinate of the center of

mass of the entire sector.

ΔU = −MgyCM (1− cosφ),

where M is the total mass of the sector. Substituting M = θσR2 and apply-

ing the small angle approximation cos x ≈ 1− x2

2 ,

ΔU = −1

2
θσR2gyCMφ

2.

Equating the two expressions for ΔU ,

yCM =
2R sin θ

3θ
.

Substituting θ = π
2 , we retrieve yCM = 4R

3π for a semi-circle.

Scaling Arguments

If we scale all length dimensions of an object by a factor k, the distances

between two corresponding points will also be scaled by a factor of k. This

3An isosceles triangle can be seen as the composition of two right-angled triangles whose
center of masses have been proven to be located at coordinates corresponding to two-thirds
of the lengths of the non-hypotenuse sides.

4This is because the gravitational potential energy of an extended body in a uniform
gravitational field is equivalent to that of a point mass, commensurate with the total mass
of the extended body, placed at its center of mass. To prove this, the total gravitational
potential energy of an extended body is

∫
grydm where ry is the y-coordinate of the

position vector of an infinitesimal mass element dm on the extended body and where the
integral is performed over the entire body. Since g is uniform,

∫
grydm = g

∫
rydm =

MgyCM where M is the total mass of the extended body. The last equality comes from
the definition of the center of mass.
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fact can be used to determine the center of mass of appropriate objects with-

out any integration. Consider the example of a right-angled triangle again.

Figure 4.6: Triangle of base length 2l

Let the horizontal position of the center of mass of a right-angled triangle

with angle of inclination θ and base length l be located at a horizontal dis-

tance x away from its height. Then, that of a right-angled triangle with base

length 2l will be 2x (depicted by the hollow white circle labeled “CM” in

Fig. 4.6). Furthermore, this larger triangle is composed of 4 original triangles

as shown in the diagram. Thus, we can replace each of the smaller triangles

with a point mass at its center of mass which is illustrated by a black dot

(the exact vertical coordinate does not matter for now as we only wish to

determine the horizontal coordinate) and evaluate XCM for the larger trian-

gle. Using these different methods to calculate XCM , we obtain an equation

in x.

XCM =
l − x

4
+
l + x

4
+

2l − x

4
+

2l − x

4
= 2l − 2x.

The first expression for XCM is obtained from considering the weighted

contributions due to the four smaller triangles while the second expression

is obtained from scaling arguments. Then,

x =
l

3
.

The x-coordinate of the center of mass of the triangle with base length l is

then

xCM = l − x =
2l

3
.

A similar argument can be made for the y-coordinate of the center of mass.
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4.4 Equations of Motion in Different Coordinates

The
∑

F = ma equations are inherently vector equations. To procure mean-

ing from these equations, we often need to express them in terms of scalars

and then solve the resulting differential equations. This, in turn, depends on

the coordinate system utilized.

4.4.1 Cartesian Coordinate System

The net force and position vector in a Cartesian system can be expressed as

∑
F = Fxî+ Fy ĵ + Fzk̂,

r = x̂i+ yĵ + zk̂.

The acceleration is defined as

a =
d2r

dt2
.

Note that the rate of a change of a vector A depends on both the change in

magnitude and direction of the vector(dAÂdt = dA
dt Â+AdÂ

dt ). Since the basis

vectors î, ĵ and k̂ are fixed,

a =
d2x

dt2
î+

d2y

dt2
ĵ +

d2z

dt2
k̂.

Considering the corresponding components of
∑

F = ma yields

Fx =
d2x

dt2
,

Fy =
d2y

dt2
,

Fz =
d2z

dt2
.

4.4.2 Polar Coordinate System

In a two-dimensional polar coordinate system, the basis vectors are r̂, the

unit vector pointing from the origin to the position of the point of concern,

and θ̂, a unit vector tangential to r̂. The net force and position vector in a
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Figure 4.7: Polar coordinates

polar coordinate system are∑
F = Frr̂ + Fθθ̂,

r = rr̂.

The acceleration is

a =
d2r

dt2
.

Note that basis vectors are now variable and their change must be considered

when the derivative of the position vector is evaluated. The acceleration,

expressed in terms of the instantaneous basis vectors, was derived in Chapter

3 to be

a = (r̈ − rθ̇2)r̂ + (rθ̈ + 2ṙθ̇)θ̂.

Comparing the corresponding components of
∑

F = ma yields

Fr = m(r̈ − rθ̇2), (4.10)

Fθ = m(rθ̈ + 2ṙθ̇). (4.11)

4.5 Typical Forces in Mechanics

Now that we can determine the evolution of a system given the forces on it,

we shall focus on evaluating the forces. There are four fundamental interac-

tions in nature, namely: gravitational, electromagnetic, strong nuclear and

weak nuclear. All mechanical forces — which require direct contact to be

delivered — are in fact electromagnetic. These include the normal force, fric-

tion and the spring force. When you push on a door, the electrons in your

fingertips are compressed against those on the door — resulting in repulsion

and a normal force. As another example, the tension in a string arises from

the mutual attraction between atoms of the string which tends to prevent
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the string from disintegrating when it is stretched. The only fundamental

force in this section is in fact the gravitational force.

4.5.1 Normal Force

The normal force, as its name implies, is the force that acts perpendicular to

the surface between two objects. When we are standing on the ground, the

normal force on us due to the ground opposes the gravitational force and

prevents us from accelerating towards the core of the Earth. Note that the

normal force is a contact force and it acts at the point of contact between

objects. This is particularly important when we learn about torques later.

Finally, note that an object’s apparent weight is the normal force exerted by

the object on an imaginary weighing scale or vice-versa.

4.5.2 Friction

Friction is a force that resists relative motion between two surfaces. It arises

from various factors such as surface adhesion, surface deformation and irreg-

ular surfaces. We should differentiate between static friction and kinetic fric-

tion. Static friction is present when there is no relative movement between

two surfaces and is governed by the equation: |fs| ≤ μsN where |fs| is the

magnitude of static friction, μs is the coefficient of static friction and N is the

normal force between the surfaces. The direction of static friction is oriented

such that it opposes impending motion. If a force exceeds the upper limit,

the object will begin to move. Kinetic friction, on the other hand, opposes

the motion of surfaces that are already relatively moving. It is constant and

has a magnitude of fv = μvN . In most cases, 0 < μ < 1 and μv < μs. How-

ever, there are also exceptions such as silicone rubber surfaces which often

have coefficients of friction substantially larger than 1. Lastly, it is pivotal to

understand that since kinetic friction always acts in a direction opposite to

that of motion, it is a non-conservative5 and dissipative force. Energy is often

converted to heat and sound which are transmitted to the surroundings.

4.5.3 Spring Force

When a spring, or elastic object in general, is compressed or elongated,

there is a tendency for it to rebound to its natural state. This restoring

force is proportional to the magnitude of x, the extension/compression of

a spring relative to its relaxed length (F = kx) by Hooke’s law, and is

5This concept shall be elaborated on further in Chapter 6.
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opposite in direction such that the spring tends to return to its relaxed

length. Let us digress for a while and discuss the effective spring constants for

massless springs with identical relaxed lengths, arranged in series and parallel

configurations. Consider a system of two springs. Let the displacements of

the object, the first and second spring from their respective equilibrium

positions be x, x1 and x2, respectively.

Parallel Configuration

Figure 4.8: Springs connected in parallel

It is evident from Fig. 4.8 that the displacements of the springs and the

object must be equal in a parallel configuration.

x = x1 = x2.

Furthermore, the total force on the object is

F = k1x1 + k2x2 = (k1 + k2)x.

To determine the effective spring constant, we need to find a keff such that

F = keff x

=⇒ keff = k1 + k2.

Applying this formula repeatedly between pairs of springs, the effective

spring constant for a parallel configuration of n springs in general is

keff =

n∑
i=1

ki.

Series Configuration

For springs connected in series, the force due to each of them must be the

same. If not, there will be a net force on the massless springs which will
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cause them to undergo infinite acceleration in Fig. 4.9.

F = keff x = k1x1 = k2x2.

Furthermore, the sum of the displacements of the springs must be that of

the object.

x1 + x2 = x.

Solving,

k1k2x1 = k2keff x

k1k2x2 = k1keff x

k1k2(x1 + x2) = (k1 + k2)keff x

=⇒ keff =
k1k2
k1 + k2

or
1

keff
=

1

k1
+

1

k2
.

Repeatedly applying this formula, the effective spring constant for a series

configuration in general is

1

keff
=

n∑
i=1

1

ki
.

Figure 4.9: Springs connected in series

4.5.4 Tension

Tension is the pulling force exerted on one part of a string by its adjacent

parts and at the ends of the string. You can imagine the string or rope as an

elongated spring and the tension as the restoring force. However, this analogy

fails when the string experiences a compressive force as it will become slack

(it does not act like a compressed spring). The tension at a segment of

a string is always directed along the instantaneous gradient there as it is

unable to withstand any forces perpendicular to it. Note that in most cases,
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strings and ropes are assumed to be massless and thus there must not be any

net force acting on them. This condition, in fact, ensures that the tension

in a frictionless, massless string of an arbitrary shape is uniform as we shall

see later in this chapter. Another proof will also be provided in Chapter 7.

4.5.5 Gravitational Force

The gravitational force is a force of attraction between all particles

with mass. In the more general Newtonian form, the magnitude of the

gravitational force between two point masses is proportional to the product

of their masses and inversely proportional to the square of the distance

between them. For the rest of the chapter, the only massive object that

we will be considering will be the Earth, and differences in height are negli-

gible when compared to the radius of the Earth. Thus, we can assume that

there is a gravitational force or weight of mg acting on a object with mass

m, where g is the gravitational field strength constant. For an object with

non-negligible volume, the center of gravity of the object is defined as the

point where the entire force of gravity seems to act on. It is equal to the cen-

ter of mass when the gravitational field strength is uniform over the entire

object (try to prove this).

4.6 Types of Problems

4.6.1 Free-Body Diagrams

Before considering the common types of problems, a paramount problem-

solving tool is a free-body diagram drawn with the following procedure:

(1) Isolate the system in question.

(2) Identify all external forces acting on the system and draw them as vectors

at appropriate points on the system (e.g. the gravitational force should

pass through the center of gravity). External forces refer to forces on the

system due to entities outside the system.

Then, the general procedure to solving a mechanics problem is as follows.

(1) Consider various systems and draw their free-body diagrams. A useful

tip in choosing a system to consider would be to examine the forces you

need to solve. If they do not include internal forces (friction and normal

force between surfaces and occasionally, tension), you should consider

paired objects as a whole system. If you are required to solve for friction

or the normal force, you should segregate the objects.

(2) Write the
∑

F = ma equations for all systems that you have considered.
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(3) If necessary, identify certain relationships between variables (constraints

that need to be obeyed) to formulate additional equations so that you

have enough equations to solve for the required variables. In some cases,

the constraints6 can also be weaved into the coordinates that define the

state of each system.

(4) Solve!

Let us apply this procedure to some problems.

4.6.2 No Constraints

Problem: A man of mass m is in a lift that is undergoing an acceleration a

upwards. Find the normal force exerted on the man by the floor of the lift

(apparent weight).

Let us draw a free-body diagram7 of our incredibly enthusiastic man taking

an elevator. We isolate the man as we would like to find the normal force.

Figure 4.10: A man in an elevator

From Newton’s second law, we obtain:

N −mg = ma =⇒ N = m(a+ g).

Problem: A force is applied on the left end of an arrangement of n identical

blocks of mass m that are connected by strings. The coefficient of kinetic

6Such constraints are known as holonomic constraints and only depend on the positions
of objects. This concept will be further explored in Chapter 11.

7The normal force slightly deviates from the accurate position for the sake of clarity. We
also draw a on the side to remind ourselves that the man is accelerating upwards. This is
not really necessary.
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friction between the blocks and the ground is μ. All strings remain taut in

the process of the blocks’ motion. Find the tension Ti in the string between

the ith and (i+ 1)th blocks as the blocks accelerate.

Figure 4.11: Connected blocks

Let f be the frictional force on one block. We first solve for the accel-

eration of each block by considering all the blocks as a whole system. The

acceleration of each block must be the same as the string between them

remains taut.

F − nf = nma.

Next, it is convenient to consider one of our systems as the (i+1)th block to

the nth block as Ti is the only tension that acts on this system. Choosing a

system to isolate requires some intuition which becomes keener with practice.

We draw the free-body diagram as follows.

Figure 4.12: Last (n-i) blocks

Ti − (n− i)f = (n− i)ma.

Solving,

Ti = (n− i)(f +ma) =
(n− i)F

n
.

Notice that we did not even need to evaluate f at all! This implies that if

we conducted this experiment on the moon for example — such that g and

thus f varies — we will obtain the exact same result. Finally, an equally
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convenient system of blocks that deserves mention is the first i blocks which

experience force F , tension −Ti, friction −if and weight img.

F − Ti − if = ima

Ti = F − i(f +ma) = F − iF

n
=

(n− i)F

n
.

Slinkies

A simple yet fascinating system is an amusing toy known as a slinky, which

is basically a massive spring. A major complication in this system arises

from the fact that the spring force is not necessarily uniform throughout

the slinky as individual segments are no longer massless. The spring is not

stretched uniformly such that its density also varies in space, even though

its original density may be uniform. In light of the varying spring force, the

standard rigorous analysis of such systems involves considering infinitesimal

segments of the slinky which are basically smaller massive springs, but we

shall see that we can avoid this via some sleights-of-hand.

Problem: A slinky of mass m, spring constant k and relaxed length l —

which is the length when tensions at both ends are zero (e.g. placed on a

horizontal table) — is hung from a ceiling. Determine the total extension of

the slinky and its center of mass after it has attained equilibrium.

Divide the original slinky, before it is stretched, into myriad equal

infinitesimal pieces of length dx each. Each piece has the same spring con-

stant k′ (which we shall determine later). Without any tedious calculations,

we can actually determine the extension of the slinky. The crucial observa-

tion is that even though the spring force at equilibrium varies linearly8 from

0 at the bottom of the slinky to mg at the ceiling (in order to keep all pieces

beneath a given piece at equilibrium) such that each piece stretches by a

different amount, the extension of each infinitesimal section of the slinky is

directly proportional to the tension at its ends. Then, we can exploit the lin-

ear variation of tension to conclude that the extension of the slinky is equal

to that of a spring with the same spring constant k and uniform tension

equal to the average tension mg
2 . The latter is equivalent to a block of mass

mg
2 hung onto a massless spring. Therefore, the extension of the slinky is

8By linearly, we mean the number accorded to the segment, that we have identified from
the original spring, from the bottom and not the length from the bottom.
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simply

Δl =
mg

2k
.

Now, we reach a quandary as we are unable to apply this trick to the second

problem (the whole point is to find the center of mass of a spring with a

non-uniform mass density). Intuitively, since the tension near the top of the

slinky is larger than that at the bottom, the top sections are stretched more

than the bottom — causing the density of the slinky to decrease with height

and the center of mass to lie below the geometric center. We then proceed

with the more rigorous approach. Set the origin at the ceiling and define the

x-direction to be positive downwards.

Figure 4.13: Infinitesimal section of slinky

Mentally switch off gravity first, such that the length of the slinky spans

points x = 0 to x = l. Isolate an infinitesimal section between coordinates x

and x+dx. Since an aggregated spring of spring constant k and length l can

be seen as an array of N springs of length l
N in series, the spring constant

kN of each of these smaller springs is

kN = Nk

by the series addition formula for springs. In other words, the length l′ of a
component spring multiplied by its spring constant k′ must be equal to kl.

k′l′ = kl.

Applying this to the infinitesimal segment of length dx, its spring

constant is

k′ =
kl

dx
.

Do not worry about the infinitesimal term in the denominator for now.

Now, switch on gravity and allow the system to equilibrate. Eventually
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this infinitesimal section stabilizes between some coordinates x + ε(x) and

x + dx + ε(x + dx) where ε(x) represents the increase in the x-coordinate

of a point that was originally at coordinate x (Fig. 4.13). The extension

of this segment is evidently ε(x + dx) − ε(x). The tension as a function of

x-coordinate x (remember that x describes the original spring) becomes

T = mg
(
1− x

l

)
to support the weight of the portion below it (those with larger x-

coordinates). The tension on the ends of this segment induces its extension

according to Hooke’s law.

T = k′[ε(x+ dx)− ε(x)] = kl
ε(x+ dx)− ε(x)

dx
= kl

dε

dx
.

Substituting the expression for T , separating variables and integrating,∫ ε(x)

0
dε =

∫ x

0

mg

kl

(
1− x

l

)
dx,

where ε(0) = 0 as the particle at the ceiling is fixed. Simplifying, the total

extension of the segment between the ceiling and x-coordinate x is

ε(x) =
mg

kl

(
x− x2

2l

)
.

One can substitute x = l to check that the total extension of the slinky

is indeed ε(l) = mg
2k . Moving on, the center of mass of each infinitesimal

segment is basically the coordinates of either of its ends (the difference is

second-order and negligible). The final x-coordinate of the top end of the

segment which was originally between coordinates x and x+ dx is

x′ = x+ ε(x) =
(mg
kl

+ 1
)
x− mgx2

2kl2
.

Note that despite being stretched, this segment still has mass ρdx where

ρ = m
l is the original density of the slinky as its boundaries remain the

same. To determine the center of mass of the slinky, we simply have to

integrate ∫ l

0
ρx′dx.

Be wary of mistaking dx′ for dx as the mass of the section is expressed in

terms of ρdx and not its new density multiplied by dx′ (you can do so but
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this step is extraneous).∫ l

0
ρx′dx = ρ

∫ l

0

[(mg
kl

+ 1
)
x− mgx2

2kl2

]
dx =

ml

2
+
m2g

3k
.

Dividing the above by m, we obtain the x-coordinate of the center of mass as

xCM =
l

2
+
mg

3k
,

which is mg
3k below the center of the unstretched slinky. Now that we have

completed a rigorous discourse on this system, let us present an alternative,

elegant approach that leverages on scaling arguments.

The possible parameters of the slinky are m, g, k and l. Based on dimen-

sional analysis, a possible expression for xCM is

xCM = αl + β
mg

k
,

where α and β are some dimensionless constants. Note that even though
mg
kl is a dimensionless variable, we do not include arbitrary functions of mg

kl

in our guess as the equations describing the system (e.g. Hooke’s law and

tension as a function of x), are linear and l and mg
k should be independent

(we can have a slinky of length l = 0 or m = 0, for instance, and the same

equation should apply. If l and mg
k are coupled, these limiting cases would

yield uneventful results.) Hence, it is wise to guess a linear solution in terms

of l and mg
k . With that said, we can determine α by taking k → ∞ as the

slinky becomes so rigid that it hardly budges or deforms. Then,

xCM =
l

2
=⇒ α =

1

2
,

Δx = xCM − l

2
= β

mg

k
,

where we define a new variable Δx that denotes the excess portion of xCM
beyond the x-coordinate of the center of mass of the relaxed slinky. Notice

that

Δx ∝ m

k
.

Therefore, if we hang a slinky of the same linear mass density and length 2l,

the deviation in the x-coordinate of the center of mass from its relaxed state

should be 4Δx as its mass is 2m while its spring constant is k
2 (2 identical

springs in series).

To identify an alternate expression for 4Δx, cut the slinky into two parts

of equal masses, which are not of equal equilibrium lengths as the sections
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Figure 4.14: Scaling arguments for slinky of length 2l

near the top are stretched more. The bottom section is a slinky with mass m

and original length l with tension mg and 0 at its ends — implying that its

center of mass lies a distance l
2 +Δx from its top end by proposition. The

top section is slightly more complex. It is a slinky with mass m and original

length l but with tension 2mg and mg at its ends as shown in Fig. 4.14.

It is equivalent to an original slinky attached with a mass m at its bottom

end. The additional weight mg causes the slinky to stretch uniformly for an

additional distance mg
k — thus displacing its center by an additional mg

2k .

The center of mass of the top section is then at x-coordinate l
2 +Δx + mg

2k

while that of the bottom section is

l +Δl +
mg

k
+
l

2
+Δx =

3

2
l +

mg

2k
+
mg

k
+Δx =

3

2
l +

3mg

2k
+Δx.

Remember that Δl = mg
2k is the extension of the slinky under its own weight.

The center of mass of the entire slinky of length 2l is then the average of the

two coordinates as the two sections have equal masses.

xCM =
l
2 +Δx+ mg

2k + 3
2 l +

3mg
2k +Δx

2
= l +Δx+

mg

k
.

Furthermore, we know from scaling arguments that

xCM =
2l

2
+ 4Δx = l + 4Δx.

Equating these expressions,

Δx =
mg

3k

=⇒ xCM =
l

2
+
mg

3k
.
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4.6.3 Conservation of String

Another important class of problems would be Atwood’s machines. An

Atwood’s machine refers to a system of pulleys, strings and masses. For

this chapter we will only consider the case where the pulleys and strings are

massless, but this is not necessarily true in general.

Besides writing down the F = ma equation9 for each mass, we need

to observe that the lengths of strings are “conserved.” That is, the relative

positions of the objects at the two ends of a string must obey a certain

relationship as the string is inextensible. This observation will provide us

with additional equations relating the accelerations of masses. Perhaps the

next few examples will be somewhat enlightening.

Problem: Solve for the accelerations of m1 and m2, a1 and a2, and tensions

in the set-up below.

Figure 4.15: Atwood’s machine 1

We first note that for the forces on the infinitesimal segment of string

at the top of the pulley to be balanced (otherwise it will undergo infinite

acceleration),

T1 = T2.

We shall just use T to denote tension thereafter. Actually, we can repeat this

argument for every infinitesimal part of the massless string to conclude that

the tension must be uniform throughout a continuous string segment so T

is unambiguously the tension in the string connecting m1 and m2. Writing

the F = ma equations for both masses and defining downwards to be the

9We will not use vector notation as Atwood’s machines are usually one-dimensional
systems.
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positive direction for all Atwood’s machines in this chapter,

m1a1 = m1g − T,

m2a2 = m2g − T.

Lastly, applying the conservation of string, we must have:

a1 = −a2.
This is because if m1 moves up a certain distance d, m2 must also move

down by d in order for the length of string to be “conserved”. In solving the

resultant set of simultaneous equations, it is usually expeditious to multiply

the F = ma equations by certain factors such that their sum becomes zero

according to the conservation of string equation. Then, one can directly solve

for the tension. For example, we can multiply the first F = ma equation by

m2 and add it to the second F = ma equation multiplied by m1.

m1m2(a1 + a2) = 2m1m2g − (m1 +m2)T.

Since a1 + a2 = 0,

T =
2m1m2

m1 +m2
g.

Subsequently, we substitute T back into the F = ma equations to obtain

a1 =
m1 −m2

m1 +m2
g,

a2 = −a1 = m2 −m1

m1 +m2
g.

Problem: Solve for all tensions and accelerations in the two-layered system

of three masses in Fig. 4.16.

We have already identified the relationship between tensions at differ-

ent parts of the system. The tension in the string hanging over the bottom

pulley is uniformly T due to the argument above. Then, the tension in the

string hanging over the top pulley must be equal to 2T so that the massless

bottom pulley-cum-bottom string system does not experience a net force.10

10The massless components can have non-zero accelerations but cannot experience non-
zero net forces which will engender infinite acceleration. To further elaborate on the exis-
tence of an acceleration without a net force, Newton’s second law for a massless particle
yields a = F

m
. If F → 0 and m → 0, a is generally indeterminate and depends on how F

and m tend to zero. Therefore, a can generally undertake a non-zero value in spite of the
lack of a net force.
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Figure 4.16: Atwood’s machine 2

Therefore, we have learnt two conditions so far: tension is uniform through-

out a massless, frictionless string while force balance must be attained at

every massless pulley. Henceforth, we will directly indicate the tensions at

different parts of the string, without explicit mention of these conditions,

because the relationships are often trivial. However, if you are ever puzzled

about why certain tensions are such and such, return to these two criteria

and try to work them out yourself.

As always, we write our F = ma equations for all three masses:

m1a1 = m1g − 2T,

m2a2 = m2g − T,

m3a3 = m3g − T.

Lastly, the conservation of string equation is not that obvious in this case.

It is in fact

a1 = −a2 + a3
2

.

This follows from the fact that the average vertical position of m2 and m3

moves the same distance as the bottom pulley which, in turn, moves the

same distance as m1. If this is still not obvious, we can split the motion of

m2 and m3 into two components (Fig. 4.17). The first component would be

due to the motion of the pulley they are clinging on to which accelerates at

−a1 due to the conservation of string. The second component can be seen

as the acceleration af of the string connecting m2 and m3, around a pulley
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Figure 4.17: Different components of motion

that is at rest (as the motion of the pulley has been filtered out).

a2 = −a1 − af ,

a3 = −a1 + af .

Thus,

a1 = −a2 + a3
2

.

Solving the four simultaneous equations (by multiplying the F = ma equa-

tions by 2m2m3, m1m3 and m1m2 respectively and adding them together),

we obtain

T =
4m1m2m3

4m2m3 +m1(m2 +m3)
g,

a1 =
m1(m2 +m3)− 4m2m3

4m2m3 +m1(m2 +m3)
g,

a2 =
4m2m3 +m1(m2 − 3m3)

4m2m3 +m1(m2 +m3)
g,

a3 =
4m2m3 +m1(m3 − 3m2)

4m2m3 +m1(m2 +m3)
g.

Problem: Let us now throw a movable pulley, which extends the breadth

of a single layer, into the mix. Solve for all tensions and accelerations in the

system depicted in Fig. 4.18.

Writing our F = ma equations,

m1a1 = m1g − T,

m2a2 = m2g − 2T
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Figure 4.18: Atwood’s machine 3

where the tension on m2 is 2T for force balance at the right pulley. Observe

that if the right pulley moves a distance of x downwards, m1 must move 2x

upwards in order for the length of the string to be conserved. Thus,

a1 = −2a2.

Solving (by multiplying the F = ma equations by m2 and 2m1 and adding),

T =
3m1m2

4m1 +m2
g,

a1 =
4m1 − 2m2

4m1 +m2
g,

a2 =
m2 − 2m1

4m1 +m2
g.

Weaving Constraints into Coordinates

Though the above derivations of the conservation of string equations pro-

vide vivid pictures of the physical situation, it is often easier to obtain the

conservation of string equation by defining the coordinates of each mass

while taking into account the length of each string. Then, the accelerations

of the masses can be expressed in terms of fewer independent coordinates.

In this process, it is convenient to assume that the lengths of all strings and

the circumference of all pulleys are zero as they are inconsequential after

subsequent differentiations.

Problem: Three identical masses m are connected in Fig. 4.19. Determine

their accelerations.
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Figure 4.19: Atwood’s machine 4

Number the masses in ascending order from left to right. Let the

x-coordinate of the first mass be x (positive downwards). Then, the coordi-

nates of the pulley connected to the string of the first mass is 0−x = −x as

the length of the string connecting them must be zero. Let the x-coordinate

of the third mass, and thus the pulley it is connected to, be y. Then, the

segment between the second and third pulleys is of length y− (−x) = y+x.

Lastly, the length of the segment between the top of the second pulley and

the second mass is then 0 − y − (y + x) = −2y − x as the length of the

string wrapping over the second and third pulleys is zero. The correspond-

ing coordinates of the masses are then x, −x + (−2y − x) = −2x − 2y and

y. Hence,

a1 = ẍ,

a2 = −2ẍ− 2ÿ,

a3 = ÿ.

Evidently, the conservation of string equation is

2a1 + a2 + 2a3 = 0.

Let the tension on the second mass be T . Then the tensions on the first and

third masses are both 2T . F = ma yields

ma1 = mg − 2T,

ma2 = mg − T,

ma3 = mg − 2T.
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Solving,

T =
5

9
mg,

a1 = −1

9
g,

a2 =
4

9
g,

a3 = −1

9
g.

4.6.4 Remaining on an Inclined Plane

In certain problems, objects are constrained to remain on a surface such as

an inclined plane. Then, the acceleration of the object relative to the surface

must satisfy a certain relationship. Consider the following problem.

Problem: A block of massm lies on a frictionless plane of massM and angle

of inclination θ. If you maintain the horizontal acceleration of the plane at

A, determine the acceleration of the block and the normal force on the mass

due to the plane.

Figure 4.20: Block on accelerating inclined plane

As usual, writing our F = ma equations in the horizontal and vertical

directions,

N sin θ = max,

N cos θ −mg = may.

We have three variables (N , ax and ay) and two equations — hence we still

require one more. This comes from the astute observation that the block
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must remain in contact with the plane. Under this constraint,

ay
ax −A

= − tan θ.

This constraint simply means that the magnitude of the relative acceleration

between the mass and plane in the vertical direction must be tan θ times

that in the horizontal direction, for the block to remain on the plane. The

negative sign stems from the fact that if the block moves upwards relative

to the plane, it must move leftwards relative to the plane. Solving this set of

equations yields

ax = g sin θ cos θ +A sin2 θ,

ay = A sin θ cos θ − g sin2 θ,

N = mg cos θ +mA sin θ.

Another approach to solving this system would be to define two independent

coordinates. Let the top-left tip of the plane be at coordinates (x, 0). Then,

define s to be the distance of the block from the top-left tip of the plane.

The coordinates of the block are then (x+ s cos θ,−s sin θ). Hence,

ax = ẍ+ s̈ cos θ = A+ s̈ cos θ,

ay = −s̈ sin θ,
N sin θ = m(A+ s̈ cos θ),

N cos θ −mg = −ms̈ sin θ.

Solving this new set of equations will yield the same result as above, because

the condition for the block to remain on the plane has been subtly included

in the definition of the coordinates. To show this,

ay
ax −A

= − s̈ sin θ

s̈ cos θ + ẍ−A
= − tan θ.

4.6.5 Polar Coordinates

Finally, we shall practise solving some systems in polar coordinates. An

important constraint in polar coordinates is that of circular motion. It was

derived in Chapter 3 that for an object to remain in a circle of constant radius
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r, it must experience an instantaneous centripetal acceleration, directed radi-

ally inwards, that is equal to

ar = −mv
2

r
,

where v is its instantaneous tangential velocity. Therefore, there must be a

net centripetal force on the object which obeys

∑
F r = −mv

2

r
r̂ = −mrθ̇2r̂,

by Eq. (4.10) since r̈ = 0.

Problem: Consider the following conical pendulum of length l which under-

goes uniform circular motion at a constant vertical height with an angular

velocity ω. Determine the range of ω for which the pendulum is able to

maintain such a motion at θ > 0. What if ω is smaller than the lower bound

of this range?

Figure 4.21: Conical pendulum

For the pendulum to stay at the same vertical height, the net force in

the vertical direction must be zero.

T cos θ = mg.

Furthermore, the pendulum undergoes uniform circular motion with a radius

of rotation l sin θ. Therefore, the radial component of tension must provide

the required centripetal force.

T sin θ = ml sin θω2.
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As we are considering positions at which θ > 0, we can simply cancel the

sin θ terms.

T = mlω2

mg = mlω2 cos θ

cos θ =
g

lω2
.

As | cos θ| ≤ 1,

ω ≥
√
l

g

for the required motion to be possible. When ω <
√

l
g , the math breaks

down when we cancel the sin θ’s as θ = 0 in this case (the pendulum cannot

sustain circular motion). Thus, θ as a function of ω is in fact

θ =

⎧⎪⎨
⎪⎩
cos−1 g

lω2 for ω ≥
√

l
g

0 for ω <
√

l
g .

Let us now consider a more general application of F = ma in polar coordi-

nates.

Problem: Two masses are connected via a string through a hole on a hori-

zontal table. Mass m lies on the plane and is currently moving with a radial

velocity vr, with the positive direction taken to be radially outwards, and

angular velocity ω at a radius r away from the hole. Determine the instan-

taneous acceleration of the mass M below the table and the instantaneous

angular acceleration of mass m.

Figure 4.22: Two masses
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Let the tension in the string be T . Applying Newton’s laws to mass m in

polar coordinates in the plane of the table,

−T = mr̈ −mrθ̇2,

0 = mrθ̈ + 2mṙθ̇.

At this instant, ṙ = vr and θ̇ = ω.

−T = mr̈ −mrω2,

0 = mrθ̈ + 2mvrω.

For mass M ,

Mg − T =Mz̈.

Furthermore, the conservation of string requires r̈ = −z̈. Solving,

z̈ =
Mg −mrω2

m+M
,

θ̈ = −2vrω

r
.

Note that all of these quantities are instantaneous. If we observe the second

result, we can see that if the top mass moves radially outwards, its angular

velocity will decrease at the next instance and vice-versa.11

4.6.6 Rigid Body Constraint

Another common constraint is the rigid body criterion where particles have

to maintain fixed relative distances with respect to one another. A usual set-

up consists of discrete particles connected by massless, rigid rods (if the rigid

body is a continuous body, it is better described by other methods). As a

rigid rod often only experiences forces at its two ends, the tension due to the

rod can only be parallel to itself in order for the forces and torques on it to be

balanced (the lines of the equal and opposite forces, which nullify each other,

can only coincide and thus lie along the rod — otherwise, taking moments

about one end would result in a non-zero net torque). This observation,

coupled with the kinematics of rigid body motion discussed in Chapter 3, is

crucial in solving such problems.

Problem: Three masses m1, m2 and m3 are connected via massless, rigid

rods of lengths l1, l2 and l3 to a common massless center O. The connection

11This is expected as the angular momentum of this system about the hole must be
conserved.
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at O is fixed such that adjacent rods subtend constant angles θ1 > 0, θ2 > 0

and θ3 > 0. The set-up lies on a frictionless, horizontal table and the masses

are initially given velocities v1, v2 and v3, perpendicular to their respective

rods and in the clockwise direction. Determine the instantaneous acceleration

of each mass.

Figure 4.23: Three masses and rigid rods

Firstly, we shall show that the velocity of O is zero. In this problem, we

define unit vectors ê1, ê2 and ê3 which are parallel to the respective rods,

emanating from the center O (which also functions as the origin). Let the

velocity of the center be vO. The rigid body constraint requires that there

be no relative velocity between two ends of a rod, along the rod. Expressing

this condition vectorially for all three rods,

(vO − vi) · êi = 0,

for all 1 ≤ i ≤ 3, where vi is the velocity of the ith mass. Since vi · êi = 0,

vO · êi = 0

for all i. Since the êi’s are in different directions,12 the only possible way for

the above to be satisfied is for vO = 0. Moving on, let the tensions exerted

on the massless center O by the rods be T 1, T 2 and T 3 respectively. The

12The more rigorous explanation is that any pair of êi’s would function as a set of
basis vectors for two-dimensional space. Since any vector in the plane of the table can be
expressed as a linear combination of the basis vectors, a vector whose dot products with
both basis vectors are zero can only be the null vector.
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forces on O must be balanced — lest it experiences infinite acceleration.

T 1 + T 2 + T 3 = 0.

That is, the three tension vectors form a force triangle depicted below. The

relative angles between these tensions are given by the fact that they are

directed along the respective rods.

Figure 4.24: Force triangle

By the sine rule,

T1
sin θ1

=
T2

sin θ2
=

T3
sin θ3

= T,

for some new variable T . Furthermore, since T i = T sin θiei,

3∑
i=1

T sin θiei = 0

=⇒
3∑
i=1

sin θiei = 0.

Now, denote the acceleration of the center O as aO (remember that even

though there is no net force, the massless connection can have an accelera-

tion). Based on the rigid body constraint, the relative acceleration between

two ends of a rod, along the rod, must reflect the centripetal acceleration

associated with the relative tangential velocity (in this case, it is simply

the vi’s since the center O is stationary). Since the acceleration of mi is

ai = − Ti
mi

êi = −T sin θi
mi

êi, the above condition requires

T sin θi
mi

+ aO · êi = v2i
li

for all 1 ≤ i ≤ 3. Multiplying the ith equation by sin θi and summing every-

thing,

3∑
i=1

T sin2 θi
mi

=
3∑
i=1

v2i sin θi
li

,
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as aO · (∑3
i=1 sin θiêi

)
= aO · 0 = 0.

T =

∑3
i=1

v2i sin θi
li∑3

i=1
sin2 θi
mi

.

Finally, the acceleration of the ith mass is simply

ai = −T sin θi
mi

êi = −
∑3

i=1
v2i sin θi

li∑3
i=1

sin2 θi
mi

· sin θi
mi

êi.

4.7 Systems with Variable Amounts of Moving Mass

In mechanics, a system is not defined as a physical region demarcated by a

boundary. This incorrect notion implies that if certain particles enter or exit

a certain region, we include and exclude them in our system respectively.

Instead, a system is defined as a predetermined set of particles which are

tracked by us thereafter. Therefore, it is deceptive to write the following

equation for a rigid-body system that is purely translating, in hopes that

the dm
dt term represents a physical increase or decrease in mass inside the

rigid-body system.

∑
F =

dP

dt
=
d(MvCM )

dt
=
dM

dt
vCM +MaCM .

The above equation implies that at one time, we are considering a certain sys-

tem of particles and at another time, we are considering another completely

different system! Instead, we should define an all-encompassing system with

different masses moving at different velocities. Then we can find the total

momentum of this all-encompassing system as a function of time p(t)13 and

take its time derivative to be related to the net external force on this system.

Consider the following examples.

Problem: An empty box of sand is initially moving at a horizontal velocity

v on a frictionless ground. You proceed to add more initially-stationary sand

into the box at a rate of σ (mass added per unit time). What is the horizontal

force required to keep the box traveling at a constant velocity?

We consider the system of the cart (with the sand inside) and all of the

sand that may or may not have been added to the cart. After time t, the

13We shall use the smaller-case ’p’ as we will only be considering a single system.
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total horizontal momentum of this system would be

p = (m0 + σt)v,

where m0 is the initial mass of the cart. Notice that the net external force

on this combined system in the horizontal direction is simply that which you

exert on the cart. Hence,

F =
dp

dt
= σv.

Incidentally, if we applied the equation

F = ma+
dm

dt
v,

we would obtain the same result as a = 0 and dm
dt = σ. However, the physical

meaning of the above equation is wrong — as shall be illustrated by the

following example with a subtle difference.

Problem: An empty box of sand is initially moving at velocity v. You hold

sand in your hand of total initial mass M and move it at velocity u in the

same direction as the box. You then release sand (which still has velocity

u immediately after escaping from your hand) into the box at a rate of σ.

What is the force required to keep the box traveling at a constant velocity?

Applying F = ma+ dm
dt v would give the same result σv which is evidently

incorrect. Instead, we should consider the cart and the sand to be a whole

system. After time t, the masses of the cart and remaining sand in your hand

are m0+σt and M −σt respectively. Hence, the total horizontal momentum

of the combined system as a function of time is

p = (m0 + σt)v + (M − σt)u.

Since the net external force in the horizontal direction on this combined

system is that by you on the cart,

F =
dp

dt
= σ(v − u).

Lastly, let us consider an extreme example where the dm
dt term results in an

utterly unreasonable answer.

Problem: A box of sand initially moving at a velocity v leaks sand at a rate

of σ (mass lost per unit time). There is no internal friction between the sand

and the cart such that the ejected sand still travels at velocity v. What is

the force required to keep the box traveling at a constant velocity?
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Applying F = ma+ dm
dt v would yield −σv which implies that an opposing

force needs to be applied to the cart to prevent it from accelerating! If we

instead consider the box and sand as a combined system, we will observe

that the total horizontal momentum of this system does not vary with time

(assuming that no other horizontal forces act on the ejected sand) and hence

conclude that no force is in fact required!

Another perspective to the above problems involves splitting the process

into two parts. First, the sand is added or lost, which may or may not result

in a change of the cart’s velocity. Next, the force required to keep it mov-

ing at a constant velocity is applied. For the first problem, the first event

results in a decrease in the cart’s velocity by the conservation of momentum

and thus requires a force to keep the cart moving at a constant velocity

during the second event. For the second problem, the first event results in

a smaller decrease in the cart’s velocity as the sand was already moving

and thus requires a smaller force during the second event. Lastly, the first

event in the third problem does not result in a change in the cart’s veloc-

ity and thus a force on the cart is unnecessary. This approach — which

entails the consideration of the effects of adding an infinitesimal amount of

mass and applying a force over an infinitesimal duration of time — will be

introduced in Chapter 6, where the impulse-momentum theorem will also be

discussed.

It is worthy to note that the latter method has a salient advantage over

that presented in this chapter as it describes the situation more precisely.

By introducing an all-encompassing system, we lose the specificity of our

analysis. For example, in the second problem, once some sand has been

dropped, the motion of the cart should be independent of the motion of the

sand still remaining in our hand (we could accelerate it, for example). In the

third problem, whether the ejected sand experiences any force or not should

have no effect on the motion of the cart. Ultimately, interactions should only

be local and this principle of locality is a sacrosanct pillar of physics — for

which casting a wider net only blurs. However, we can conversely say that

since interactions should only be local, we can tweak the parts of a system

that should have no direct influence on a certain component of interest in

any manner and the motion of that component should still be the same as

before — justifying our assumptions in the previous problems.

For now, let us practise deriving p and finding dp
dt for the following

systems.

Problem: A uniform, straightened chain with linear mass density λ and

length l hangs vertically at rest with one tip on the surface of a weighing
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scale, and is then released. Assuming that the parts of the chain that hit the

scale immediately come to rest, find the reading on the weighing scale as a

function of the vertical distance that the top end of the chain has fallen, x.

The bend at the surface of the scale is small.14

Figure 4.25: Falling chain

Define the positive vertical direction to be downwards. The first impor-

tant observation to make is that the tension in the chain must be zero as the

tensions on the massless bend are along the vertical and horizontal directions

and thus cannot balance each other. The part of the chain that has yet to

collide with the scale is hence free falling and its velocity can be obtained

from the kinematics equation below.

v2 = 2gx

v =
√

2gx.

The length of the chain that is still moving is (l− x). The total momentum

of the entire chain, including the stationary parts that are resting on the

scale, is

p = λ(l − x)ẋ.

Consequently,

dp

dt
= −λẋ2 + λ(l − x)ẍ.

14 Small, in the sense that the length of the bend is much smaller than the separation
between infinitesimal masses in the rope, such that the bend is essentially massless.
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Substituting ẋ = v =
√
2gx and ẍ = g,

dp

dt
= −3λgx+ λgl.

The net external force on the chain is due to its weight and the normal force

due to the scale.

λgl −N = −3λgx+ λgl

N = 3λgx.

Note that at x = l, the normal force abruptly decreases from 3λgl to λgl

(the total weight of the chain). This decrease originates from the depletion

of parts of the chain that crash into the scale (the exact reduction of 2λgl

due to this reason is best examined via the method in Chapter 6).

Problem: A long, uniform chain of linear mass density λ is twined into an

initially-stationary heap with an infinitesimal segment of one end hanging

from a hole on a horizontal, frictionless table. Assuming that there is no

internal friction between segments of the chain and that the only moving

part of the chain is that below the table, determine the velocity of the moving

part of the chain, ẋ, as a function of the length x that has fallen below the

table and thus, x(t).

Figure 4.26: Falling chain from heap

The momentum of the entire chain, which hinges on the moving part, is

p = λxẋ. The net external force on the entire chain in the vertical direction

is λgx (weight of the hanging segment) as the normal force on the segment

of the chain above the table and its weight should exactly cancel for its

vertical momentum to remain zero. Furthermore, there must be no tension

in the chain as the chain on the frictionless table cannot experience a net

horizontal tension force due to the chain segment in the hole.

λgx =
dp

dt
= λẋ2 + λxẍ.
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Using the trick ẍ = 1
2
dẋ2

dx and simplifying,

dẋ2

dx
+

2

x
ẋ2 = 2g.

Multiplying the above by the appropriate integrating factor x2,

x2
dẋ2

dx
+ 2xẋ2 = 2gx2

d(x2ẋ2)

dx
= 2gx2

∫ x2ẋ2

0
d(x2ẋ2) =

∫ x

0
2gx2dx

x2ẋ2 =
2

3
gx3

ẋ =

√
2

3
gx,

where the negative solution has been rejected because the velocity of the

falling part can only be downwards (positive). This follows from the fact

that the net force on the system is downwards. Then,

∫ x

0

1√
x
dx =

∫ t

0

√
2

3
gdt

2
√
x =

√
2

3
gt

x =
1

6
gt2.

Problem: A uniform, straightened chain of total mass m and length l is

initially stationary on a horizontal, frictionless table. Initially, a segment of

infinitesimal length, at one end of the chain, passes through a hole on the

table and hangs vertically. Assuming that segments of the chain, at no point

in time, “overshoot” the hole, determine the velocity of the chain, ẋ, as a

function of the length x that has fallen below the table and thus, x(t). You

will notice that there is an error in x(t). What is the reason behind this error

and why did it not occur in the previous problem?
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Figure 4.27: Falling linear chain

The tension T located at the chain segment within the hole changes the

horizontal momentum of the chain segment on the table, ml (l − x)ẋ.

T =
d
(
m
l (l − x)ẋ

)
dt

.

On the other hand, the weight of the hanging section mg
l x, minus this tension,

is responsible for changing the vertical momentum of the hanging part of the

chain, ml xẋ.

mg

l
x− T =

d
(
m
l xẋ

)
dt

.

Adding the two equations above,

mg

l
x =

d(mẋ)

dt
= mẍ.

Using ẍ = ẋdẋdx , ∫ ẋ

0
ẋdẋ =

∫ x

0

g

l
xdx

ẋ2

2
=
gx2

2l

ẋ =

√
g

l
x.

The positive solution for ẋ is chosen as x is initially slightly positive and ẍ

is proportional to x throughout the motion. Now, if we attempt to separate

variables and integrate, ∫ x

0+

1

x
dx =

∫ t

0

√
g

l
dt

lnx =

√
g

l
t+ ln 0+.
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A pesky ln 0+ term appears out of nowhere! The reason behind this term is

the infinite time required for the chain to fall through the hole from an ini-

tially negligible length to an appreciable length (hence causing lnx to tend

to negative infinity). This defect is present in this problem as the chain is

not slack such that the tension in the chain is equal to the weight of the

infinitesimal hanging segment at the start to prevent infinite acceleration.

This small tension pulls the portion of the chain on the table into the hole

(giving it momentum in the process). Since the latter portion is massive,

it naturally takes an infinite amount of time to pull it into the hole by a

significant amount (and to impart it with non-negligible momentum). In the

previous problem, the entire chain was slack such that no force is required

to drag the heap lying on the table into the hole (the heap simply readjusts

itself while maintaining the position of its center of mass). Furthermore, ini-

tially, the weight of the infinitesimal segment hanging below the hole directly

contributes to its rate of change of momentum — without any impediment

from tension. Once it weathers the initial storm and attains a non-negligible

hanging length, the hanging portion is able to perpetuate a self-sustaining

cycle where a larger x leads to a larger ẋ (this also occurs for the straight

chain but it fails at the first hurdle). From the perspective of momentum,

the weight of the (initially negligible) hanging portion only has to increase

its own momentum and not that of the entire chain and hence can attain a

substantial velocity.

In spite of all of these remarks, the expression for ẋ(x) in this problem

is still valid — it just takes an infinite amount of time to reach a non-

negligible x.
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Problems

Center of Mass

1. Regular Pentagon*

Determine the center of mass of a uniform, regular pentagon with edge

length l.

2. A Strange Rod*

Find the center of mass of a one-dimensional rod of length l, whose linear

mass density at a point is λ = k
x+l where k is a constant and x is the distance

from the left end of the rod to that point.

3. Cone**

Determine the vertical height below the vertex of a uniform cone with base

area A and height h, at which the center of mass lies.

4. Spherical Cap**

Show that the center of mass of a spherical cap of height h, cut from a

uniform sphere of radius R, is

3(2R − h)2

4(3R − h)

above the center of the original sphere. Note that a spherical cap is obtained

from slicing a sphere with a plane.

5. Triangle**

Express the coordinates of the center of mass of a general uniform triangle

in terms of the coordinates of its three vertices. Hint: try to apply the result

for a right-angled triangle.

A plated triangle is formed as follows. Take a uniform triangle of sur-

face mass density σ — whose vertices have coordinates (x1, y1), (x2, y2) and

(x3, y3) — and connect the midpoints of the edges. Fill the new triangle

formed with a plating with surface mass density σ and repeat this process

with the new triangle and all subsequent triangles. Determine the center of

mass of this plated triangle.

As an unrelated question, prove geometrically that the center of mass of

a uniform triangle should be the point of intersection of the three medians

(you do not need to prove that the medians are concurrent).
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6. Cylindrical Segment***

Find the position of the center of mass of the following cylindrical segment,

whose base is a circle of radius r, that has a uniform mass density. It is

obtained from slicing a cylinder with a plane.

7. Constant Ratio***

Let a rod of length l and mass M be located along the x-axis with ends

at x = 0 and x = l. Now, this rod has a special property such that if we

make a cut at any arbitrary x = y coordinate and consider the remaining

rod between x = 0 and x = y, the center of mass of this remaining rod will

be located at ky, where k is a constant. Determine λ(x), the linear mass

density of the rod as a function of the x-coordinate x.

8. Square Fractal***

Determine the center of mass of the square fractal below if its surface mass

density is uniform. The largest square has length l, after which each succes-

sive square has half the length of its predecessor. Note that the fractal is

only “propagating” in one direction.
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9. Triangle Fractal***

Consider a triangle fractal that is obtained by filling up an equilateral trian-

gle in a equilateral triangle of length l with mass (which occupies a quarter

of the area of the original triangle) to produce three empty equilateral trian-

gles of length l
2 . The bottom two triangles then undergo the same procedure

again. This process is repeated for all subsequent triangles indefinitely. Deter-

mine the vertical distance between the center of mass of this fractal and the

bottom edge of the original triangle in the figure below.

Systems with No Constraints

10. Walking on a Plank*

Suppose that a wooden plank of length l and mass M lies on a frictionless

horizontal ground. Consider the one-dimensional problem where a person of

mass m starts from one end of the plank and moves to the other end of the

plank. Determine the horizontal displacement of the plank if both the plank

and person were initially stationary.

Now, suppose that a massless ant initially rests at one end of the plank.

The ant has a stock of snowballs of total mass m. If the ant begins to throw

snowballs at velocity v and they stick to a massless wall at the other end

of the plank, determine the horizontal displacement of the plank after all

snowballs have hit the wall. The ant and plank were both stationary initially.

11. Pulling a Block*

You and a block of metal are initially motionless on a frictionless horizontal

ground, separated by a distance l. Your mass is m while that of the block is

M . You begin to pull the block at a constant force F via a massless string.

Determine the time t at which you collide with the block.

12. Falling Slinky*

A slinky with negligible relaxed length, mass m and spring constant k is

held vertically by its top in mid-air. The top of the slinky is released such
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that it begins to fall down and collide with other segments of the slinky. If

the segments that have yet to collide with the top of the slinky are observed

to remain still, determine the time from the release of the slinky that the

bottom of the slinky begins moving. Repeat your calculations if an additional

mass m is hung to the bottom of the slinky at the start.

Systems with Constraints

For the following problems, assume that there is no friction between all

surfaces and that strings and pulleys have negligible masses, unless otherwise

stated.

13. Atwood’s Machine 1*

Find the accelerations of massesm andM if the ramp does not move. Friction

exists between the ramp and M , with a static coefficient μs and kinetic

coefficient μk < μs.

14. Atwood’s Machine 2*

Find the force F required to prevent any relative motion of m, M and μ.

15. Traveling Together**

Determine the maximum value ofm1 in the set-up on the next page if masses

m2 and m3 remain stationary with respect to each other. The coefficient of

kinetic friction between m2 and the table is μk while the coefficient of static

friction between m2 and m3 is μs. Assume that m2 moves relative to the

table.
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16. Sliding down a Plane**

A block of mass m is held motionless on a frictionless plane of mass M and

angle of inclination θ. There is no friction between the inclined plane and

the ground. The block is released. What is the horizontal acceleration of the

plane?

17. Atwood’s Machine 3**

Find all tensions and the accelerations of the masses in the set-up below.

18. Atwood’s Machine 4**

Determine the accelerations of the masses m and 2m. For the two pulleys

on the next page, a continuous string wraps once around the bottom pulley,

once around the top pulley and one last time around the bottom pulley

before it is connected to the ceiling.
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19. Atwood’s Machine 5**

Determine the accelerations of all masses in the set-up below. Try to obtain

the conservation of string equation by visualizing the physical movement of

strings.

20. Atwood’s Machine 6**

Determine the accelerations of all masses in the set-up below.

21. Pulling a Mass**

A ball of mass m is attached to two strings — one is of length l1 and is

attached to a fixed pivot A, while the other is wrapped around a fixed pulley
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B and dragged along at a constant velocity v. The instantaneous length of

the segment between the mass and B is l2. As a function of angles α and β

labelled in the diagram below, determine the tension on the ball due to the

second string.

22. Equivalent Mass**

Consider two masses m1 and m2 connected by a pulley. Suppose that we are

able to replace this set-up with an equivalent one that comprises a single mass

meq connected to a string. Determine meq. Hint: if the set-ups are equivalent,

the behavior of any system connected to them should be the same.

23. Infinite Atwood Machine***

An infinite number of identical masses are arranged as shown below. Deter-

mine the acceleration of all masses. Assume that the set-up comprises N

masses with the Nth mass replacing what would have been the Nth pulley.

Then, take N → ∞. What would happen if the Nth mass were a massless

pulley instead? The result of the above question may be useful. (Adapted

from “Introduction to Classical Mechanics.”)
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Polar Coordinates/Circular Motion

Note that though the conservation of energy has not been formally intro-

duced yet, it is extremely useful for many of the problems below and will be

adopted in their solutions.

24. Roller Coaster*

A roller coaster slides down a slope. Find the minimum height, H, necessary

for the roller coaster to undergo circular motion of radius R at the bottom

of the slope without losing contact with the surface.

25. Falling off a Circle**

A particle, of mass m, initially lies motionless on the top of a circle of radius

R. It is then given a slight push and proceeds to move along the surface of

the circle. At what angle, θc, measured with respect to the vertical axis, will

the particle lose contact with the circle?

26. Stationary Stand**

A stand is comprised of a base of mass M connected to a massless pole.

A mass m is attached to the tip of the pole via a massless string of length

l and is initially held motionless at the same horizontal level as the tip of

the pole. The mass m is then released. Determine the minimum coefficient

of static friction μ between the stand and the table if the stand does not

translate while mass m undergoes circular motion about the tip of the pole

thereafter.
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27. Rotating Rod**

Consider a uniform rod of linear mass density λ and length l on a horizontal

table in polar coordinates, with the origin defined at one of its ends. Sup-

posing that the rod rotates about the origin at a constant angular velocity

ω, determine the tension as a function of radial coordinate T (r) if the end at

r = 0 is free (the end at r = l could be connected to a rotating cylinder, for

example) and if the end at r = l is free (the end at r = 0 could be skewered

and rotated, for instance).

28. Rotating Chain**

A chain of uniform linear mass density λ takes the form of a circle of radius

R and is wrapped around a frictionless cone with half angle α. If the chain

is able to rotate about the symmetrical axis of the cone at constant angular

velocity ω while maintaining its shape of a circle of radius R, determine the

tension in the chain T .

Systems with Varying Amounts of Moving Mass

29. Sweeping Pan**

Consider an initially stationary sweeping pan of width l and initial mass

M on a horizontal, frictionless table. There is dust uniformly distributed

over the entire table with surface mass density σ. Determine F (t), the

force required to push the pan such that it accelerates with a constant

acceleration a.

30. Holding a Rope**

Take a uniform rope of length l and constant linear mass density λ and hold

it by its ends vertically, such that the rope takes on the form of two segments

of length l
2 with a small15 bend in the middle. Now, gently release one end

while holding onto the other end. If the parts of the rope that cross the bend

instantaneously come to a stop, determine F (t), the force that you exert on

the rope as a function of time.

31. Pulling a Rope**

A long rope with linear mass density λ rests on a horizontal, frictionless

table with a small15 bend as shown in the figure on the next page. You grab

15Refer to footnote 14.
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the end of the rope that is near the bend and begin to pull it. The length of

the segment that initially crosses the bend is negligible and the entire rope

is initially stationary (adapted from “Introduction to Classical Mechanics”).

(1) Determine the force F required to pull the rope such that it moves at a

constant velocity v.

(2) Determine the force, F (t), required to pull the rope such that it moves

at a constant acceleration a.

(3) Prove the reverse of part (1). If a constant force F is exerted on the

rope, show that it travels at a constant velocity.

(4) If the force on the rope is now replaced with a spring such that the

rightwards force on the rope is k(L− x) where L is a constant and x is

the rightwards displacement of the end that the spring is attached to,

determine x(t), the displacement of this end as a function of time for

x ≤ L.
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Solutions

1. Regular Pentagon*

Draw two adjacent lines of symmetry of the pentagon. Their intersection is

the center of mass. The interior angle of a pentagon is

3π

5
.

By simple trigonometry, the perpendicular distance between the center of

mass and the edge that a line of symmetry intersects with is

l

2
tan

3π

10
.

2. A Strange Rod*

Defining our origin to be at the left end of the rod,

∫
xdm =

∫ l

0
x · k

x+ l
dx =

∫ l

0
k

(
1− l

x+ l

)
dx

= [kx− kl ln |x+ l|]l0 = kl − kl ln 2∫
dm =

∫ l

0

k

x+ l
dx = [k ln |x+ l|]l0 = k ln 2

xCM =

∫
xdm∫
dm

= l

(
1

ln 2
− 1

)
.

3. Cone**

Let the mass density of the cone be ρ. The cross section between z and z+dz

is a disk of base area z2

h2A. Hence, the volume of this cross section is z2

h2Adz.

Let the origin be located at the vertex of the cone and let the positive z-axis

intersect the base of the cone perpendicularly. Then,

zCM =
1

M

∫ h

0
zdm

=
1

M

∫ h

0
ρ
z3

h2
Adz
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=
1

M

[
ρz4

4h2
A

]h
0

=
Ah2ρ

4M
.

Furthermore,

M =
1

3
Ahρ

=⇒ zCM =
3

4
h.

Another way to solve this problem is to observe that we can form a conical

layer of infinitesimal thickness by rotating an isosceles triangle of infinites-

imal width and thickness, whose symmetrical axis subtends the half angle

of the cone in question with the z-axis, for a complete revolution about the

z-axis — implying that the center of mass of this conical layer lies at an

altitude l
3 above its base where l is the conical layer’s height. Now, we can

retrieve a solid cone of height h by stacking various conical layers with heights

ranging from l = 0 to l = h on top of each other. Therefore, the center of

mass of a solid cone is the weighted average of the center of masses of the

different conical layers. The weight of each conical layer in this averaging

process is proportional to its mass and hence its squared height l2 (as mass

is proportional to the surface area of the layer). Thus, the center of mass of

a solid cone of height h lies at an altitude

∫ h
0 l

2 · l3dl∫ h
0 l

2dl
=
h

4

above its base, along its axis (due to symmetry).

4. Spherical Cap**

Define the origin to be at the center of the original sphere and let the positive

z-axis pass through the vertex of the spherical cap. The center of mass of the

cap must lie along the z-axis by symmetry. Now, we consider infinitesimal

disks between coordinates z and z+ dz. The radius of this disk r is given by

the relationship

r2 + z2 = R2

r2 = R2 − z2.
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Hence, the volume of this disk is πr2dz = π(R2 − z2)dz.

zCM =
1

M

∫ R

R−h
zdm =

1

M

∫ R

R−h
ρπ(R2z − z3)dz =

ρπh2(2R − h)2

4M
.

The volume of the entire spherical cap is

V =

∫ R

R−h
π(R2 − z2)dz =

πh2(3R − h)

3
,

M = ρV.

Therefore,

zCM =
3(2R − h)2

4(3R − h)
.

5. Triangle**

Let the plane of the triangle be the x’y’-plane. Define the origin O’ at one

vertex of the triangle and orientate the x’-axis such that another vertex

lies on the x’-axis at coordinates (x′2, 0). The last vertex has coordinates

(x′3, y′3).

Figure 4.28: Triangle

The foot of the perpendicular of the third vertex on the x-axis is at

coordinates (x′3, 0) (it is external to the triangle in the figure above but its

exact location does not matter). Then, we can determine the center of mass

of the triangle via the center of masses of the two right-angled triangles

formed — namely, one with vertices O’, (x′3, 0), (x′3, y′3) and another with

vertices (x′2, 0), (x′3, 0) and (x′3, y′3). In this case, we have to patch up the

hole first to obtain the center of mass of the big triangle and then subtract

the contribution due to the small triangle. Applying the result for the center

of mass of a right-angled triangle, the coordinates of the center of masses are

respectively (23x
′
3,

1
3y

′
3) and (13x

′
2+

2
3x

′
3,

1
3y

′
3). Their respective masses are x′3y′3

and −(x′3 − x′2)y′3 (remember to include a negative sign for the second one
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as we are subtracting its contribution) where we have let the mass density

of the triangle take a value of 2. Then, the coordinates of the center of mass

of the general triangle are

(
x′CM
y′CM

)
=

x′3y′3

(
2
3x

′
3

1
3y

′
3

)
− (x′3 − x′2)y′3

(
1
3x

′
2 +

2
3x

′
3

1
3y

′
3

)

x′3y′3 − (x′3 − x′2)y′3
=

(
1
3x

′
2 +

1
3x

′
3

1
3y

′
3

)
.

In terms of the position vectors, r′2 and r′3, of the second and third vertices

relative to the origin O’,

r′CM =
1

3
r′2 +

1

3
r′3.

To determine the position vector of the center of mass rCM with respect to

a general origin O where the position vectors of the three vertices are r1, r2
and r3, observe that

rCM = r′CM + r1,

coupled with r′2 = r2 − r1 and r′3 = r3 − r1. Consequently,

rCM =
1

3
(r1 + r2 + r3).

For the second problem, observe that the midpoints of the edges of a triangle

with vertices at r1, r2 and r3 have position vectors r1+r2
2 , r1+r3

2 and r2+r3
2 .

Therefore, the center of mass of the new triangle formed by connecting the

midpoints has position vector

rCM, new =
1

3

(
r1 + r2

2
+

r1 + r3
2

+
r2 + r3

2

)
=

1

3
(r1+r2+r3) = rCM, old,

which coincides with the center of mass of the original triangle. Therefore,

the center of mass of the plated triangle is simply that of the first triangle

and has coordinates (x1+x2+x33 , y1+y2+y33 ).

Figure 4.29: Triangle
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To show that the center of mass of a triangle is the point of concurrency

of the three medians, consider a particular median BM shown in Fig. 4.29.

Consider two parallel lines, D1D2 and E1E2, that are equidistant from BM .

Since 
AD1D2 ∼ 
ABM , 
CE1E2 ∼ 
CBM and AM = MC by the

definition of a median, D1D2 = E1E2. Therefore, the infinitesimal strips

along D1D2 and E1E2 have equal masses. Furthermore, their perpendicular

distances (y) to line BM are equal but they lie on opposite sides of line

BM — implying that if we define the z-axis to be along line BM , the net

contribution of these strips to the z-coordinate of the center of mass is zero.

Repeating this argument for all parallel strips that are equidistant from

BM , the z-coordinate of the center of mass of the entire triangle must be

zero — signifying that it lies along line BM . Applying this procedure to the

other two medians, we can prove that the center of mass must lie at the

intersections of the medians.

6. Cylindrical Segment***

We will use Cartesian coordinates for our integrations, defining our origin to

be at the left tip of the segment (side view). In Cartesian coordinates, dm is

simply ρdxdydz where we define ρ to be the mass density of the wedge. We

consider a infinitesimal element at coordinates (x, y, z).

Figure 4.30: Cylindrical segment

However, we have to be extremely careful about our limits of integration

for x, y and z. We see that for a given x, z can range from 0 to x tan θ while y

can range from −√r2 − (r − x)2 to
√
r2 − (r − x)2. The y-coordinate of the

center of mass is trivially 0 due to symmetry. We shall calculate the other
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coordinates of the center of mass.

∫
xdm =

∫ 2r

0

∫ √
r2−(r−x)2

−
√
r2−(r−x)2

∫ x tan θ

0
xρdzdydx

= ρ

∫ 2r

0

∫ √
r2−(r−x)2

−
√
r2−(r−x)2

x2 tan θdydx

= ρ tan θ

∫ 2r

0
2x2
√
r2 − (r − x)2dx.

The last integral can be evaluated using the substitution r − x = r sinφ,

dx = −r cosφdφ.
∫ 2r

0
x2
√
r2 − (r − x)2dx

= −
∫ −π

2

π
2

(r2 − 2r2 sinφ+ r2 sin2 φ)r cosφ · r cosφdφ

=
5

8
πr4.

Thus, ∫
xdm =

5

4
ρ tan θπr4.

Similarly we have

∫
zdm =

∫ 2r

0

∫ √
r2−(r−x)2

−
√
r2−(r−x)2

∫ x tan θ

0
zρdzdydx

= ρ

∫ 2r

0

∫ √
r2−(r−x)2

−
√
r2−(r−x)2

1

2
x2 tan2 θdydx

= ρ tan2 θ

∫ 2r

0
x2
√
r2 − (r − x)2dx

=
5

8
ρ tan2 θπr4.

Lastly, the volume of the cylindrical segment can be easily computed by

observing that combining two of such segments forms a cylinder of radius r
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and height 2r tan θ. Hence, the total mass of this segment is

M = ρπr3 tan θ,

xCM =

∫
xdm

M
=

5

4
r,

yCM = 0,

zCM =

∫
zdm

M
=

5

8
r tan θ.

7. Constant Ratio***

The given property can be stated mathematically as∫ y
0 λxdx

y
∫ y
0 λdx

= k.

Let
∫ y
0 λxdx = g(y) and

∫ y
0 λdx = m(y). Then,

g(y) = kym(y).

Differentiating the above equation with respect to y,

λ(y)y = km(y) + kyλ(y).

Rearranging,

λ(y)

m(y)
=

k

(1− k)y
.

Since λ(y) = dm
dy , the left-hand side of the above equation is d(lnm)

dy

=⇒
∫
d(lnm) =

∫
k

(1− k)y
dy.

Integrating and simplifying,

m(y) = Ay
k

1−k ,

where A is a constant. A can be determined by substituting m(l) = M .

Then,

A =
M

l
k

1−k

,

m(y) =
M

l
k

1−k

y
k

1−k ,

λ(x) =
dm(x)

dx
=

kM

(1− k)l
k

1−k

x
2k−1
1−k .
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A convenient limiting case to check for is k = 1
2 as this simply corresponds to

a stick of constant density. This is indeed the case as the exponent becomes
2k−1
1−k =

2· 1
2
−1

1− 1
2

= 0.

8. Square Fractal***

Let the horizontal position of the center of mass be a distance 2x from the left

edge of the largest square (the vertical position is trivial due to symmetry).

Now, observe that the fractal is composed of a smaller fractal, two squares

of length l
2 and the largest square of length l. The center of mass of the

smaller fractal should be located a distance x from the left of its largest

square by scaling arguments. Now, we simply need to determine the mass of

this smaller fractal which is given by

l2

4
+

3l2

16
+

3l2

64
+ · · · = l2

2
,

where we have let its mass density be one as its exact value is inconsequential.

Now, the center of mass of the original fractal can be computed via that of

the smaller fractal, two squares of length l
2 and the largest square.

l
2 · 3l2

2 + (l + x) · l22
3l2

2 + l2

2

= 2x.

Solving,

2x =
5

7
l.

That said, there is an even more elegant method to computing the ratio of

masses between the different components of this system. By scaling argu-

ments, the original fractal should have four times the mass of the smaller

fractal as the ratio of areas of corresponding squares is 4 : 1. This means

that the three remaining squares should have three times the mass of the

smaller fractal. Then,

l
2 · 3 + (l + x) · 1

3 + 1
= 2x,

and we would again obtain 2x = 5
7 l.

9. Triangle Fractal***

Let the vertical distance between the center of mass of the fractal and the

bottom edge be 2y. Observe that the original fractal is composed of two
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smaller fractals with halved length dimensions and a equilateral triangle of

length l
2 . By scaling arguments, the distance between the center of mass of

the smaller fractals and their bottom edges should be y. Now, we just need

to compute the ratio of relevant masses. By scaling arguments, the original

fractal should have four times the mass of the smaller fractal. Therefore, the

equilateral triangle of length l
2 should have two times the mass of the smaller

fractal. Then,

y · 1 + y · 1 +
√
3
6 l · 2

1 + 1 + 2
= 2y

2y =

√
3

9
l.

10. Walking on a Plank*

There is no net external force on the system which comprises the person and

the plank. Therefore, the center of mass of this combined system must not

shift. Define the origin to be at the center of mass of the plank before the

person begins moving. The coordinate of the person is l
2 . The center of mass

of the combined system is thus at ml
2(m+M) . Suppose that after the person

moves to the other end of the plank, the center of mass of the plank is at

coordinate x while that of the person is at x− l
2 . Then,

m
(
x− l

2

)
+Mx

m+M
=

ml

2(m+M)

x =
ml

m+M
.

This can also be easily derived if we observe that the final state of the

system is a horizontal flip of the initial state about the center of mass.

Therefore, the displacement is twice the initial coordinate of the center of

mass, ml
2(m+M) × 2 = ml

m+M . The second problem is essentially the same as

the first as an amount of mass m is transferred from one end of the plank

to the other. Thus, the answer is still the same.

11. Pulling a Block*

The acceleration of the block is ab = F
M . By Newton’s third law, you also

experience a force F and thus, acceleration ap = F
m . These accelerations

are opposite in direction. Therefore, in your frame, the block effectively
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accelerates at a′b = F ( 1
M + 1

m). Using the kinematics equation

l =
1

2
a′bt

2,

t =

√
2lMm

F (M +m)
.

12. Falling Slinky*

Define the origin to be at the top of the slinky and the y-axis to be positive

downwards. For the first case, the bottom of the slinky is at y = mg
2k while its

center of mass is at y = mg
3k (from previous results in this chapter). After the

slinky is released, the only net external force on the slinky is its weight mg.

Therefore, the center of mass of the slinky accelerates from rest at g. The

bottom end only begins to move when the center of mass of the slinky reaches

the bottom end, after traveling for a distance mg
2k − mg

3k = mg
6k (i.e. the top

end has accumulated the rest of the segments). The time required can be

computed from basic kinematics.

1

2
gt2 =

mg

6k

t =

√
m

3k
.

In the second scenario, the entire slinky is stretched uniformly by an addi-

tional, overall length of mgk due to the additional weight attached. The coor-

dinates of the bottom of the slinky and the center of mass are then y = 3mg
2k

and y = mg
3k + mg

2k = 5mg
6k respectively. The time required is then

1

2
gt2 =

3mg

2k
− 5mg

6k
=

2mg

3k

t = 2

√
m

3k
.

13. Atwood’s Machine 1*

In the case where the system is static, the forces on both m and M must

be balanced. Letting the friction on M be f downslope (this is possibly a
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negative value),

T −mg = 0 =⇒ T = mg

T −Mg sin θ − f = 0

f = mg −Mg sin θ.

Since the normal force on M due to the slope is N = Mg cos θ, f must not

exceed the maximum value of static friction given by

|f | ≤ μsN = μsMg cos θ

|mg −Mg sin θ| ≤ μsMg cos θ.

This requires M sin θ ≤ m ≤ M(μs cos θ + sin θ) or M(sin θ − μs cos θ) ≤
m ≤ M sin θ. If m > M(μs cos θ + sin θ) or m < M(sin θ − μs cos θ), the

system can no longer remain static. In this case, let the acceleration of mass

M in the direction parallel to the plane be a and the vertical acceleration of

mass m be ay, both taken to be positive upwards. Applying F = ma to the

blocks,

may = T −mg

Ma = T −Mg sin θ − f

a = −ay,

where the last equation is the conservation of string. Note that f could be

μkN = μkMg cos θ or −μkN = −μkMg cos θ, depending on the direction of

relative motion between M and the slope. For now, we will stick with the

variable f . Solving the above set of equations,

ay =
Mg sin θ −mg

m+M
+

f

m+M
,

a =
mg −Mg sin θ

m+m
− f

m+M
.

To determine the sign of f , observe the sign of a in the case where there is

no friction. If m > M(μs cos θ + sin θ) such that M moves and a without

friction is positive, f tends to reduce the positive value of a and must hence

undertake the positive value μkMg cos θ. Otherwise ifm < M(sin θ−μs cos θ)
such that M moves and a without friction is negative, f tends to increase

the value of a and takes on the negative value −μkMg cos θ.
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14. Atwood’s Machine 2*

Let the tension in the string be T . For there to be no relative vertical motion,

by considering F = ma on mass m,

T −mg = 0 =⇒ T = mg.

Considering the three blocks as a whole system,

F = (M + μ+m)ax.

as the blocks must possess the same acceleration for there to be no relative

motion. Lastly, by considering F = ma on mass M ,

T =Max =⇒ ax =
mg

M
,

F =
m(M + μ+m)g

M
.

15. Traveling Together**

Let the tension in the string be T , friction between the table and mass m2

be f1, the friction between m2 and m3 be f2 and the common acceleration

of the masses be a (we are using the conservation of string here without

explicitly stating so). We obtain the following equations of motion while

taking rightwards and downwards to be positive. Considering the system

comprising m1,

m1a = m1g − T.

From the system that contains m2 and m3,

(m2 +m3)a = T − f1

=⇒ (m1 +m2 +m3)a = m1g − f1 = m1g − μk(m2 +m3)g

a =
m1 − μk(m2 +m3)

m1 +m2 +m3
g.

Next, by isolating m3 alone,

|f2| = m3a ≤ μsm3g

=⇒ m1 − μk(m2 +m3)

m1 +m2 +m3
≤ μs.

The reason why we consider |f2| = m3a only and not |f2| = −m3a is due to

the fact that m1 > μ0(m2 +m3) > μk(m2 +m3) for the set-up to move in
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the first place, where μ0 is the coefficient of static friction between the table

and m2. Solving,

m1 ≤ (μs + μk)(m2 +m3)

1− μs
.

16. Sliding down a Plane**

Define rightwards and upwards to be the positive directions. Let N denote

the normal force on the block due to the plane (this is not necessarily

mg cos θ), ax and ay be the horizontal and vertical accelerations of the block

and A be the horizontal acceleration of the plane. Writing the F = ma

equations in the vertical and horizontal directions,

N cos θ −mg = may,

N sin θ = max,

−N sin θ =MA.

For the block to stay on the plane,

ay
ax −A

= − tan θ.

Solving the above equations yields

N =
g

sin θ tan θ( 1
m + 1

M ) + cos θ
m

,

A = −N sin θ

M
= −mg sin θ cos θ

M +m sin2 θ
.

17. Atwood’s Machine 3**

If we let the tension in the string holding m1 be T , the tension in the string

holding m2 is 4T . Thus, we can obtain the equations of motion

m1a1 = m1g − T,

m2a2 = m2g − 4T,

where we have chosen downwards to be positive. To determine the conser-

vation of string equation, imagine if the second and fourth pulleys on top

(counting from the left) were displaced downwards by a and b respectively.

If we let the displacements of m1 and m2 be x1 and x2 respectively, we can
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observe that

x1 + 2a+ 2b = 0

as the second and fourth pulleys release an amount of string that is twice

their displaced distances. Furthermore, by considering the segment of string

holding up the pulley that is connected to m2, we obtain

a+ b = 2x2,

as moving m2 downwards by x2 requires additional string of 2x2 in length.

4x2 + x1 = 0 =⇒ a1 + 4a2 = 0.

Solving,

T =
5m1m2g

16m1 +m2
,

a1 =
16m1 − 4m2

16m1 +m2
g,

a2 =
m2 − 4m1

16m1 +m2
g.

18. Atwood’s Machine 4*

The magnitude of tension is constant throughout the string and we will

define it to be T . Writing the F = ma equation for both masses and taking

downwards to be positive,

ma1 = mg − T,

2ma2 = 2mg − 4T.

Lastly, we derive our conservation of string equation. If the right mass moves

by a distance d, the left mass has to move a distance 4d as there are four

string segments connected to the right mass as compared to the one on the

left mass. Thus,

a1 + 4a2 = 0.

We solve for T by adding the first equation to twice of the second.

m(a1 + 4a2) = 5mg − 9T =⇒ T =
5

9
mg,

a1 =
4

9
g,

a2 = −1

9
g.
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19. Atwood’s Machine 5**

Figure 4.31: Atwood’s machine 4

Writing our F = ma equations,

ma1 = mg − T,

ma2 = mg − T,

ma3 = mg − 2T,

where the masses are numbered from left to right. To derive our conservation

of string equation, assume that the middle mass moves above the dotted line

by a distance d. Then, string of length 2d will be made available elsewhere.

However, d length of string is required to be “added” to the string connecting

the middle mass and the bottom pulley (above the dotted line). Thus, only

an additional d length of string remains to be shared between the pulleys

connected to the other masses. We let x and y be the lengths of string that

the pulleys of the left and right masses gain, respectively. Then, the right

mass only moves down by y
2 as there must be an increase in the length of the

string on each side of the pulley by y
2 . We can then express the accelerations

of our masses as the second time derivatives of x, y and d.

x+ y = d,

a2 = −d̈,
a1 = ẍ,

a3 =
ÿ

2
,

=⇒ a1 + a2 + 2a3 = 0.
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Solving,

T =
2

3
mg,

a1 =
1

3
g,

a2 =
1

3
g,

a3 = −1

3
g.

20. Atwood’s Machine 6**

Number the masses from left to right in ascending order. The key observation

in this problem is that the tension in the string above the middle mass is not

necessarily equal to the tension in the string below it as they are disjoint. If

we let the tension on top of the middle mass be T1 and that below it be T2,

ma1 = mg − T1,

ma2 = mg + T2 − T1,

ma3 = mg − 2T2.

In this case, we actually have two conservation of string equations as there

are two string segments.

a2 = −a1,
2a3 = a2.

Solving,

T1 =
11

9
mg,

T2 =
4

9
mg,

a1 = −2

9
g,

a2 =
2

9
g,

a3 =
1

9
g.
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21. Pulling a Mass**

Since pivot A is fixed, the mass can only have a velocity tangential to the

first string (let this tangential speed be u anti-clockwise).

Figure 4.32: Velocity and acceleration of mass

The component of the ball’s velocity along the second string contributes

to the rate of decrease of the length of segment connecting the mass to the

fixed pulley B, −l̇2 = v (consider polar coordinates about the fixed pulley

B). Thus,

u cos(90◦ − α− β) = v

u =
v

sin(α+ β)
.

Next, let the radial and tangential accelerations of the mass relative to the

first string be ar and aθ as labelled in Figure 4.32. Since pivot A is fixed and

the length of the first string must be maintained, ar must correspond to the

centripetal acceleration.

ar =
u2

l1
=

v2

l1 sin
2(α+ β)

.

Similarly, since l̈2 = 0 in the equation for radial acceleration in polar coor-

dinates about the fixed pulley B, the component of acceleration parallel to

the second string must also provide the centripetal acceleration associated

with the velocity u cos(α+ β) tangential to the second string.

aθ sin(α+ β)− ar cos(α+ β) =
u2 cos2(α+ β)

l2
.

Substituting the expressions for u and ar,

aθ =
v2 cos(α+ β)

l2 sin
3(α+ β)

(
1

l1
+

cos(α+ β)

l2

)
.

Finally, we consider the forces on the mass. Let the tension on the mass due

to the second string be T2 — the tension due to the other string is not
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of concern. Considering the components of T2 and the weight of the mass

perpendicular to the first string,

T2 sin(α+ β)−mg cosα = maθ

=⇒ T2 =
mg cosα

sin(α+ β)
+
mv2 cos(α+ β)

l2 sin
4(α+ β)

(
1

l1
+

cos(α+ β)

l2

)
.

22. Equivalent Mass**

The accelerations of the pulley and the equivalent mass must be equal so that

the string holding them will be conserved for all external set-ups connected

to them. Let this common acceleration be aeq. Next, for the set-ups to be

completely equivalent, the tensions in the strings holding the pulley and the

equivalent mass must be identical. Let this common tension be T . Next, let

the accelerations of m1 and m2 be aeq + a′ and aeq − a′ (note that their

average must be aeq). Then,

m1g − T

2
= m1(aeq + a′),

m2g − T

2
= m2(aeq − a′),

meqg − T = meqaeq.

Solving,

meq =
4m1m2

m1 +m2
,

T =
4m1m2(g − aeq)

m1 +m2
,

a′ =
m1 −m2

m1 +m2
(g − aeq).

Note that aeq, and thus T and a′, is indeterminate as it depends on the

set-up that these masses are connected to.

23. Infinite Atwood’s Machine***

(a) Method 1: Equivalent Masses

We have shown in the previous problem that the equivalent mass is given by

meq =
4m1m2

m1 +m2
.
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We can apply this result in a bottom-up fashion such that m1 is maintained

atm whilem2 is the current equivalent mass as we proceed bottom-up. Since

m2 begins at m, we are equivalently applying the following function to m

infinitely many times (in a layered fashion).

f(x) =
4mx

m+ x
.

Notice that f(x) > x as long as x < 3m and that f(3m) = 3m is a stationary

point. Since we are beginning at m and each iteration increases the value of

the equivalent mass until 3m, the entire connection on the right of the top

pulley is equivalent to a mass 3m — reducing the problem to the simplest

Atwood’s machine with two masses that we have already solved for. If we

start from 1 and number the masses from left to right, directly applying the

result of the first problem in Sec. 4.6.3 would yield

a1 = −g
2

where the positive direction is downwards. Let the tension on the first mass

be T . Then, the tension on the kth mass would be T
2k−1 . Applying F = ma

to the first and kth mass,

mg − T = ma1 =⇒ T =
3mg

2

mg − T

2k−1
= mak

ak =

(
1− 3

2k

)
g.

(b) Method 2: Scaling Arguments and Symmetry

Let the tension on the first mass be T again. Then the tension in the string

connecting the first pulley to the wall is 2T while the tension in the string

connecting the second pulley to the first mass is T . We note that if our

system of masses is fixed, the tension between the first pulley and the wall,

2T , can only depend on the gravitational field strength g and should in fact

be proportional to g, by dimensional analysis. Thus,

2T

g
= k

for some constant k as long as we keep the same system of masses, though

the gravitational field strength may vary. Now let us consider the system of

masses on the right end of the first pulley. The second pulley is accelerating



July 10, 2018 12:23 Competitive Physics 9.61in x 6.69in b3146-ch04 page 211

Translational Dynamics 211

at −a1, with a1 taken to be positive downwards. Thus if we consider the

frame of the second pulley, it is as if the system of masses below it existed

in a world where gravity is g + a1. Furthermore, the tension in the string

holding the second pulley is akin to that in the string connecting the first

pulley to the wall as the second pulley does not know what it is connected

to. Thus, by leveraging this symmetry and the fact that the tension should

only depend on the apparent gravitational field strength,

2T

g
=

T

g + a1
.

We can then easily obtain the answer

a1 = −g
2
.

Considering the F = ma equations of the first and kth mass would again

lead to the result

ak =

(
1− 3

2k

)
g.

Actually, T = 0 is also a solution to the above equation, but that would

mean that all masses would be in free fall. This happens if we choose the

last mass to be a massless pulley as this implies that the tension in the last

string is zero which causes the tension in every string to be zero. Method one

will also result in the same conclusion as the equivalent mass will obviously

be zero. Therefore, a single mass can surprisingly have such a large impact!

24. Roller Coaster*

For the roller coaster to lose contact with the track, the normal force on the

roller coaster due to the track must become zero. Now, observe that for an

angular position θ clockwise from the top of the circle, the net external force

on the roller coaster in the radial direction is

Fr = −mg cos θ −N,

which must be equal to the required centripetal force −mv2

R . Let l be the ver-

tical height that the roller coaster has fallen. By the conservation of energy,

2gl = v2. Therefore, at the top of the circle where θ = 0, the required cen-

tripetal force is the smallest and yet the component of its weight in the radial

direction is the largest — meaning that the normal force at this juncture

must be the smallest. Thus, the roller coaster has the greatest tendency to
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lose contact at the top of the circle. At this point,

Fr = −mg −N

v2 = 2g(H − 2R)

=⇒ mg +N =
2mg(H − 2R)

R
.

For the roller coaster to not lose contact with the surface,

N =
2mg(H − 2R)

R
−mg > 0

=⇒ H >
5

2
R.

25. Falling off a Circle**

We set our origin at the center of the circle and define θ to be the angular

coordinate of the particle from the vertical, while taking the clockwise direc-

tion to be positive. The net force in the radial direction must provide the

required centripetal force.

N −mg cos θ = −mv
2

R
.

From the conservation of energy,

v2

2
= gR(1− cos θ).

At the instance where the particle just begins to slip, N = 0. Substituting

this condition and the equation above into the first equation,

mg cos θ = 2mg − 2mg cos θc =⇒ θc = cos−1

(
2

3

)
.

26. Stationary Stand**

Let θ be the instantaneous angular coordinate of m from the vertical, defined

to be positive anti-clockwise. Let v and T denote the speed of m and tension
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in the string at angle θ. By the conservation of energy,

mgl cos θ =
1

2
mv2.

The net force on m in the radial direction is

Fr = mg cos θ − T.

This must be equal to the required centripetal force −mv2

l = −2mg cos θ.

Thus,

T = 3mg cos θ.

Let N be the normal force on the stand due to the table and f be the friction

between the stand and the table. For the forces on the stand to be balanced,

N =Mg + T cos θ =Mg + 3mg cos2 θ,

f = T sin θ = 3mg sin θ cos θ.

Lastly, we have the condition

|f | ≤ μN = μ(Mg + 3mg cos2 θ)

μ ≥ |3m sin θ cos θ|
M + 3m cos2 θ

,

where −π
2 ≤ θ ≤ π

2 . We can discard the absolute value and determine the

maxima of the right-hand side for θ ≥ 0 by differentiation as the situation

is symmetrical. Doing so will yield the maxima condition to be

tan θ =

√
1 +

3m

M
.

At this value of θ,

μ ≥
3m
√

1 + 3m
M

2M + 6m
.

27. Rotating Rod**

Consider an infinitesimal segment between r and r+dr. Denote the outwards

direction to be positive. T , the tension at r, points radially inwards while at

r + dr, it points radially outwards and is denoted by T + dT . The net force
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in the radial direction must provide the centripetal force.

dT = −ρrω2dr

=⇒ T (r) = −ρr
2ω2

2
+ c,

where c is determined by a boundary condition. The tension at free ends

must be zero. Hence, if r = 0 is a free end, c = 0.

T (r) = −ρr
2ω2

2
.

If r = l is a free end, c = ρl2ω2

2 .

T (r) =
ρω2

2
(l2 − r2).

28. Rotating Chain**

Consider an infinitesimal segment of a chain of length Rdθ between θ and

θ + dθ, in the plane containing the chain in polar coordinates. Figure 4.33

depicts the free-body diagram of this segment.

Figure 4.33: Free-body diagram of an infinitesimal segment

T represents the tension at the two ends of this segment due to neigh-

boring segments (they must be equal for the segment to not accelerate tan-

gentially). dN is the normal force on the segment due to the cone, which is

directed at the half angle α above the plane containing the chain due to the

inclination of the cone. dW is the weight of this segment, which is equal to

λRgdθ. For the forces to be balanced in the vertical direction,

dN sinα = dW

=⇒ dN =
λRg

sinα
dθ.

The radial component of the tensions is 2T sin dθ
2 ≈ Tdθ using the small angle

approximation sinx ≈ x for small x. The net force in the radial direction is
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then

Fr = dN cosα− Tdθ = (λRg cotα− T )dθ.

This must be equal to the required centripetal force, so

(λRg cotα− T )dθ = −λRdθRω2

T = λR2ω2 + λRg cotα.

29. Sweeping Pan**

The mass of the dustpan after it has travelled a distance x is

m(x) =M + σlx.

As the pan travels with a constant acceleration a,

x =
1

2
at2,

v = at,

m =M +
1

2
σlat2.

The momentum of the pan at a particular time t is

p = mv =Mat+
1

2
σla2t3,

F =
dp

dt
=Ma+

3

2
σla2t2.

30. Holding a Rope**

The important observation is that there must be no tension in the rope as

the small bend is essentially horizontal and any tension in the rope would

cause it to accelerate with infinite magnitude upwards (tension on both

sides is directed upwards). Therefore, the moving part of the rope is under

free fall.

After time t, the free end of the rope would have dropped by a vertical

distance gt2

2 . However, only gt2

4 amount of rope crosses over the bend (similar

to a movable pulley). Then, a remaining l
2 − gt2

4 length of rope travels with

velocity gt, with the positive direction defined to be downwards. Thus, the
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momentum of the entire rope is

p = λ

(
l

2
− gt2

4

)
gt.

The net force on the entire rope, which comprises its weight and the force

exerted by you, must be equal to its rate of change of momentum.

λgl − F =
dp

dt
=
λgl

2
− 3λg2t2

4

F =
λgl

2
+

3λg2t2

4
.

Note that at t =
√

2l
g , F drops abruptly from 2λgl to λgl (the weight of the

rope) as there is no longer any need to provide an upwards acceleration to

parts of the rope that are initially traveling downwards and cross over the

bend, to ensure that they are stationary at the other side of the bend.

31. Pulling a Rope**

At any point in time, only rope segments that have crossed the bend are

moving as the rope is slack everywhere (refer to the explanation in the pre-

vious answer). After pulling the rope for a distance x, only x
2 amount of rope

will be traveling at ẋ (similar to the case of a movable pulley). Thus, the

momentum of the entire rope is

p(x) =
λxẋ

2
.

The relationship between the net force on the rope and its rate of change of

momentum is

F =
dp

dt
=
λẋ2

2
+
λxẍ

2
.

For the first scenario, ẋ = v and ẍ = 0. The required force is

F =
λv2

2
.

In the second scenario, x = 1
2at

2, ẋ = at and ẍ = a. The required force is

F =
3λa2t2

4
.
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In the third scenario, F is a constant which implies that p = Ft.

λx

2

dx

dt
= Ft

∫ x

0

λ

2
xdx =

∫ t

0
Ftdt

λx2

4
=
Ft2

2

x =

√
2F

λ
t

ẋ =

√
2F

λ
.

In the last scenario, F = k(L− x).

k(L− x) =
λẋ2

2
+
λx

4

dẋ2

dx
,

where we have used the trick ẍ = 1
2
dẋ2

dx . Multiplying the above by the appro-

priate integrating factor 4x,

2λxẋ2 + λx2
dẋ2

dx
= λ

d(x2ẋ2)

dx
= 4k(L− x)x.

Integrating and substituting the limits x = 0 and ẋ = 0 when t = 0,

λ

∫ x2ẋ2

0
d(x2ẋ2) =

∫ x

0
4k(L− x)xdx

λx2ẋ2 = 2kLx2 − 4kx3

3

ẋ =

√
2kL

λ
− 4kx

3λ
.

The positive square root is taken as ẋ > 0 for 0 < x ≤ L as ẍ ≥ 0.

∫ x

0

1√
3
2L− x

dx =

∫ t

0

√
4k

3λ
dt

√
6L−√

6L− 4x =

√
4k

3λ
t
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6L− 4x =

(√
6L−

√
4k

3λ
t

)2

x =
3

2
L−

(√
3L

2
−
√

k

3λ
t

)2

.

This is valid until x = L, after which the force on the rope becomes

compressive — causing the rope to deform.
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Chapter 5

Rotational Dynamics

In this chapter, we will introduce concepts such as angular momentum and

torques, to analyze the fixed axis rotation of rigid bodies.

5.1 Angular Momentum and Torque

The angular momentum of a particle L with respect to a certain origin is

defined as:

L = r × p, (5.1)

where r and p refer to the position vector and momentum of the particle

respectively. The total angular momentum of a system of particles is simply

the sum of the individual angular momenta. Before we understand how the

angular momentum is a rotational attribute of a system of particles, let us

first calculate the angular momentum of a rigid body.

5.1.1 Rigid Body about Stationary Axis

We shall now derive the expression for the angular momentum of a rigid

object with a continuous mass distribution, with an angular velocity ω in

the z-direction. The positive direction of the angular velocity vector, ω, is

determined by the right-hand corkscrew rule (point your right thumb in

the positive z-direction, your other fingers will curl in the positive direction

of ω).

In the case where we are able to identify an ICOR,1 we can define the

origin at the ICoR. Then, the z-component of the angular momentum of the

1Since an instantaneous axis of rotation exists in three-dimensional set-ups, we shall
refer to a point on the instantaneous axis as an ICoR too. Remember that both the
instantaneous axis of rotation and the ICoR can be external to the rigid body. Refer to
Sec. 3.5 for revision.

219
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Figure 5.1: Rigid body rotating about the z-axis

entire rigid body takes on a rather convenient form:

Lz = Iω, (5.2)

where

I =

∫
(x2 + y2)dm =

∫
r2⊥dm (5.3)

is known as the moment of inertia about the z-axis and r⊥ is the per-

pendicular distance between an infinitesimal mass element and the z-axis.

Furthermore, the total kinetic energy of the rigid body is

T =
1

2
Iω2. (5.4)

As the angular velocity ω does not change if we switch between frames

with relatively non-rotating axes, we can apply the above equations by

switching to a frame co-moving with a particle on the rigid body and

defining the origin at the particle such that it is an ICoR. We shall refer

to this process as fixing an origin to the rigid body, but keep in mind

that the axes of the co-moving frame must not be rotating in the original

frame (as that would change the observed angular velocity). Furthermore,

the angular momentum will be computed with respect to this co-moving

frame and not the original frame. Finally, a major detriment of such an

approach is that the co-moving frame is most probably accelerating, as

the velocity of the particle that it follows may change — creating future

complications (e.g. in relating torque and the rate of change of angular

momentum).

Proof: Recall that the velocity of a point on a rigid body is given by

v = vref + ω × r,
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where vref is the velocity of a reference point on the rigid body and r is

the vector pointing from this reference point to the point of concern. If we

define the reference point to be an ICoR whose vref = 0 by definition, the

velocity of a point on a rigid body is

v = ω × r.

Let us first consider the case where the particles on the rigid body are discrete

before moving onto the continuous case. If there are N particles on the rigid

body in total, the total angular momentum is determined by the sum of the

angular momenta of each individual particle.

L =

N∑
i=1

ri ×mivi

=

N∑
i=1

ri ×mi(ω × ri)

=
N∑
i=1

ri ×mi

⎛
⎝0

0

ω

⎞
⎠×

⎛
⎝rixriy
riz

⎞
⎠

=
n∑
i=1

mi

⎛
⎝rixriy
riz

⎞
⎠×

⎛
⎝−riyω
rixω

0

⎞
⎠

=
n∑
i=1

mi

⎛
⎝ −rixriz

−riyriz
(r2ix + r2iy)

⎞
⎠ω.

Notice that the angular momentum vector does not generally point in the

direction of the angular velocity vector.2 However, if we just consider the

z-component3 of L,

Lz =

n∑
i=1

mir
2
i⊥ω,

2However, they are generally aligned if the object is flat and lies in the xy-plane such
that riz is zero for all i.

3If we are only concerned with the z-component in the first place, a quicker way of
deriving this is by applying the “BAC-CAB” rule (Eq. (3.6)) such that L =

∫
r × (ω ×

r)dm =
∫
[ω(r · r)− r(ω · r)] dm. The z-component of the second term in the integrand is

simply −r2zω such that the z-component of the integral becomes Lz =
∫
(r2 − r2z)ωdm =∫

r2⊥ωdm.
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where ri⊥ is the perpendicular distance between the ith particle and the

z-axis. In the limit where n→ ∞ and mi → 0,

Lz =

∫
r2⊥dmω.

The integral is evaluated over the entire mass distribution. The term
∫
r2⊥dm

is known as the moment of inertia I, with respect to the z-axis. As its

nomenclature implies, it is a measure of its rotational inertia — as we shall

see in a later section.

I =

∫
r2⊥dm.

Thus,

Lz = Iω.

Let us derive the total kinetic energy of the object. We shall use the fact that

the kinetic energy of a particle with mass m and velocity v is 1
2mv

2, though

we have not formally introduced it yet. Then, the total kinetic energy T is

T =

∫
1

2
v · vdm

=
1

2

∫ ⎛⎝−ryω
rxω

0

⎞
⎠ ·

⎛
⎝−ryω
rxω

0

⎞
⎠ dm

=
1

2

∫
(r2x + r2y)dmω2

=
1

2

∫
r2⊥dmω2

=
1

2
Iω2.

In conclusion, if we are able to identify an ICoR in the current frame (such

as a point at which the rigid object is pivoted about), Eqs. (5.2) and (5.4)

can be used to determine the angular momentum and total kinetic energy

of a rigid body. Note that even though a point on the rigid body may be

moving in the lab frame, we can still apply the above results in its co-moving

frame (ω remains the same) by defining the origin at that point, such that

it is an ICoR. Thus, the equations above are applicable with respect to all

origins fixed to the body.
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Figure 5.2: Rigid body

5.1.2 Rigid Body about General Axis

In the more general case, our origin can be a stationary point in the current

frame that is not an ICoR. Then, the z-component of the angular momentum

of the body is

Lz = ICMω +M (rCM × vCM )z , (5.5)

where ICM is the moment of inertia of the rigid body about an axis passing

through its center of mass, parallel to the z-axis and M is the total mass

of the rigid body. rCM and vCM are the position vector and velocity of the

center of mass, respectively. The total kinetic energy of the rigid body is

T =
1

2
ICMω

2 +
1

2
Mv2CM . (5.6)

Proof: Now that the origin is not an ICoR, we cannot write v = ω × r.

However, we can still use v = vref + ω × r. The convenient reference point

to choose, in this case, is the center of mass, as we shall soon see. Define

rCM to be the position vector of the center of mass and r′ to be the vector

pointing from the center of mass to the point of concern (Fig. 5.2). Then,

the velocity of a point on the rigid body can be expressed as

v = vCM + ω × r′.

Its position vector can similarly be expressed as

r = rCM + r′.

From the definition of angular momentum,

L =

∫
(rCM + r′)× (vCM + ω × r′)dm

=

∫
rCM × vCMdm+ rCM ×

(∫
ω × r′dm

)
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+

(∫
r′dm

)
× vCM +

∫
r′ × (ω × r′

)
dm

=MrCM × vCM + rCM ×
(
ω ×

∫
r′dm

)

+

(∫
r′dm

)
× vCM +

∫
r′ × (ω × r′

)
dm,

where M is the total mass of the rigid body. The second and third terms

are equal to zero by the definition of the center of mass as
∫
r′dm =∫

(r − rCM )dm = MrCM − MrCM = 0. Furthermore, by comparing the

last term to the expression for the angular momentum of a rigid body about

a stationary axis in the previous section, it can be seen that the last term

is the angular momentum of the rigid body about its center of mass, in the

frame of the center of mass. Therefore,

L = LCM +MrCM × vCM .

We see that the total angular momentum of the system is simply the sum

of the angular momentum of the body about a point fixed to the center of

mass and the angular momentum derived from treating the body as a point

mass located at its center of mass and moving at vCM with respect to the

origin. Loosely put, the angular momentum has a rotational component and

a translational component. To clarify this statement, translation commonly

refers to the translation of the center of mass (which drags every other point

with it while maintaining the orientation of the body) while rotation usually

means the motion of the entire rigid body as viewed in the frame of the

center of mass (so that the translational component is filtered out). Moving

on, the z-component of the angular momentum is

Lz = ICMω +M(rCM × vCM )z.

The total kinetic energy can also be found to be

T =
1

2

∫
(vCM +ω × r′) · (vCM + ω × r′)dm

=
1

2

∫
v2CMdm+

1

2

∫
(ω × r′) · (ω × r′)dm+ vCM ·

(
ω ×

∫
r′dm

)
.

The first term can be integrated trivially as v2CM can be treated as a constant

in the context of integrating over dm (vCM may be changing over time but

we are integrating over dm at a particular instance). From the expression



July 10, 2018 12:23 Competitive Physics 9.61in x 6.69in b3146-ch05 page 225

Rotational Dynamics 225

for the kinetic energy in the previous section, it can be seen that the second

term represents the total kinetic energy of the rigid body in the frame of the

center of mass. Finally, the last term vanishes due to the definition of the

center of mass. Therefore,

T =
1

2
ICMω

2 +
1

2
Mv2CM .

We can see that the total energy of the rigid body is simply the sum of

the rotational kinetic energy of the body about its center of mass and the

translational kinetic energy of the body at the velocity of the center of mass.

5.1.3 Torque

The torque τ , due to a force F , with respect to a certain origin is defined as

τ = r × F , (5.7)

where r is the position vector from the origin to the point where the force

is exerted on. When acted upon a rigid body, a net torque leads to a rate of

change of angular momentum — analogous to how a net force leads to a rate

of change of linear momentum.4 We shall now relate net torque — which is

independent of the reference frame but dependent on the point we compute

it about — to the angular momentum, which is dependent on the motion of

the possibly accelerating origin.

The net external torque on a system about a certain origin is directly

proportional to the rate of change of angular momentum of the system about

the same origin — with the introduction of a fictitious −M r̈0 force5 at the

center of mass of the system if the origin is accelerating at r̈0.∑
τ =

dL

dt
.

In our study of fixed axis rotations, the angular momentum vector does

not change in direction. Therefore, dL
dt = dL

dt L̂. Taking the z-component

4However, a net torque does not necessarily galvanize an angular acceleration, as opposed
to the effect of a net force, which always leads to the acceleration of the center of mass.
Consider the simple example where a block experiences a horizontal force exerted on the
same vertical level as its center of mass on a frictionless ground. The torque about most
origins is non-zero but the block merely translates without any rotation. The intuitive
reason behind this lack of rotation is that the torque only contributes to the increase in
the translational component of the angular momentum (associated with the motion of the
center of mass) and not the rotational component.

5This is commonly known as the inertial force (see Chapter 11).
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of both sides, ∑
τz =

dLz
dt

. (5.8)

If we choose an origin at an ICoR (possibly identified after switching to the

co-moving frame of a particle on the rigid body), Lz = Iω such that∑
τ = Iα, (5.9)

where we have omitted the subscript z. For other choices of origins, we have

to use the more general expression for angular momentum given by Eq. (5.5).

Be wary that it is not always6 the case that
∑
τ = Iα; τ = dL

dt is always

true but the exact relationship between torque and the angular acceleration

depends on the choice of origin which determines the expression for the

angular momentum. Lastly, in light of the fictitious force mentioned above,

it is often ideal to fix the origin to the center of mass of an accelerating body

to nullify the fictitious torque produced.

Proof: Notice that in the previous sections, the frames — in which angular

momentum was calculated — are not necessarily inertial frames. However,

Newton’s laws will be a crucial part of the following analysis and we thus need

to begin from an inertial frame with x, y and z-coordinate axes. Then, let

the position vector of the origin O’ — through which the angular momentum

will be evaluated — in this inertial frame be r0 and the position vector of

a point i on the body with respect to O’ be r′i = ri − r0 where ri is the

position vector of point i in the inertial frame (Fig. 5.3).

Applying Newton’s second law to the ith particle,(∑
F
)
i
+
∑
j �=i

f ij = mir̈i,

where (
∑

F )i and f ij refer to the net external force on the particle i and the

internal force on particle i by another particle j respectively. The angular

6Actually, you can always apply
∑
τ = Iα by fixing an origin to the rigid body. How-

ever, one then has to include the fictitious force associated with the acceleration of the
origin which is often incapacitating as you generally do not know the acceleration of a
particle on a rigid body (except for the center of mass), unless you have already solved the
problem! Therefore, it is sometimes expeditious to choose a different origin that leads to
a more cumbersome expression given by Eq. (5.5) to reap benefits in the long run. Other
times, you can apply

∑
τ = Iα about an origin attached to the center of mass of the

entire system. If there are other discrete particles besides a rigid body, they must be
considered too. Due to this reason, we usually compute the angular momenta of the rigid
body and individual particles separately and then exploit the additive property of angular
momentum to determine the total angular momentum.
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Figure 5.3: Possibly accelerating origin

momentum of the body with respect to O’ is

L =

n∑
i=1

r′i × p′
i =

n∑
i=1

(ri − r0)×mi(ṙi − ṙ0).

Observe that the rate of change of angular momentum is

dL

dt
=

n∑
i=1

(ṙi − ṙ0)×mi(ṙi − ṙ0) +

n∑
i=1

(ri − r0)×mi(r̈i − r̈0)

= 0 +

n∑
i=1

(ri − r0)×
⎛
⎝(∑F

)
i
+
∑
j �=i

f ij −mir̈0

⎞
⎠

=

n∑
i=1

(ri − r0)×
(∑

F
)
i
+

n∑
i=1

(ri − r0)×
⎛
⎝∑
j �=i

f ij

⎞
⎠

−
(

n∑
i=1

(ri − r0)mi

)
× r̈0.

We can see that the first term is the net external torque with respect to

O’,
∑

τ . The second term can be evaluated as follows by pairing the terms

associated with f ij with its conjugate f ji.

n∑
i=1

(ri − r0)×
⎛
⎝∑
j �=i

f ij

⎞
⎠ =

1

2

∑
i,j i �=j

(ri − r0)× f ij + (rj − r0)× f ji

=
1

2

∑
i,j i �=j

(ri − rj)× f ij

= 0.

The last equality assumes the strong law of action and reaction, which states

that the action and reaction pair act along the line joining the two particles i
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and j in addition to the fact that f ij = −f ij. In other words, f ij ‖ (ri−rj).

This assumption is valid in most cases — causing internal forces to produce

no net torque.

In the limit where n→ ∞ and mi → 0, the third term becomes(∫
(r − r0)dm

)
× r̈0 =M(rCM − r0)× r̈0,

where M is the total mass of the body and rCM is the position vector of

the center of mass as
∫
rdm =MrCM by definition. Combining these three

terms, we obtain our general expression for dL
dt .

dL

dt
=
∑

τ −M(rCM − r0)× r̈0.

In the case where O’ accelerates at r̈0 and in light of the expression of the

second term, we can actually imagine that the body experiences a fictitious

force at the center of mass, given by F = −M r̈0 and hence reduce the

equation to dL
dt =

∑
τ where

∑
τ includes the torque due to the fictitious

force about the possibly-accelerating origin. Then,

∑
τ =

dL

dt
.

5.2 Moment of Inertia

The main objective of this section is to evaluate the moment of inertia with

respect to a certain axis — a quantity given by

I =

∫
r2⊥dm,

where r⊥ is the perpendicular distance between an infinitesimal mass dm

and the axis. The integration is performed over the entire mass distribution.

5.2.1 Integration

The most direct and general approach is to evaluate the integral. The crux is

to, again, ensure that we actually integrate over the entire mass distribution.

Problem: Determine the moment of inertia of a uniform rod of mass m and

length l about a perpendicular axis through its center.

Let the rod lie along the x-axis from x = − l
2 to x = l

2 . The contribution

of an infinitesimal element between x and x+ dx to the moment of inertia
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about an axis parallel to the x-axis and passing through the origin is x2dm =

x2λdx, where λ is the linear mass density of the rod. Hence,

I =

∫ l
2

− l
2

x2λdx

=

[
λx3

3

] l
2

− l
2

=
1

12
λl3.

Since m = λl,

I =
1

12
ml2.

Problem: Determine the moment of inertia of a uniform solid circle of mass

M and radius R about a perpendicular axis through its center.

Figure 5.4: Circle

Consider an infinitesimal element dm = σrdθdr in polar coordinates

(Fig 5.4), where σ is the surface mass density. Its contribution to the moment

of inertia about the z-axis is r2dm = r3σdθdr. Next, we have to integrate

this quantity over the entire circle — with θ ranging from 0 to 2π and r from

0 to R.

I =

∫ R

0

∫ 2π

0
r3σdθdr

= σ

∫ R

0
2πr3dθdr

=
1

2
σπR4.
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Since σπR2 =M ,

I =
1

2
MR2.

Problem: Determine the moment of inertia of a uniform solid sphere of

mass M and radius R about an axis through its center.

Figure 5.5: Spherical coordinates

In spherical coordinates, the infinitesimal mass element at (r, φ, θ) is a box

with dm = ρr2 sin θdφdrdθ, where ρ is the mass density. The perpendicular

distance between an infinitesimal element and the z-axis is r⊥ = r sin θ.

I =

∫
r2⊥dm =

∫ π

0

∫ R

0

∫ 2π

0
r2 sin2 θρr2 sin θdφdrdθ

= 2ρπ

∫ π

0

∫ R

0
r4 sin3 θdrdθ =

2

5
ρπR5

∫ π

0
sin3 θdθ

=
8

15
ρπR5 =

2

5
MR2.

The integral
∫
sin3 θdθ can be integrated by the procedure:

∫
(1 −

cos2 θ) sin θdθ = − cos θ +
∫
u2du = − cos θ + cos3 θ

3 + c where substitutions

u = cos θ and du = − sin θdθ have been made.

5.2.2 Parallel Axis Theorem

Suppose that we know the moment of inertia of an object about an axis

through its center of mass, ICM , and wish to determine its moment of inertia
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Figure 5.6: Parallel axis theorem

about another parallel axis, I. The parallel axis theorem states that

I = ICM +md2,

where d is the distance between the two axes and m is the total mass of

the mass distribution (Fig. 5.6). This is valid for all parallel axes, including

those outside of the object.

Proof: Let the origin of the coordinate system be at the center of mass

of the distribution and define the z-axis to be the axis through which the

moment of inertia is computed. Then, let the second axis be located x = x0,

y = y0. With these definitions,

ICM =

∫
(x2 + y2)dm

I =

∫
(x− x0)

2 + (y − y0)
2dm

=

∫
(x2 + y2)dm− 2x0

∫
xdm− 2y0

∫
ydm+

∫
(x20 + y20)dm

= ICM + 0 + 0 +m(x20 + y20)

= ICM +md2.

The two zeroes arise from the definition of the center of mass which is located

at the origin — implying that
∫
xdm = 0 and

∫
ydm = 0.

Problem: Determine the moment of inertia of a uniform solid circle of mass

M and radius R about a perpendicular axis through its circumference.
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Applying the parallel axis theorem with d = R,

Icircum = ICM +MR2 =
3

2
MR2.

5.2.3 Perpendicular Axis Theorem

For a pancake (flat) object, the moment of inertia through an axis normal to

the plane of the object — defined to be the z-axis — is equal to the sum of

the moments of inertia about two mutually-perpendicular axes in the plane

of the object. All of these axes are concurrent at a point O.

Ix + Iy = Iz.

Figure 5.7: Perpendicular axis theorem

Proof: Let the axis normal to the plane be z and those in the plane be x

and y. Since the object is flat, the z-coordinates of its elements are zero if

the origin is defined at the point of concurrency.

Ix =

∫
(y2 + z2)dm =

∫
y2dm,

Iy =

∫
(x2 + z2)dm =

∫
x2dm,

Ix + Iy =

∫
(x2 + y2)dm = Iz.

Problem: Determine the moment of inertia of a uniform solid circle of mass

M and radius R about a diameter.
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Let the required moment of inertia be evaluated about the x-axis. Due

to the rotational symmetry of the circle, Iy = Ix where the y-axis lies in the

plane of the circle and is perpendicular to the x-axis. Then,

Ix + Iy = Iz

2Ix =
1

2
MR2

Ix =
1

4
MR2.

5.2.4 Squashing

In light of the limited applicability of the perpendicular axis theorem to

merely pancake objects, it would be ideal if we could reduce an n-dimensional

object (n = 2or 3) to an equivalent (n−1)-dimensional object with the same

moment of inertia.

Figure 5.8: Squashing in the z-direction

Suppose that we wish to determine the moment of inertia of a three-

dimensional object about the z-axis.

I =

∫
(x2 + y2)dm =

∫
(x2 + y2)ρ(x, y, z)dxdydz,

where ρ(x, y, z) is the mass density of the distribution. Notice that we can

first perform the integration over z such that

I =

∫∫∫
(x2 + y2)ρ(x, y, z)dzdxy

=

∫∫
(x2 + y2) ·

(∫
ρ(x, y, z)dz

)
dxdy

=

∫∫
(x2 + y2) · σ(x, y)dxdy,
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with σ(x, y) =
∫
ρ(x, y, z)dz being the surface mass density of the equiva-

lent two-dimensional object. Referring to Fig. 5.8, this operation effectively

squashes a three-dimensional object such that all masses along an axis at a

certain (x, y), parallel to the z-axis, collapse to a single point for all (x, y).

Note that the total mass is still preserved.

A direct corollary of this is that the moment of inertia of a three-

dimensional object with a uniform cross section7 about the z-axis is equiva-

lent to that of its cross section with an identical total mass.

Problem: Determine the moment of inertia of a uniform solid cylinder of

mass m, radius r and length l about its cylindrical axis.

We can squash the cylinder along its cylindrical axis into a uniform cir-

cle. Hence, the required moment of inertia is 1
2mr

2. It is easy to visualize

the effect of “squashing” via direct integration. In cylindrical coordinates,

the required integral is (with ρ being the mass density and r being the radial

distance perpendicular to the cylindrical axis)

I =

∫ R

0

∫ 2π

0

∫ l

0
ρr3dzdθdr

=

∫ R

0

∫ 2π

0
ρlr3dθdr.

At this point, we can stop and observe that this expression is equivalent to

that of a circle with surface mass density σ = ρl.

For certain mass distributions, a combination of “squashing” and the

perpendicular axis theorem can prove to be potent in finding their moment

of inertia.

Problem: Determine the moment of inertia of a uniform solid cylinder of

mass m, radius r and length l about an axis that is perpendicular to its

cylindrical axis, passing through its center of mass.

We can first squash the cylinder along the z-axis to obtain a non-uniform

mass distribution in the shape of a rectangle in the xy-plane (Fig. 5.9).

The moment of inertia of this non-uniform plate is tedious to determine.

However, we can now apply the perpendicular axis theorem

Iz = Ix + Iy.

7Uniform in the sense that cross sections at different z-coordinates are identical.
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Figure 5.9: Squashing a cylinder into a plane

To compute Ix and Iy, the plate can be squashed along the corresponding

directions again to obtain a one-dimensional distribution. In the x-direction,

the squashed plate becomes a uniform rod of length l and mass m. Hence,

Ix =
1

12
ml2.

The moment of inertia of the resultant distribution (the non-uniform rod in

the middle of Fig. 5.10) after squashing in the y-direction is less obvious.

However, we can leverage symmetry arguments to assert that the moments

of inertia I ′y and I ′z of the resultant rod, relative to the y and z-axes, are

identical.

Figure 5.10: Squashing the plane in the y-direction

I ′y = I ′z.

Since the rod is equivalent to a uniform circle — of radius r and mass m in

the x-z plane — squashed in the z-direction, the required moment of inertia

is equal to that of the uniform circle about a diameter.

I ′z =
1

4
mr2.

Therefore,

Iz = Ix + Iy =
1

12
ml2 +

1

4
mr2.
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5.2.5 Moment of Inertia About a Slanted Axis

In some cases, the moment of inertia about a non-conventional axis A may

be required. Then, the r2⊥ with respect to A should be expressed in terms of

the coordinates associated with the conventional axes x, y and z so that this

moment of inertia can be related to those about the conventional axes. All

axes pass through the same origin. The most general method of determining

r2⊥ involves the use of vectors.8

Let d̂ be the direction vector of axis A, which can be expressed in x, y and

z coordinates. Let the position vector of an infinitesimal mass element under

consideration be r. Then, the magnitude of the component of r parallel to

d̂ is r · d̂. The squared magnitude of the component perpendicular to axis A

is then obtained from Pythagoras’ theorem.

r2⊥ = |r|2 − (r · d̂)2.

Problem: Determine the moment of inertia of a rectangle, with side lengths

a and b, about axis A in the plane of the rectangle as shown in Fig. 5.11.

Figure 5.11: Moment of inertia of rectangle about slanted axis

d̂ =

(
cos θ

sin θ

)
,

r =

(
x

y

)
,

r · d̂ = x cos θ + y sin θ,

r2⊥ = x2 + y2 − (x cos θ + y sin θ)2 = x2 sin2 θ + y2 cos2 θ − 2xy sin θ cos θ,

8Alternatively, one can also use the rotation matrix.
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I =

∫
r2⊥dm

= sin2 θ

∫
x2dm+ cos2 θ

∫
y2dm− 2 sin θ cos θ

∫
xydm

= sin2 θIy + cos2 θIx − 0.

The integral
∫
xydm evaluates to zero as the distribution is symmetric —

for every point (x, y), there is a counterpart at (−x, y). Now, Ix and Iy can

be determined by squashing the rectangle into rods along the corresponding

axes to obtain

Ix =
1

12
mb2,

Iy =
1

12
ma2.

Therefore,

I =
1

12
ma2 sin2 θ +

1

12
mb2 cos2 θ.

5.2.6 Scaling Arguments

Observe that the moment of inertia of an object about an axis is strictly pro-

portional to the mass of the object and the square of its length dimensions. If

we scale all length dimensions of an n-dimensional object (n = 1, 2 or 3) by a

factor of k, the moment of inertia will vary by a factor k2 due to the change

in length dimensions and another factor associated with the change in the

mass of the scaled object. The latter factor depends on the configuration of

the actual mass distribution and, usually, its number of dimensions (for a

distribution with no holes, the latter factor is kn such that the overall factor

is k2+n).

If the object can be conveniently related to smaller versions of itself, we

can use a scaling argument to calculate its moment of inertia via the parallel

axis theorem — precluding any need for integration.

Problem: Calculate the moment of inertia of a rod of mass m and length l

along an axis passing through its center of mass.

Referring to Fig. 5.12, the first equation argues that the moment of inertia

of a rod of length 2l will be 8 times that of a rod of length l, both measured

through their center of masses. This is true because I ∝ ml2 and both the

mass and length of the rod doubles. The second equation argues that the

moment of inertia of a rod of length 2l through its center of mass is two
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Figure 5.12: Scaling argument for rod

times the moment of inertia of a rod of length l through one of its ends.

This can be obtained if you imagine that you break the longer rod into two

at the center of mass. Lastly, the third equation is obtained by applying the

parallel axis theorem. Solving the simultaneous equations above, we obtain

the moment of inertia for a rod of length l about a origin at the center of

mass,

ICM =
1

12
ml2.

Problem: Take an equilateral triangle of length l and remove an equilateral

triangle of half its edge length from its center. Then, repeat this process for

the three equilateral triangles of halved length dimensions formed and so

on. If the mass of the resultant fractal is m, determine its moment of inertia

about a perpendicular axis through its center of mass.

Figure 5.13: Scaling argument for fractal

Referring to Fig 5.13 the first equation asserts that the moment of iner-

tia of a fractal with length 2l is 12 times that of the original fractal as it

has triple its mass — evident from the fact that it is composed of three
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original fractals — and double its length dimensions (3 × 22 = 12). The

second equation simply decomposes the moment of inertia of a fractal with

length 2l into the moment of inertia of three fractals about an off-center

axis. The third equation is an application of the parallel axis theorem (the

distance between the two axes can be shown to be
√
3
3 l). Solving the above

simultaneous equations, the relevant moment of inertia is

I =
1

9
ml2.

For more examples of scaling arguments, refer to Ref. [1].

5.3 Applying τ = dL
dt

We shall practise applying τ = dL
dt to a few systems — in this process, keep

in mind that
∑

F ext = MaCM for a macroscopic body (see Chapter 4).

Note that since the states of all of the following problems can be quanti-

fied by a single coordinate each, their velocities (possibly angular) can be

solved from the conservation of energy directly while their accelerations can

be determined by differentiating the conservation of energy equation. The

reader should try to analyze these systems via the conservation of energy as

an exercise.

Problem: A mass m is hung over a wheel of radius R. The wheel cannot

translate but it can rotate freely. Let the moment of inertia of the wheel be I

with respect to an longitudinal axis through its center. Find the acceleration

of the mass, assuming that the string remains taut at all times.

Figure 5.14: Wheel and mass

Such problems can often be solved in two different ways by considering

two different systems. One way accounts for the internal forces between

different objects and applies τ = Iα and F = ma to all objects. The other
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method uses τ = dL
dt for a larger system comprising various objects. The

former is often more straightforward while the latter is terser as it does

not consider internal forces, but the direction of the components of angular

momentum can be rather confusing. We shall illustrate both here.

Method 1: We use the axle as our origin as we do not know the normal

force exerted by the axle on the wheel and have no wish to. Let the tension

in the string be T . Considering the torque on the wheel about the origin

while taking the anti-clockwise direction to be positive,

τ = TR.

The rate of change of the angular momentum of the wheel about its center

is Iα as the center is an ICoR. Thus,

Iα = TR.

Considering the forces on the mass,

ma = mg − T

where the positive direction has been assumed to be downwards. Further-

more, by the conservation of string,

a = Rα.

Solving the equations above,

a =
mgR2

I +mR2
.

Method 2: Considering the torques and angular momentum of the whole

system about the axle,

dL

dt
=
d(Lwheel + Lmass)

dt
=
d(Iω +mvR)

dt
= Iα+maR,

where Lwheel = Iω (as the center is an ICoR) and Lmass = mvR (angular

momentum of a discrete particle). The only contributor to the torque about

the center is the weight of the mass acting at a perpendicular distance R
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away from the origin.

τ = mgR

mgR = Iα+maR =

(
I

R
+mR

)
a,

as a = Rα by the conservation of string. Simplifying,

a =
mgR2

I +mR2
.

Problem: Referring to Fig. 5.15, a uniform sphere, of mass m, radius R and

moment of inertia I about an axis through its center, begins accelerating

down an inclined plane with an angle of inclination, θ. Find the acceleration

of the center of the sphere, assuming that it rolls without slipping and that

the plane remains stationary.

Figure 5.15: Sphere on inclined plane

Method 1: Define aCM to be the acceleration of the center of the sphere,

parallel to the slope and positive downwards. Writing F = ma for the sphere

and τ = Iα about an origin fixed to its center,

mgsinθ − f = maCM ,

fR = Iα, (About the center)

aCM = Rα. (Non-slip condition)

Solving,

aCM =
mgR2sinθ

I +mR2
.

Method 2: Define the origin at a point on the surface of the plane such

that it is stationary. The clockwise angular momentum of the sphere is then
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given by Eq. (5.5) as Iω +mvCMR where vCM is the velocity of the center

of mass down the slope. Accordingly,

τ =
dL

dt
=⇒ mgsinθR =

d(Iω +mvCMR)

dt
= Iα+maCMR,

aCM = Rα, (Non-slip condition)

aCM =
mgR2sinθ

I +mR2
.

Note that we could have chosen a third origin — the instantaneous point of

contact between the sphere and the slope. Then, L = Isurfaceω = (I+mR2)ω

where Isurface is the moment of inertia of the sphere about the point of con-

tact which functions as an ICoR (it is stationary by the non-slip condition).

It does not matter if we fix the origin to the sphere or choose it on the

slope as the point of contact on the sphere does not possess an instanta-

neous tangential acceleration anyway (it has a centripetal acceleration but

the fictitious force associated with this produces no torque about the point

of contact). Though we have to continuously adjust the origin due to the

perpetually changing nature of the point of contact, τ = dL
dt =

d(Isurfaceω)
dt is

always instantaneously true and can thus be applied to find the instanta-

neous accelerations which are germane.

Problem: A uniform ladder, of mass m and length 2l, is initially held

motionless, parallel to the wall. It is then given a slight push and released.

The top end begins to slide down the wall whereas the bottom end slides

along the ground. Assuming that all surfaces are frictionless, find θ̈(θ), θ̇(θ)

and the angle θ at which the ladder loses contact with the wall.

Figure 5.16: Ladder on wall
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To solve the first part of the problem, we write our F = ma and τ = dL
dt

equations. Since points on the ladder are generally accelerating, we choose

the center of mass as the point with respect to which we calculate angular

momentum and torques, for the sake of convenience.

mẍCM = N1,

mÿCM = N2 −mg,

τ = N2l sin θ −N1l cos θ =
dL

dt
= ICM θ̈ =

1

3
ml2θ̈.

Note that θ increases in the anti-clockwise direction, therefore it is taken to

be positive when writing the above equation. Now we have 5 variables —

ẍCM , ÿCM , θ̈, N1 and N2 — but only three equations. We can obtain the

remaining two by relating ẍCM , ÿCM and θ̈ via the observations that the

ends of the ladder must stick to the wall and ground and that the length of

the ladder is fixed.

Define the origin of our fixed coordinate system at the bottom of the wall.

Then, the coordinates of the center of mass of the ladder can be related to

angle θ.

xCM = l sin θ,

yCM = l cos θ,

ẋCM = l cos θθ̇,

ẏCM = −l sin θθ̇,
ẍCM = −l sin θθ̇2 + l cos θθ̈,

ÿCM = −l cos θθ̇2 − l sin θθ̈.

Solving the five equations above yields

θ̈ =
3g sin θ

4l
.

θ̇ is obtained from separating variables in θ̈ = θ̇ dθ̇dθ and integrating.

∫ θ̇

0
θ̇dθ̇ =

∫ θ

0

3g sin θ

4l
dθ

θ̇ =

√
3g

2l
(1− cos θ).



July 10, 2018 12:23 Competitive Physics 9.61in x 6.69in b3146-ch05 page 244

244 Competitive Physics: Mechanics and Waves

Actually, this result, which originated from such a complicated process, can

readily be obtained from the conservation of energy, as we shall see in the

next chapter. Back to the main point, since N1 = mẍCM , the ladder loses

contact with the wall when ẍCM = 0. From the expression for ẍCM above,

this occurs when

l sin θ · 3g
2l

(1− cos θ) = l cos θ · 3g sin θ
4l

θ = cos−1 2

3
,

where the uneventful sin θ = 0 solution has been rejected.

Problem: A uniform stick of length 2l and mass m is held motionless along

the vertical initially and is then gently released on a frictionless, horizontal

ground. Obtain an equation that relates the angular acceleration θ̈, angular

velocity θ̇ and θ, the angle between the stick and the vertical. From there,

use the method of integrating factors to obtain θ̇ in terms of θ.

Figure 5.17: Toppling stick

In the previous accelerating set-ups, the origin was always chosen at the

center of mass. Through this problem, we will underscore the importance

of choosing a convenient origin to calculate our angular momentum and dL
dt

by venturing into accelerating origins that are not the center of mass. We

will solve this part twice — using two different origins. We first write our

F = ma equations.

mẍCM = 0,

N −mg = mÿCM = −m(l cos θθ̈2 − l sin θθ̈).

Origin 1: We fix our origin at the center of mass of the stick. Then,

τ = Nl sin θ.
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Because we have defined our origin at the center of mass, even though the

stick is generally accelerating,

dL

dt
= ICM θ̈ = τ

1

3
ml2θ̈ = Nl sin θ

N =
ml

3 sin θ
θ̈.

Substituting this back into the second equation,

cos θθ̇2 +
3 sin2 θ + 1

3 sin θ
θ̈ =

g

l
.

To solve this equation, use the trick θ̈ = 1
2
dθ̇2

dθ . Then,

cos θθ̇2 +
3 sin2 θ + 1

6 sin θ

dθ̇2

dθ
=
g

l
.

Multiplying by the integrating factor 6 sin θ,

6 sin θ cos θθ̇2 + (3 sin2 θ + 1)
dθ̇2

dθ
=
d
[
(3 sin2 θ + 1)θ̇2

]
dθ

=
6g

l
sin θ.

Separating variables and integrating,∫ (3 sin2 θ+1)θ̇2

0
d
[
(3 sin2 θ + 1)θ̇2

]
=

∫ θ

0

6g

l
sin θdθ

θ̇ =

√
6g(1 − cos θ)

l(3 sin2 θ + 1)
.

This equation could have, again, been obtained directly from the conserva-

tion of energy — bearing credence to its utility.

Origin 2: The bottom end of the stick is seemingly a good origin to pick

as the unknown normal force acts at that point. However, we will discover

that the ensuing process is in fact much more tedious. Fixing the origin at

the bottom end and calculating our external torques,

τ = mgl sin θ.

As our origin is now accelerating, we must introduce another fictitious com-

ponent of torque due to a fictitious horizontal force −mẍend at the center of
mass where xend is the horizontal coordinate of the end of the ground. If we
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define the x = 0 point at the center of mass which does not translate in the

x-direction (as there are no horizontal forces),

xend = −l sin θ
−ẍend = −l sin θθ̇2 + l cos θθ̈.

The fictitious force −mẍend thus introduces a fictitious torque, about the

bottom end of the stick, given by

τfict = ml cos θ(l cos θθ̈ − l sin θθ̇2).

The relationship between the torques and the rate of change of angular

momentum, all about the end of the stick is

dL

dt
= τ + τfict.

As our origin is fixed to the rotating body,

L = Iendω = (ICM +ml2)θ̇

4

3
ml2θ̈ = mgl sin θ +ml cos θ(l cos θθ̈ − l sin θθ̇2).

After some simplification,

cos θθ̇2 +
3 sin2 θ + 1

3 sin θ
θ̈ =

g

l
,

which is the same equation as before. We can then proceed to solve the

differential equation. These two different methods emphasize the importance

of choosing a convenient origin. For the second origin, we may have skimped

on the calculation of the real torques but we spent significantly more effort

in relating dL
dt to τ with the addition of a fictitious torque τfict.

As illustrated by this problem, the general rule of thumb in rotational

dynamics is to choose the center of mass as the origin — regardless of how

tempting other origins might be — as it eradicates the need to consider

fictitious torques. This is contrary to the stance in statics which encour-

ages the judicious choice of origins to eliminate as many irrelevant forces

as possible. However, the latter is precisely possible because we are guaran-

teed the absence of accelerating origins which precludes fictitious torques.

Furthermore, we are not obliged to relate the torque to any property of a

static system (i.e. we only need to solve
∑

τ = 0 and not
∑

τ = dL
dt ) so our

fears of choosing an origin that complicates the calculation of L can also be

dispelled.
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Problems

Moment of Inertia

1. Circular Hoop*

Determine the moment of inertia of a thin circular hoop of radius r and mass

m about a perpendicular axis through its center of mass.

2. Spherical Shell*

Determine the moment of inertia of a spherical shell of total mass m and

radius r about an axis through its center.

3. Cube**

Find the moment of inertia of a cube of length l, mass m and uniform

mass density about an axis through its center of mass and perpendicular to

two of its faces using: 1) Integration 2) Squashing and Perpendicular Axis

Theorem 3) Scaling Arguments.

4. Cone**

Determine the moment of inertia of a cone of half-angle θ, massm and height

l about its height.

5. Cylinder with Liquid**

Find the moment of inertia of the shaded region, with uniform mass density

σ, about an axis passing perpendicularly through the center of the circle in

the top figure.

Suppose that you fill a hollow cylinder of radius R and length L with

some liquid of mass density ρ as shown in the bottom figure (only the side

view of the liquid is shown). Determine the moment of inertia of the liquid

about the axis of the cylinder. Verify your answers for the limiting cases:

h = 0, h = R, h = −R and h = R√
2
.
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6. Cube about Any Axis***

Prove that the moment of inertia of a uniform cube of mass m and length

l is

I =
1

6
ml2

about any axis passing through its center of mass.

7. Cube Fractal***

Suppose you have a cube of length l. You cut the cube into 27 l
3 × l

3 × l
3

cubes and remove the middle cube. You then repeat this process for each of

the subsequent 26 cubes and so on. If the total mass of the resultant fractal

is m, determine the moment of inertia of the resultant fractal about an axis

through its center of mass which is perpendicular to a face of the original

cube.

8. Cone about Slanted Axis****

Determine the moment of inertia of a cone with half-angle θ and height l

about an axis A passing through its vertex and tangential to its surface

(i.e. the axis and the height of the cone subtends an angle θ).

Torque and Angular Momentum

9. Angular Momentum of a Particle*

The expression for the angular momentum of a point mass about an origin

is given by L = 2αt ln( t
t+1 )k̂ where α is a certain constant.

a) Find the expression for the torque acting on the mass as a function of

time.

b) Knowing that τ = r × F , show that the mass will never reach point

(0, 0, 2).

c) If the position of the particle at t = 1 is (0, 2, 0), find the x and

z components of its momentum at t = 1.

10. Massive Atwood’s Machine*

A wheel of outer radius r1 is wrapped around an axle of radius r2. The

wheel’s thickness is equal to the length of the axle and the wheel and

axle have the same uniform mass density. If the combined mass of the
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wheel and axle is m3 and two masses m1 and m2 hang vertically from

the wheel and axle respectively, determine the angular acceleration of the

wheel. The axle cannot translate and does not slip with respect to the

wheel.

11. Yo-yo*

A massless string is wound around a circular axle of radius r. A wheel of

radius R is wrapped around the axle. If the moment of inertia of the wheel-

cum-axle about its center is 1
2mR

2 where m is their total mass and the

wheel and axle do not slip, determine the angular acceleration of the wheel-

cum-axle. Assume that you hold the string vertically such that the string

remains taut.

12. Rotating Ball**

In all of the following set-ups, the center of a uniform sphere of radius r and

mass m undergoes uniform circular motion about an origin O on a horizontal

table at radius R and anti-clockwise angular velocity Ω. In the first set-up,

the ball slides at a constant (center of mass) speed while not spinning at all.

In the second set-up, the ball slides at a constant speed but also spins at a

constant angular velocity about an axis perpendicular to the table such that

the right-most (with an arbitrary definition of right in the plane of the table)

side of the ball is the same side throughout. Finally, in the third set-up, the

ball is rolling without slipping with a constant (center of mass) speed and
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angular speed on the table. Note that when we refer to spinning at a certain

angular velocity, we mean the angular velocity that is observed when we

switch to the rotating frame with coordinate axes fixed to the center of mass

of the ball.

Determine the angular momentum, with respect to a point that is a

height r above the origin O, and the kinetic energy of the ball in the lab

frame in all three situations. In which case(s) does the ball experience a net

external torque about its center of mass? Try to determine the net external

torque(s).

13. Another Atwood**

A cylinder of mass 2m and radius r is hung over a pulley and connected

to another weight of mass m on a massive inclined plane with an angle

of inclination θ. The string is wrapped around the cylinder and the free

segment is tangential to its top. Assuming that there is no slipping between

all surfaces and that the string remains taut throughout the motion, find the

angular acceleration of the cylinder.

14. Staying on a Ramp**

A cylinder of mass m and radius r rolls without slipping on an initially

horizontal ground. It then encounters a slope of angle α below the horizontal.

What is the maximum center of mass velocity v0 for which the cylinder will

not lose contact with the surface? Try using the conservation of energy, which

will be introduced in Chapter 6.

15. Spinning Disc**

A uniform circular disc of radius R is spinning about its vertical axis on a

rough table. If its initial angular speed is ω0 and the coefficient of kinetic

friction between the table and the disc is μ, determine the time it takes for

the disc to come to rest.
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16. Spinning Fan**

A fan hangs vertically from a ceiling. The fan is composed of four identical,

uniform and rectangular blades of mass m, width a (the width is aligned

with the vertical) and length b connected to a central axis. If the drag force

per unit area is Dv2 where v is the speed of the area of concern, determine

the angular velocity of the fan ω(t) if its initial value is ω0.

17. Sweeping Rod**

A rod of mass m and length l is pivoted at one of its ends on a horizon-

tal table. If the table is covered with dust with a uniform surface mass

density σ, determine the minimum amount of force required to keep the rod

moving at a constant angular velocity ω as it rotates one round about the

pivot.

18. Sphere and Cylinder**

A sphere of radius b, mass m and uniform mass density initially lies motion-

less on top of a cylinder of radius a. It then begins to roll without slipping

on the exterior of the cylinder.

a) What is the condition for the sphere to not slip from the cylinder? Express

this in terms of θ̈ and the angular acceleration of the sphere about its

center.

b) Find θ̈ as a function of θ.

c) Find θ̇ as a function of θ.

d) For arbitrarily large coefficients of static friction, find the angle θ0 at

which the sphere is guaranteed to lose contact with the cylinder.

19. Sphere on Block**

A sphere of radius r, mass m and uniform mass density lies on top of a block

of massM . The block lies on a horizontal, frictionless table. If the coefficient
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of static friction between the block and the sphere is μ, determine the largest

force F exerted on the block such that the sphere does not slip relative to

the block. In this case, under what conditions does the center of the sphere

move forwards and backwards respectively?

20. Pendulum***

A uniform sphere of mass m and radius r is hung from a massless string

of length l that currently makes an angle θ = θ0 with the vertical. If the

sphere is initially stationary and the line joining its center to the point at

which the string is attached is perpendicular to the vertical, determine the

instantaneous θ̈.
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Solutions

1. Circular Hoop*

Since the perpendicular distance of all elements to the axis is r,

I =

∫
r2dm = mr2.

2. Spherical Shell*

Define a Cartesian x, y and z coordinate system with the center of the shell

as the origin. The moment of inertia about the corresponding axes are

Ix =

∫
(y2 + z2)dm,

Iy =

∫
(x2 + z2)dm,

Iz =

∫
(x2 + y2)dm.

Due to the symmetry of the shell, Ix = Iy = Iz. Therefore,

3I = Ix + Iy + Iz

=

∫
2(x2 + y2 + z2)dm

=

∫
2r2dm

= 2mr2

I =
2

3
mr2.

3. Cube**

(a) Integration

Let the x, y and z-axes be perpendicular to the faces of the cube, with the

z-axis being the axis that the moment of inertia is computed with respect to.

Define the origin at the center of the cube. The contribution of an infinitesi-

mal box element, dm = ρdxdydz where ρ is the mass density, at coordinates
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(x, y, z), to the moment of inertia is (x2 + y2)dm. Therefore,

I =

∫ l
2

− l
2

∫ l
2

− l
2

∫ l
2

− l
2

(x2 + y2)ρdzdxdy

= ρ

∫ l
2

− l
2

∫ l
2

− l
2

l(x2 + y2)dxdy

= ρ

∫ l
2

− l
2

[
lx3

3
+ ly2x

] l
2

− l
2

dy

= ρ

∫ l
2

− l
2

(
l4

12
+ l2y2

)
dy

= ρ

[
l4

12
y +

l2y3

3

] l
2

− l
2

=
ρl5

6

=
1

6
ml2.

(b) Squashing and Perpendicular Axis Theorem

To determine the moment of inertia of a cube about the z-axis, squash it

along the z-axis to obtain a uniform square. Applying the perpendicular axis

theorem to this uniform square,

Iz = Ix + Iy,

where x and y are axes in the plane of the square through its center of mass,

that are parallel to its edges. Due to symmetry, Ix = Iy. To compute Ix, we

can further squash the square into a uniform rod whose moment of inertia

is 1
12ml

2. Therefore,

Iz = 2Ix =
1

6
ml2.

(c) Scaling Arguments and Parallel Axis Theorem

The moment of inertia of a cube of edge length 2l about the z-axis is 32

times that of a cube of edge length l as its mass is eight-fold and its length
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dimensions are doubled.

I2 = 32I.

Furthermore, the former is also composed of the moment of inertia of eight

cubes about an axis through one of its edges.

I2 = 8I ′.

By the parallel axis theorem,

I ′ = I +
1

2
ml2.

Solving the above equations,

I =
1

6
ml2.

4. Cone**

Let the z-axis be along the height of the cone and define the origin at

the vertex of the cone. Let the cone span z = 0 to z = l so that the

cone is “inverted”. Denote ρ as the mass density of the cone. In cylindri-

cal coordinates, the contribution to the moment of inertia — due to an

infinitesimal element dm = ρrdφdrdz at z-coordinate z, azimuthal coor-

dinate φ and radial coordinate r — is r2dm = ρr3dφdrdz. Hence, we

need to integrate this expression over the entire cone. Observe that the

limits of integration for r are in fact dependent on z. Explicitly, r =

z tan θ (by expressing r in terms of z, we must integrate over r before z).

Therefore,

I =

∫ l

0

∫ z tan θ

0

∫ 2π

0
ρr3dφdrdz

= ρ

∫ l

0

∫ z tan θ

0
2πr3drdz

= ρ

∫ l

0

1

2
πz4 tan4 θdz

=
1

10
ρπl5 tan4 θ.



July 10, 2018 12:23 Competitive Physics 9.61in x 6.69in b3146-ch05 page 256

256 Competitive Physics: Mechanics and Waves

Since m = 1
3ρπl

3 tan2 θ,

I =
3

10
ml2 tan2 θ.

5. Cylinder with Liquid**

The moment of inertia of the shaded part can be computed by subtract-

ing that due to the square from that due to the entire circle and divid-

ing the result by four. The moment of inertia of the circle about the

center is

1

2
mcircleR

2 =
1

2
σπR4.

The square has edge length
√
2R. Its moment of inertia about the center is

thus

1

6
msquare · 2R2 =

1

6
· 2σR2 · 2R2 =

2

3
σR4.

The moment of inertia of the shaded area is thus

1
2σπR

4 − 2
3σR

4

4
=

1

8
σπR4 − 1

6
σR4.

With regard to the second problem, define the y-axis to be positive down-

wards and the x-axis to be positive rightwards. We squash the liquid in

the z-direction such that its moment of inertia about the axis is identical

to that of its cross-section (partially-filled circle) with surface mass density

ρl. Now, consider an infinitesimal element dm = ρlrdθdr in polar coordi-

nates about the center of the circle, where r is its radial coordinate and θ is

the anti-clockwise vector subtended by its position vector and the positive

y-axis. Observe that the limits of integration are coupled in this case. It is

more convenient to integrate over θ first before r. For a given radius from the

center r, the liquid spans an angle from − cos−1 h
r to cos−1 h

r . Meanwhile,

r spans from r = h to r = R. Since the perpendicular distance between an

infinitesimal element and the center is simply r, the moment of inertia of the
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liquid about the center is

I =

∫ R

h

∫ cos−1 h
r

− cos−1 h
r

r2 · ρlrdθdr

= 2ρl

∫ R

h
r3 cos−1 h

r
dr

=

[
ρlr4 cos−1 h

r

2

]R
h

−
∫ R

h

ρlr4

2
· − 1√

1− h2

r2

· − h

r2
dr

=
ρlR4 cos−1 h

R

2
− ρl

2

∫ R

h

hr3√
r2 − h2

dr

=
ρlR4 cos−1 h

R

2
− ρl

2

∫ R

h

(
hr(r2 − h2) + h3r√

r2 − h2

)
dr

=
ρlR4 cos−1 h

R

2
− ρlh

2

∫ R

h
r
√
r2 − h2dr − ρlh3

2

∫ R

h

r√
r2 − h2

dr,

where we have applied integration by parts in the third equality and used

the fact that d(cos−1 x)
dx = − 1√

1−x2 . Adopting the substitutions u = r2 − h2

and du = 2rdr,

I =
ρlR4 cos−1 h

R

2
− ρlh

4

∫ R2−h2

0

√
udu− ρlh3

4

∫ R2−h2

0

1√
u
du

=
1

2
ρlR4 cos−1 h

R
− 1

6
ρlh(R2 − h2)

3
2 − 1

2
ρlh3

√
R2 − h2

=
1

2
ρlR4 cos−1 h

R
− 1

6
ρlh
√
R2 − h2(R2 + 2h2).

A simpler way of obtaining this without any integration is as follows.

The desired moment of inertia is the moment of inertia of a sector of

angle θ = 2cos−1 h
R minus that of an isosceles triangle, all computed about

the same axis stated in the problem.

I = Isector − Itriangle.
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Isector is simply θ
2π times the moment of inertia of a full circle (of surface

mass density ρl obtained after squashing).

Isector =
2cos−1 h

R

2π
· 1
2
ρlπR2 · R2 =

1

2
ρlR4 cos−1 h

R
.

With regard to the moment of inertia of the isosceles triangle, we can divide

the isosceles triangle into two right-angled triangles along its perpendicular

bisector such that the moment of inertia of the isosceles triangle must be

twice the individual moment of inertia of a right-angled triangle, Iright, about

the proposed axis.

Itriangle = 2Iright.

Now, we can apply the parallel axis theorem to conclude that

Iright = I ′right −
(
1

2
ρlh
√
R2 − h2

)(
R2

36

)

+

(
1

2
ρlh
√
R2 − h2

)(
R2 − h2

9
+

4h2

9

)
,

where I ′right is the moment of inertia of a right-angled triangle about a per-

pendicular axis through the midpoint of its hypotenuse. In writing the above,
1
2ρlh

√
R2 − h2 is the mass of the (squashed) right-angled triangle, R

2

36 is the

squared distance between the midpoint of the hypotenuse and the center of

mass and R2−h2
9 + 4h2

9 is the squared distance between the vertex (corre-

sponding to the original axis) and the center of mass. Finally, we know that

I ′right is simply half the moment of inertia of a uniform rectangle with side

lengths
√
R2 − h2 and h. Therefore,

I ′right =
1

2
· 1

12

(
ρlh
√
R2 − h2h

) (
R2 − h2 + h2

)
=

1

24
ρlhR2

√
R2 − h2

=⇒ Itriangle =
1

6
ρlh
√
R2 − h2(R2 + 2h2).

Substituting this expression back into I,

I = Isector − Itriangle =
1

2
ρlR4 cos−1 h

R
− 1

6
ρlh
√
R2 − h2(R2 + 2h2).

To check our answers, substituting h = 0 should yield the moment of inertia

of a half-filled circle (which should be 1
2 · 1

2ρlπR
4 = 1

4ρlπR
4 — half the
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moment of inertia of a fully-filled circle).

I(h = 0) =
1

2
ρlR4 · π

2
− 0 =

1

4
ρlπR4.

h = R should yield zero as it corresponds to an empty circle.

I(h = R) = 0,

h = −R should yield the moment of inertia of a full circle — 1
2ρlπR

4.

I(h = −R) = 1

2
ρlR4π − 0 =

1

2
ρlπR4.

Finally, h = R√
2
should yield the answer obtained from the first part of the

problem (with σ = ρl).

I

(
h =

R√
2

)
=

1

2
ρlR4 · π

4
− 1

6
ρl · R√

2
· R√

2
· 2R2 =

1

8
ρlπR4 − 1

6
ρlR4.

6. Cube about Any Axis***

Define the x, y and z-axes to be perpendicular to the faces of the cube and the

origin at the center of the cube. Now let the direction vector of a general axis

A be d̂ = (a, b, c) such that a2+b2+c2 = 1. Then, the squared perpendicular

distance between an infinitesimal box element at position r = (x, y, z) and

this axis is

r2⊥ = |r|2 −
(
r · d̂

)2
= (1− a2)x2 + (1− b2)y2 + (1− c2)z2 − 2abxy − 2bcyz − 2acxz.

Due to the symmetry of the cube, the terms involving xy, yz and xz will

vanish after integrating over the entire distribution.

I =

∫
r2⊥dm

=

∫ [
(1− a2)x2 + (1− b2)y2 + (1− c2)z2 − 2abxy − 2bcyz − 2acxz

]
dm

=

∫ [
(1− a2)x2 + (1− b2)y2 + (a2 + b2)z2

]
dm

=

∫ [
a2(y2 + z2) + b2(x2 + z2) + (1− a2 − b2)(x2 + y2)

]
dm

= a2Ix + b2Iy + (1− a2 − b2)Iz.
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Since Ix = Iy = Iz =
1
6ml

2,

I = Ix =
1

6
ml2.

7. Cube Fractal***

Consider a fractal that originated from a cube of edge length 3l. The mass

of this fractal is 26 times that of a fractal with length l while its length

dimension is 3 times the latter’s. Therefore, the moment of inertia of this

larger fractal is 26× 32 = 234 times that of the original fractal.

I3 = 234I.

I3 is also composed of the moment of inertia of 26 fractals taken about

3 different types of axes. Let the original axis be the z-axis. There are 2

fractals along this z-axis with moment of inertia I. There are 12 fractals

about an axis displaced a distance l away from the z-axis, with moment of

inertia Il. There are 12 fractals about an axis displaced a distance
√
2l away

from the z-axis, with moment of inertia I√2l. Thus,

I3 = 2I + 12Il + 12I√2l.

By the parallel axis theorem,

Il = I +ml2,

I√2l = I + 2ml2.

Solving,

I =
9

52
ml2.

8. Cone about Slanted Axis****

Define the z-axis to be the height of the cone. Then, define axis A to lie

strictly in the yz-plane with a direction vector d̂ = (0, sin θ, cos θ), passing

through the vertex of the cone. Define the origin at the vertex such that

the cone spans from z = 0 to z = −l. The squared perpendicular distance
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between an infinitesimal mass element at r = (x, y, z) and axis A is

r2⊥ = |r|2 −
(
r · d̂

)2
= x2 + y2 cos2 θ + z2 sin2 θ − 2yz sin θ cos θ.

The moment of inertia is then

I =

∫
r2⊥dm

=

∫ (
x2 + y2 cos2 θ + z2 sin2 θ − 2yz sin θ cos θ

)
dm

=

∫ (
x2 + y2 cos2 θ + z2 sin2 θ

)
dm.

The integral of yz over the mass distribution is again zero due to the fact

that for every infinitesimal mass element dm at (y, z), there is a counterpart

at (−y, z). However, notice that we still cannot conveniently express the

above formula in terms of moment of inertia of the cone about its height

Iz =
∫
(x2 + y2)dm. That said, we can again leverage on the symmetry of

the cone to argue that the moment of inertia stays the same if we swap the

y and x-coordinates (we could have defined the x-axis as y and the y-axis as

x and the limits of integration over dm would not change).

I =

∫ (
y2 + x2 cos2 θ + z2 sin2 θ

)
dm.

Summing the two expressions for I,

2I =

∫ [
(x2 + y2) cos2 θ + 2z2 sin2 θ

]
dm = Iz cos

2 θ +

∫
2z2 sin2 θdm.

The latter integral can be evaluated easily by slicing the cone into infinites-

imal disks of radius r = −z tan θ and thickness dz along the z-axis. If we

define ρ to be the mass density of the cone,∫
z2dm = ρ

∫ 0

−l
z2 · πz2 tan2 θdz

=
1

5
ρπl5 tan2 θ

=
3

5
ml2
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as the mass of the cone is m = ρ · 1
3πl

2 tan2 θ · l. Therefore,

I =
Iz cos

2 θ

2
+ sin2 θ

∫
z2dm

=
3

20
ml2 tan2 θ · cos2 θ + sin2 θ · 3

5
ml2

=
3

4
ml2 sin2 θ,

where Iz has been computed in Problem 4 as 3
10ml

2 tan2 θ.

9. Angular Momentum of a Particle*

a) Since L = 2αt ln
(

t
t+1

)
k̂ and k̂ is constant,

dL

dt
= 2α ln

(
t

t+ 1

)
k̂ + 2αt · t+ 1

t
· 1

(t+ 1)2
k̂

=

[
2α ln

(
t

t+ 1

)
+

2α

t+ 1

]
k̂.

b) Suppose that the particle indeed reaches (0, 0, 2). Since L = r × p, the

angular momentum of the particle must be perpendicular to the position

vector of the particle. As the particle is along the z-axis, L = 0 which

can only occur at t = 0. However, because τ = dL
dt , the torque at t = 0

tends to negative infinity at t = 0 and points in the z-direction. However,

τ = r×F which implies that there should be no torque in the z-direction

as the particle’s position vector is along it — an evident contradiction.

c) The angular momentum of the particle at t = 1 is

L = −2α ln 2k̂.

Let the momentum of the particle be p = (px, py, pz). Then,

L =

⎛
⎝0

2

0

⎞
⎠×

⎛
⎝pxpy
pz

⎞
⎠ =

⎛
⎝ 2pz

0

−2px

⎞
⎠ =

⎛
⎝ 0

0

−2α ln 2

⎞
⎠

=⇒ pz = 0 and px = α ln 2.

10. Massive Atwood’s Machine*

The moment of inertia of the wheel and axle system is 1
2m3r

2
1 about the

center of the wheel. Let the angular velocity of the wheel and axle system
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be ω, defined to be positive in the anti-clockwise direction. The angular

momentum of the entire system (including m1 and m2) about the center of

the wheel is then

L = m1r
2
1ω −m2r

2
2ω +

1

2
m3r

2
1ω.

Note that the speeds of m1 and m2 are r1ω and r2ω by the conservation of

string. The rate of change of angular momentum is then

dL

dt
=

(
m1r

2
1 −m2r

2
2 +

1

2
m3r

2
1

)
α.

The net torque on this system about the center of the wheel arises from the

weights of m1 and m2.

τ = m1gr1 −m2gr2.

Equating τ = dL
dt ,

α =
m1gr1 −m2gr2

m1r
2
1 −m2r

2
2 +

1
2m3r

2
1

.

11. Yo-yo*

Define clockwise torques to be positive in value and T to be the tension

in the string. The only torque on the yo-yo about its center is that due to

tension.

Tr =
1

2
mR2α.

F = ma gives

mg − T = ma.

For the string to remain taut,

a = rα.

Solving the above equations,

α =
2gr

R2 + 2r2
.
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12. Rotating Ball**

In the first case, observe that the vertical axis passing through O is the

instantaneous axis of rotation of the rotating ball. Therefore, by Eq. (5.2),

the angular momentum of the ball with respect to the desired origin (which

is an ICoR) is

L1 = I0Ωk̂,

where I0 =
2
5mr

2+mR2 is the moment of inertia of the ball with respect to

a vertical axis crossing through O, by the parallel axis theorem. Thus,

L1 =

(
2

5
mr2 +mR2

)
Ωk̂.

Another way of reaching this conclusion is to see that the angular velocity

of the ball in the lab frame is ω = Ω + 0 = Ω by the additive property of

angular velocities (where 0 is the angular velocity of the ball as observed

in the rotating frame attached to its center of mass). Applying Eq. (5.5)

and using the fact that the center of mass of the ball travels at a speed

vCM = RΩ tangential to its position vector, we obtain the same result. The

kinetic energy of the ball is

T1 =
1

2
I0Ω

2 =
1

2

(
2

5
mr2 +mR2

)
Ω2.

In the second case, the angular velocity of the ball must be zero in the lab

frame for the same side of the ball to be the right-most side constantly. This

may seem counter-intuitive at first as we think that the ball is “spinning.”

However, observe that this implies that the angular velocity of the ball in the

rotating frame attached to its center must be ωrot = −Ω so that its angular

velocity in the lab frame is Ω + ωrot = 0. This must be so in order for the

lines joining the center to all points of the ball to not rotate relative to axes

fixed in the lab frame — a fact that makes sense. Therefore, the angular

momentum and kinetic energy of the ball only stem from the translational

component due to the center of mass. Applying Eq. (5.5) yields

L2 = mR2Ωk̂.

Applying Eq. (5.6), the kinetic energy of the ball is

T2 =
1

2
mR2Ω2.

In the third case, observe that the bottom of the ball that is in contact with

the table must be an ICoR, as it is not slipping relative to the table that
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is stationary in the lab frame. In fact, the instantaneous axis of rotation is

the line joining O to the bottom of the ball. Since we know that the velocity

of the center of the ball is vCM = RΩ and is directed tangentially in the

anti-clockwise direction, the angular velocity of the ball in the lab frame

must be

ω = −RΩ
r

R̂,

where R̂ is the unit vector that points radially outwards from the given pivot

(point at height r above origin O) to the center of mass of the sphere. This is a

consequence of Eq. (3.25). Moving on, by applying L = LCM+MrCM×vCM
with LCM = ICMω in this case (due to the symmetry of the ball), the

angular momentum of the ball is

L3 = mR2Ωk̂ − 2

5
mrRΩR̂.

Applying Eq. (5.6), the kinetic energy in this case is

T3 =
1

2
· 2
5
mr2 · R

2Ω2

r2
+

1

2
mR2Ω2 =

7

10
mR2Ω2.

The angular momentum of the ball about an origin fixed to its center of

mass can be retrieved by subtracting the above expressions for the angu-

lar momenta about O by the contribution due to the translational motion

of the center of mass (mR2Ωk̂) about O. Evidently, there is only a rate

of change of angular momentum in the third case — signifying that there

should be a net external torque about the center of the ball. In fact, we can

compute
dL3,CM

dt as

dL3,CM

dt
= −2

5
mrRΩ

dR̂

dt
.

That is, the rate of change only arises from the changing direction of the

angular velocity vector of the ball (which is of constant magnitude) — this

is no longer a fixed axis rotation but the system is still simple enough to

analyze with our tools so far. Observe that since R̂ points from the pivot

(proposed in the problem) to the center of the ball which rotates at angular

velocity Ω, R̂ follows suit and rotates at Ω. It was derived in Chapter 3 that

the rate of change of a vector of fixed length and rotating at Ω is

dR̂

dt
= Ω× R̂ = Ωk̂× R̂ = Ωθ̂,

where θ̂ is the unit vector in the tangential direction (positive anti-

clockwise). Therefore, the net external torque about the center of the
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ball must be ∑
τ =

dL3,CM

dt
= −2

5
mrRΩ2θ̂.

13. Another Atwood**

Define T to be the tension in the string. Let vCM and aCM be the velocity

and the acceleration of the center of mass of the cylinder along the plane,

and let ay be the vertical acceleration of mass m. The positive directions of

these quantities are upwards. Finally, let ω and α be the angular velocity and

acceleration of the cylinder, positive in the anti-clockwise direction. Applying

Newton’s second law to the mass,

T −mg = may.

Next, consider the free-body diagram of the cylinder. To ignore the contact

forces (namely friction and the normal force), take the angular momentum

about the point of contact between the cylinder and the plane. Then,

L = 2mrvCM + ICMω

dL

dt
= 2mraCM +mr2α,

as ICM = mr2 for a cylinder. The net torque on the cylinder about the point

of contact stems from its weight and tension. Recalling that we defined anti-

clockwise to be positive,

τ = T · 2r − 2mgr sin θ.

Equating τ = dL
dt ,

2Tr − 2mgr sin θ = 2mraCM +mr2α.

For the cylinder to not slip with respect to the plane aCM = rα,

2Tr − 2mgr sin θ = 3mr2α.

Furthermore, by the conservation of string, ay = −2rα. In writing this, we

note that the top of the cylinder accelerates tangentially at 2rα.

T −mg = may =⇒ T −mg = −2mrα.

Solving the last two equations,

α =
2g

7r
(1− sin θ).

Observe that the judicious choice of locating the origin at the point of contact

circumvents the need to consider the static friction acting on the cylinder.
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A less direct, but equally valid, solution picks the origin at the center of

the cylinder and hence must consider the static friction force f (defined

below to be positive downslope but is possibly negative as we may have

guessed its direction wrongly). The equation of motion of mass m remains

the same.

T −mg = may = −2mrα.

Applying Newton’s second law to the cylinder,

T − 2mg sin θ − f = 2maCM = 2mrα.

Equating τ = ICMα about the center of the cylinder,

(T + f)r = mr2α =⇒ T + f = mrα.

Adding the last two equations,

2T − 2mg sin θ = 3mrα.

Subtracting the previous equation by the equation of motion of mass m

multiplied by 2,

2mg(1 − sin θ) = 7mrα

α =
2g

7r
(1− sin θ).

Notice that we did not have to worry about the actual direction of the static

friction force in our calculations. If the final value of f turns out to be

negative, it simply means that we made a wrong guess with regard to its

direction. In fact, one can substitute α back into the equations above and

show that

f = −1

7
mg − 6

7
mg sin θ,

which implies that our hunch was incorrect and that f should really point

up-slope.

14. Staying on a Ramp**

If the cylinder does not lose contact with the surface, it will undergo circular

motion about the kink for an angle α before sliding down the ramp. Taking

the kink as the pivot, the radial component of the cylinder’s weight decreases

as the angle between its center and the vertical increases. Moreover, the

angular velocity of the cylinder increases by the conservation of energy —

implying that the required centripetal force increases. Therefore, the normal
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force, which is directed radially outwards, is minimum when the cylinder has

rotated an angle α. We simply have to consider whether it loses contact at

this point. The initial kinetic energy of the cylinder is

1

2
mv2CM +

1

2
ICMω

2 =
1

2
mv20 +

1

2
· 1
2
mr2ω2

0 =
3

4
mv20.

Let the angular velocity of the cylinder after it has rotated an angle α be ω.

By the conservation of energy,

1

2
· 3
2
mr2ω2 =

3

4
mv20 +mgr(1− cosα).

Note that the expression on the left-hand side describes the rotational energy

of the cylinder about the kink (with a moment of inertia about its circumfer-

ence 3
2mr

2). In the boundary case where the normal force is zero, the radial

component of the cylinder’s weight just provides the required centripetal

force.

mg cosα = mrω2.

Solving the above two equations, the maximum v0 is thus

v0 =

√(
7

3
cosα− 4

3

)
gr.

15. Spinning Disc**

Consider the plane of the disc in polar coordinates and define the origin at

the center of the disc. Consider an infinitesimal rectangular element at (r, θ)

with dm = σrdθdr. The normal force on this element is

dN = σrdθdrg.

The friction force on this element is df = μσrdθdrg and the torque due to

this friction about the origin is

dτ = −μσr2dθdrg,

where the negative sign arises from the fact that the torque’s direction is

opposite to that of the disc’s angular velocity. The total torque on the disc
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about the origin is then

τ =

∫ R

0

∫ 2π

0
−μσr2dθdrg

=

∫ R

0
−2πμσr2gdr

= −2

3
πμσR3g

= −2

3
μmgR

τ = ICMα,

1

2
mR2α = −2

3
μmgR

α = −4μg

3R
,

ω = ω0 − 4μg

3R
t.

When ω = 0,

t =
3Rω0

4μg
.

16. Spinning Fan**

We will determine the net torque on the entire fan about its central axis by

considering that on a single blade. Define the origin to be along the central

axis. The drag force on an infinitesimal strip of width a and length dr at a

distance r from the central axis is

Dv2adr = Dr2ω2adr.

The torque about the central axis on this element is thus

−Dr3ω2adr.

The total torque on a blade is then

τblade = −
∫ b

0
Dr3ω2adr = −1

4
Dω2ab4.

The total torque on the fan about its central axis is then four times that of

the above. The moment of inertia of a blade with respect to the central axis
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is obtained from the parallel axis theorem:

Iblade = ICM +md2 =
1

12
mb2 +m

b2

4
=

1

3
mb2.

Applying τ = Iα to the entire fan,

4

3
mb2α = −Dω2ab4

α = −3Dab2

4m
ω2.

Separating variables and integrating,∫ ω

ω0

1

ω2
dω =

∫ t

0
−3Dab2

4m
dt

1

ω0
− 1

ω
= −3Dab2

4m
t

ω =
4mω0

4m+ 3Dab2t
.

17. Sweeping Rod**

Consider an infinitesimal segment of the rod between radial distances r and

r + dr. After the rod has rotated by an angle θ, this segment would have

gathered dust of mass σrθdr. Therefore, the total moment of inertia due to

the mass after an angle θ is

Idust(θ) =

∫ l

0
σr3θdr =

σl4θ

4
.

The total angular momentum of the rod and all the dust on the table about

the pivot as a function of θ is

L = (Idust + Irod)ω.

Therefore, the rate of change of angular momentum about the pivot is

dL

dt
=
dIdust
dt

ω =
σl4ω2

4
,

since Irod and ω are constants. This must be equal to the net external torque

on the entire system which is exerted along the rod. To maximise the efficacy

of a force in generating torque about the pivot, the force must be exerted

tangentially at the tip of the rod, a distance l away from the pivot. Then,

F =
σl3ω2

4
.
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18. Sphere and Cylinder**

Let φ be the angle that the sphere has rotated clockwise in the lab frame

(i.e. if we track a point on the sphere that was originally on its top, the angle

subtended by the vertical through the center of the sphere and this point

will be φ). The center of mass of the sphere travels at an azimuthal velocity

(a+ b)θ̇. The non-slip condition is thus

(a+ b)θ̈ = bφ̈.

Let f and N be the friction and normal forces on the sphere. f is directed

tangentially in the anti-clockwise direction as the weight of the sphere tends

to pull it down the cylinder, translationally. Applying F = ma to the sphere

in the azimuthal direction,

mg sin θ − f = m(a+ b)θ̈.

Now apply τ = Iφ̈ to the sphere about its center (note that the angular

acceleration of the sphere in the lab frame is truly φ̈. In the definition of φ,

we have already included the component of rotation due to increasing θ).

The only torque is due to that of friction.

fb =
2

5
mb2φ̈

f =
2

5
m(a+ b)θ̈.

Substituting this expression for f into the second equation,

mg sin θ =
7

5
m(a+ b)θ̈

θ̈ =
5g sin θ

7(a+ b)
.

To determine θ̇, use the trick θ̈ = θ̇ dθ̇dθ , separate variables and integrate.∫ θ̇

0
θ̇dθ̇ =

∫ θ

0

5g sin θ

7(a+ b)
dθ.

After some simplification,

θ̇ =

√
10g

7(a+ b)
(1− cos θ).

When the sphere starts to leave the cylinder, the normal force on the sphere

due to the cylinder is zero. Observe thatmg cos θ−N provides the centripetal
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force which is of magnitude m(a+ b)θ̇2. Therefore, the sphere loses contact

with the cylinder when

mg cos θ = m(a+ b)θ̇2.

Substituting the expression for θ̇ and simplifying would yield

θ0 = cos−1 10

17
.

19. Sphere on Block**

Let aCM , α and ablock denote the acceleration of the sphere, angular acceler-

ation of the sphere (positive anti-clockwise) and the acceleration of the block

respectively. Let f be the friction on the sphere due to the block (defined to

be positive rightwards). Then,

F − f =Mablock

f = maCM

fr =
2

5
mr2α.

For the sphere to not slip relative to the block,

aCM − rα = ablock.

Solving the above equations,

f =
F

1− 3M
2m

.

The normal force between them is mg. Thus, from
∣∣∣ fN ∣∣∣ ≤ μ, the maximum

F is governed by ∣∣∣∣∣ F

mg − 3
2Mg

∣∣∣∣∣ ≤ μ

F ≤ μ

∣∣∣∣mg − 3

2
Mg

∣∣∣∣ .
To determine the displacement of the center of the sphere, observe the sign

of f ; if m > 3
2M , the center of the sphere will move forwards. Otherwise, if

m < 3
2M , the center of the sphere will move backwards.
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20. Pendulum***

Define θ and φ as the angular coordinates depicted in the figure below.

Figure 5.18: θ and φ

Define the horizontal x-axis and the vertical y-axis to be positive right-

wards and upwards respectively. Then, the coordinates of the center of mass

of the sphere are

xCM = l sin θ + r sinφ,

yCM = −l cos θ − r cosφ.

Therefore,

ẍCM = −l sin θθ̇2 + l cos θθ̈ − r sinφφ̇2 + r cosφφ̈,

ÿCM = l cos θθ̇2 + l sin θθ̈ + r cosφφ̇2 + r sinφφ̈.

By considering forces on the sphere,

−T sin θ = mẍCM ,

T cos θ −mg = mÿCM .

The tension T makes an angle φ − θ clockwise from the radial direction

(extending from the center of the sphere). Therefore, the torque about the

center of mass of the sphere, positive anti-clockwise, is

τ = −Tr sin(φ− θ) = Tr sin(θ − φ).

Equating this with the rate of change of angular momentum of the sphere

with respect to the center of mass, we have

2

5
mr2φ̈ = Tr sin(θ − φ).
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Furthermore, if we substitute the initial conditions θ = θ0, θ̇ = 0, φ̇ = 0 and

φ = π
2 radians into the above equations,

−T sin θ0 = ml cos θ0θ̈,

T cos θ0 −mg = ml sin θ0θ̈ +mrφ̈,

2

5
mr2φ̈ = −Tr cos θ0.

Solving the above equations simultaneously, the instantaneous θ̈ is

θ̈ = − 2g sin θ0
(2 + 5 cos2 θ0)l

.
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Chapter 6

Energy and Momentum

This chapter will introduce the conservation of linear momentum, angular

momentum and energy, which are powerful alternatives to the dynamical

laws. Though they are derived entirely from Newton’s laws in this chapter,

these conservation laws are principles — a creed — that we generally believe

in and abide by, even beyond classical mechanics. The earlier sections will

be heavy on derivations and can be skipped if the reader is more interested

in the application of these concepts.

6.1 Linear Momentum

Conservation of Linear Momentum

Recall that the net external force on a system of particles is directly propor-

tional to the rate of change of its total momentum∑
F =

dp

dt
.

If the net external force on a system is zero,

dp

dt
= 0

p = p0

for some constant momentum p0. This is the law of conservation of linear

momentum, which states that the total linear momentum of a system is

conserved if no net external force acts on it.

275
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Impulse-Momentum Theorem

An alternate perspective of the second law is obtained from separating vari-

ables and integrating. ∫ t1

t0

(∑
F
)
dt =

∫ p1

p0

dp.

If we define the impulse delivered by an external force F i during a time

interval between t0 and t1 to be

J =

∫ t1

t0

F i dt, (6.1)

the first equation can be rewritten as∑
J = Δp. (6.2)

This is known as the impulse-momentum theorem which states that the

change in the linear momentum of a system during a time interval equals

the total impulse delivered to the system during that interval.

This new formulation is particularly enlightening in the case of impulsive

forces — such as the normal forces between colliding particles — which are

gargantuan in magnitude but act over a small time interval. The “role” of

such forces is then to impart momentum into systems over a short time

interval.

6.2 Angular Momentum

Conservation of Angular Momentum

The relationship between the net external torque and the rate of change of

angular momentum of a system with respect to a non-accelerating pivot is

∑
τ =

dL

dt
.

If the net external torque is zero, the angular momentum of a system about

the same pivot is conserved.

L = L0.

For a single particle, the conservation of angular momentum can also be

derived from analyzing its equation of motion in cylindrical coordinates.
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The azimuthal equation reads

Fθ = maθ = m(rθ̈ + 2ṙθ̇),

where r is the perpendicular distance of the particle from the z-axis. If

the particle experiences no azimuthal force (and thus no torque in the

z-direction),

m(rθ̈ + 2ṙθ̇) =
m(r2θ̈ + 2rṙθ̇)

r
=
m

r
· d(r

2θ̇)

dt
= 0

=⇒ mr2θ̇ = L0

for some constant L0. That is, the z-component of the angular momentum

of the particle is conserved. A paramount special case of the conservation of

angular momentum pertains to the motion of a particle under the influence

of a strictly radial force. That is, the force on the particle is always parallel

to its position vector with respect to a certain origin.

F = F r̂.

The net torque on the particle about the origin is then

τ = r × F r̂ = 0.

Therefore, the angular momentum of the particle with respect to that origin

is conserved.

Problem: A mass m is initially undergoing uniform circular motion on a

frictionless, horizontal table at a radius r0 and tangential velocity v0 — the

centripetal force is provided by the tension that you exert on the string.

Suppose that you start to pull the string slowly such that the radial distance

r slowly decreases, determine the tangential velocity of the mass v(r).

Figure 6.1: Pulling a mass

The tension is solely in the radial direction relative to an origin defined

at the hole. Thus, the angular momentum of the block relative to the origin
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is conserved.

mr0v0 = mrv

v =
r0v0
r
.

Problem: A uniform sphere of mass m, radius r and initial angular velocity

ω0 rolls with slipping on a rough, horizontal ground. If the initial velocity of

its center of mass is zero, determine the final velocity v of the center of mass

after a long time.

The friction f on the circumference of the sphere accelerates it transla-

tionally and decreases its angular velocity. We can in fact solve this problem

using methods established so far. Applying F = ma and τ = Iα about the

center,

f = ma = m
dv

dt
,

−fr = Iα =
2

5
mr2

dω

dt
,

where the negative sign indicates that the torque due to friction tends to

oppose the angular velocity of the sphere. Dividing the second equation by

the first and rearranging, ∫ v

0
dv = −2

5
r

∫ ω

ω0

dω

v =
2

5
rω0 − 2

5
rω.

The sphere ceases to slip with respect to the ground when v = rω such that

v at this juncture is

v =
2

5
rω0 − 2

5
v

v =
2

7
rω0.

Instead of analyzing the problem in terms of forces and torques, we can also

calculate the angular momentum of the sphere with respect to a pivot on the

ground. Since the line of action of the friction force passes through this pivot

(enabling us to bypass friction entirely) and because the torques due to the

vertical forces on the sphere are balanced, the total angular momentum of

the sphere with respect to this pivot must be conserved. By the conservation
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of angular momentum about the pivot on the ground,

2

5
mr2ω0 =

2

5
mr2ω +mrv =

7

5
mrv

v =
2

7
rω0.

Angular Impulse-Momentum Theorem

Similarly, we can define the angular impulse delivered by an external torque

τ about an origin to be

I =

∫ t1

t0

τdt (6.3)

over a time interval from t0 to t1. Then,

∑
I = ΔL. (6.4)

This is the angular impulse-momentum theorem. Now, consider the case

where there is only a single impulsive force F (t) which acts at a constant

position R on an object over a short period of time. Then,

I = R×
∫

F (t)dt = R× J

=⇒ ΔL = R×Δp. (6.5)

Problem: A cylinder of radius r initially rolls without slipping on a hori-

zontal ground at angular velocity ω. Determine the vertical height h above

the ground that a horizontal pole should be used to hit the cylinder such

that it immediately rolls without slipping in the opposite direction.

Without loss of generality, assume that the cylinder initially rolls towards

the right (positive x-direction) and possesses clockwise angular velocity ω.

Let the change in the linear momentum of the cylinder be Δp. Since this

must be a negative value for the cylinder to roll backwards, the cylinder

can only be hit from the right. Furthermore, by applying Eq. (6.5), the

change in its angular momentum about its center is (h − r)Δp (defined to

be positive clockwise). Thus, the final momentum and angular momentum
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of the cylinder after the collision are

p′ = mv′ = mrω +Δp,

L′ =
1

2
mr2ω′ =

1

2
mr2ω + (h− r)Δp,

where v′ is the final velocity of the center of the cylinder and ω′ is its final

angular velocity. The non-slip condition after the collision is

v′ = rω′.

Multiplying the first equation by 1
2r and subtracting the second,

h =
3

2
r.

6.3 Work and Energy

6.3.1 Work

If a particle experiences an infinitesimal displacement dr under the influence

of a instantaneous force F , the infinitesimal work done on the particle due

to the force is defined to be

dW = F · dr.
The total work done on a particle by a force F — which is a general function

of time, position and other variables — as it travels along a path P from

position vectors r0 to r1 is

W =

∫ r1

r0

F · dr, (6.6)

where r is the instantaneous position vector of the particle and dr is the

infinitesimal displacement of the particle along path P. The above is an

example of a line integral which can be illustrated by Fig. 6.2 below.

Figure 6.2: Line integral
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Let Q be a point on the path P , at which a force F acts (F could be

any function along the path P). Let Q′ be an adjacent point on P after an

infinitesimal displacement dr. Then, the work done by the force F as the

particle travels from Q to Q′ is

dW = F · dr = F |dr| cos θ,

where θ is the instantaneous angle between the instantaneous F and instan-

taneous dr. We then repeat this for all adjacent points along P and sum

them up — leading to the integral in Eq. (6.6).

In general, we would need to know the function F and the evolution

of the particle’s position to determine W . In the special case where F is a

constant, the integral can be evaluated trivially.

W = F ·
∫ r1

r0

dr = F · (r1 − r0).

For example, if F is the weight of a particle of mass m, F = (0, 0,−mg),

W =

⎛
⎜⎝

0

0

−mg

⎞
⎟⎠ ·

⎛
⎜⎝
Δx

Δy

Δz

⎞
⎟⎠ = −mgΔz,

where Δz is the change in the z-coordinate of the particle. Finally, the work

done on a particle can also be expressed as

W =

∫ r1

r0

F · dr
dt
dt

=

∫ r1

r0

F · v dt.

The significance of the integrand will be evident soon.

Work Done on a Rigid Body

For a particle on a rigid body, its instantaneous velocity can be expressed as

v = vCM + ω × r′,

where vCM is its velocity of its center of mass and r′ is the vector pointing

from the center of mass to that particle. Therefore, the work done on the

rigid body by a force F at a point corresponding to position r′ over an
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infinitesimal time interval is

dW = F · vdt
= F · vCMdt+ F · (ω × r′)dt.

The second term can be simplified via the scalar product identity.

a · (b× c) = b · (c× a) = c · (a× b),

such that F · (ω × r′) = ω · (r′ × F ) = ω · τ where τ is the instantaneous

torque on the rigid body about its center of mass. Thus,

dW = F · vCMdt+ τ · ωdt
= F · drCM + τ · dθ,

where drCM is the infinitesimal displacement of the center of mass and dθ is

the infinitesimal rotation of the rigid body about the center of mass. Thus,

the total work done by a force on a rigid body, under the assumption of a

fixed axis rotation about the z-axis, is

W =

∫ r1
CM

r0
CM

F · drCM +

∫ θ1

θ0

τzdθ, (6.7)

where r0CM and r1CM are the initial and final positions of the center of mass

respectively while θ0 and θ1 are the initial and final angles that the rigid

body has rotated about its center of mass.1

Problem: A sphere of mass m, radius r and initial angular velocity ω0 rolls

with slipping on a rough ground. If the initial velocity of its center of mass

is zero, determine the total work done by friction on the sphere.

Observing that the net work on the sphere is that due to friction, let the

coefficient of kinetic friction between the sphere and the ground be μ. As the

force and torque about the center of mass due to friction are constant, we

simply have to evaluate the linear displacement of the center of mass s and

the angle that the body has rotated until it stops slipping, θ. The net force,

which is friction, causes the sphere to accelerate at a = μg while the torque

due to friction about its center of mass causes its angular acceleration to be

α = −5μg
2r (negative as it opposes ω0). Recall that in the previous question,

1Note that in defining these two angles, we have assumed the axis of rotation to be fixed
as it is impossible to represent a general rotation via a scalar or vector.
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we determined that the final velocity of the center of mass is 2rω0
7 . Thus, the

time taken for the sphere to stop slipping is

t =
2rω0

7μg
.

From the kinematics equations,

s =
1

2
at2 =

1

2
μg

(
2rω0

7μg

)2

=
2r2ω2

0

49μg
,

θ = ω0t+
1

2
αt2 =

2rω2
0

7μg
− 1

2
· 5μg
2r

·
(
2rω0

7μg

)2

=
9rω2

0

49μg
.

The total work done by friction is therefore

W = F · s+ τz · θ

= μmg · 2r
2ω2

0

49μg
− μmgr · 9rω

2
0

49μg

= −1

7
mr2ω2

0.

Do not sweat over the significance of the negative sign. The negative sign

of W has nothing to do with direction; 1
7mr

2ω2
0 is not the net work done

to the left. Rather, W = −1
7mr

2ω2
0, as a whole, is simply the work done.

A direction cannot be assigned to a scalar. There is also no point in describing

the magnitude of W (which, by the way, is still −1
7mr

2ω2
0 and not a positive

value2) as a scalar only has magnitude and is the magnitude in the first

place.

6.3.2 Work-Energy Theorem

The work-energy theorem states that the total work done by external forces

W on a particle or a rigid body, undergoing a fixed axis rotation, is equal to

its change in kinetic energy, ΔT .

W = ΔT. (6.8)

Proof: We shall drop the limits lest the expressions become too cluttered.

Just remember that the limits describe the relevant quantities at the initial

2Do not confuse the magnitude of a vector |A| with taking the absolute value of a scalar.
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and final states. For a particle,

W =

∫ (∑
F
)
· vdt

=

∫
mv · dv

dt
dt

=

∫
mv · dv

=

∫
1

2
md(v · v)

= Δ

(
1

2
mv2

)
,

where 1
2mv

2 is defined as the kinetic energy of a particle of mass m and

speed v. Similarly, for a rigid body under a fixed axis rotation,

W =

∫ (∑
F
)
· vCMdt+

∫
τzωdt

=

∫
MvCM · dvCM

dt
dt+

∫
ICMω · dω

dt
dt

=

∫
1

2
Md(vCM · vCM ) +

∫
ICMω dω

= Δ

(
1

2
Mv2CM +

1

2
ICMω

2

)
.

We emphasize that τz is computed with respect to the center of mass

such that τz = dLz
dt = d(ICMω)

dt = ICM
dω
dt . Recall that we have derived

1
2Mv2CM + 1

2ICMω
2 in Chapter 5 from summing the kinetic energies of indi-

vidual mass elements. Therefore, the expression in the brackets represents

the total kinetic energy of the rigid body. Finally, recall that the internal

forces in a rigid body result in no net force or torque — implying that W is

simply the total work done by external forces.

Problem: Verify that the total work done by friction on the sphere, in the

previous question, is indeed −1
7mr

2ω2
0 by computing its change in kinetic

energy.

The initial kinetic energy is

T0 =
1

2
ICMω

2
0 =

1

5
mr2ω2

0.
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The final kinetic energy, with ICM = 2
5mr

2 for a sphere, is

T1 =
1

2
mv2 +

1

2
ICMω

2

=
1

2
m

(
2

7
rω0

)2

+
1

2
· 2
5
mr2 ·

(
2

7
ω0

)2

=
2

35
mr2ω2

0 .

By the work-energy theorem, the work done by friction is

W = ΔT = −1

7
mr2ω2

0.

Power

Considering the equivalence of work and the change in kinetic energy of a

particle or rigid body, the instantaneous power delivered to a particle or rigid

body by a force F is defined to be the rate of work done by that force.

P =
dW

dt
= F · v,

where v is the velocity of the point of application.

Problem: If the drag force in air is proportional to the squared speed of an

object and P0 is the power required to push a cart on a frictionless, horizontal

ground at a constant horizontal speed v, determine the power required to

push a cart at 2v.

Since the drag force is proportional to the squared speed of the cart,

the power delivered by the drag force, and hence the power required, is

proportional to the cubed speed. Thus, 8P0 is necessary.

6.3.3 Conservation of Energy

Energy of a Particle or Rigid Body

Suppose that we are able to define a function U(r) for a force F on a particle

or rigid body3 such that

U(r) = −
∫ r

r0

F · dr = −W. (6.9)

3U would generally depend on the position vectors of all particles on a rigid body.
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Then, assuming that F is the only external force present, the work-energy

theorem implies that

U(r) = T0 − T

T + U(r) = E (6.10)

for some constant E, which has been substituted for T0 — the kinetic energy

of the particle or rigid body at the state corresponding to r0. Forces for

which such a function U(r) can be defined are known as conservative forces,

and U(r) is known as the potential energy associated with the force F .

Furthermore, the quantity E refers to the total mechanical energy of the

object. If there are multiple conservative forces acting on a particle or rigid

body, its total mechanical energy is simply the sum of the individual potential

energies and its kinetic energy.

The above equation describes the prevalent law of conservation of energy

for a single particle or rigid body. In the absence of a net non-conservative

force whose work performed cannot be represented by a potential energy

function, the total mechanical energy of a particle or rigid body is con-

served. This provides us with a powerful alternative to analyzing forces and

torques — energy. From the above derivation, we also see that work and

potential energy are essentially two different ways of expressing the same

idea if we are able to define a potential energy function U(r).

The potential energy is essentially a book-keeping device and is not a

tangible form of energy that an object physically possesses. Instead, we are

associating the object with the potential amount of work that can be per-

formed by conservative forces in defining its potential energy — analogous

to writing an additional amount of money on your checkbook in anticipation

of what others owe you. When work is finally performed by the conservative

forces, the kinetic energy of the body increases but its associated potential

energy decreases — akin to how you physically possess more money when

others pay you back but they owe you less. There is an interconversion of cur-

rency and debit, similar to that between kinetic and potential energies, but

the total value (mechanical energy) remains constant. Finally, since the net

external force required to balance the conservative force is −F , the potential

energy at a point is also the work done by an external force in bringing a

particle from r0 to r without a change in kinetic energy — this is the loan

that you gave out and thus, what others owe you. So under what conditions

can we define such a potential energy function?

Firstly, by observing U(r), we see that it is strictly dependent on the

position of the particle. Thus, our force F must also strictly be a sole
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function of position — it cannot be a function of velocity, for instance. Note

that though the magnitude of kinetic friction is constant, its direction is

opposite to the relative velocity between the particle and a surface — caus-

ing it to implicitly depend on velocity. Thus, friction is a non-conservative

force.

Next, the work done by the force in bringing a particle from r0 to r1 must

be path-independent. This is due to the sole dependence of the left-hand

side of Eq. (6.9) on the current position of the particle and independence

of how it got there. Another corollary of this is that the work done by a

force in bringing a particle around a loop and back to its initial position

must be zero. This is evidently contravened by friction, which constantly

performs negative work on a particle. As an aside, the mathematical criteria

necessary for the fulfilment of this condition are: a vector known as the

curl of the force must be null everywhere, and the force must not have any

singularities (discontinuities). The curl in Cartesian coordinates of a vector

F is written as

∇× F =

⎛
⎜⎜⎜⎝

∂
∂x

∂
∂y

∂
∂z

⎞
⎟⎟⎟⎠×

⎛
⎜⎝
Fx

Fy

Fz

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝
∂Fz
∂y − ∂Fy

∂z

∂Fx
∂z − ∂Fz

∂x

∂Fy

∂x − ∂Fx
∂y

⎞
⎟⎟⎟⎠ . (6.11)

We shall state this condition without proof as it is not of particular interest

to us.

From the expression for potential energy, we can actually write a conser-

vative force F in Cartesian coordinates, as

F = −∂U
∂x

î− ∂U

∂y
ĵ − ∂U

∂z
k̂. (6.12)

Thus, a conservative force is equal to the negative of its potential energy

gradient.

Examples of Potential Energies

Observe that the definition of a potential energy entails a reference point

r0 at which the potential energy is set to be zero — that is, an absolute

potential energy does not exist. For instance, it is meaningless to define the

gravitational potential energy of an object as mgh. We must have a point of

reference — for example, h could have been measured relative to the ground

at which the gravitational potential energy has been taken to be zero.
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Gravitational Potential Energy

If the z-axis is positive vertically upwards and if the gravitational field

strength g is constant throughout all space and time, the gravitational force

on a particle or rigid body is

F = −mgk̂
everywhere, and at every instant. The gravitational potential energy is then

UG = −
∫ h1

h0

−mgk̂ · dr = mg(h1 − h0),

where h1 is the current z-coordinate of the particle and h0 is a reference

z-coordinate. If h0 is defined to be at the origin,

UG = mgh1.

Potential Energy of a Spring with a Fixed End

Consider a spring with one end fixed to some entity, such as a wall. Define

the origin at the fixed end and attach a particle or rigid body to the other

end. Then the force on the object due to the spring is

F = −k(r − l)r̂,

where r is the position vector of the free end of the spring and l is the length

of its relaxed state. Since we have assumed the work done by the spring

to be independent of the process in defining a potential energy function,

consider the simplest case, where the spring is aligned along the x-axis and

subsequently stretched or compressed along it. Then,

F = −k(x− l).

Defining the reference point to be at x = l (relaxed state), the potential

energy of the spring is then

US = −
∫ x

l
−k(x− l)dx =

1

2
k(x− l)2.

Potential Energy Diagrams

As an aside, it is useful to plot a graph of potential energy U(r) against r

when the total mechanical energy of our system is conserved. We can then

draw a horizontal line y = E, where E is the total mechanical energy of our

system which constrains the motion of our system. The particle or system
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can only exist in regions where the potential energy is smaller or equal to

the total mechanical energy (i.e. below or on the horizontal line) because

its kinetic energy must be non-negative. Furthermore, the particle changes

its direction of motion at the points of intersection of the potential energy

curve and the horizontal line as it stops at the boundary (kinetic energy is

zero) and must thus turn due to the conservative force acting on it.

Figure 6.3: Potential energy against position

Consider the above potential energy diagram of a particle moving in a

single direction. The particle can only move within the region confined by x0
and x1 as it does not have sufficient energy to overcome the potential energy

barrier. At the extrema located at x0 and x1, the particle will have zero

kinetic energy and thus, zero velocity. Since force is equal to the negative

of the potential gradient (i.e. acts in the direction opposite to the potential

gradient), when the particle is at x0 and x1, a force will act to bring the

particle towards a lower potential energy — thus imposing restrictions on

the region that it can move in. An apt analogy would be a ball on the bottom

of a hill. If its total energy is insufficient, it will never be able to roll up the

hill, at least in classical mechanics.

Note that potential energy diagrams can also be useful in determining

whether an object, under the sole influence of conservative forces, is in a sta-

ble or unstable equilibrium. An object will be at equilibrium at an extremum

of the potential energy graph as F = −dU
dr = 0. Generally, if an object is at a

maximum, it will be in an unstable equilibrium as any deviation will lead to

a force which tends to thrust the object away from the equilibrium position.

On the other hand, if an object is at a minimum, any small deviation could

be corrected by a force that is directed towards the minimum.

Finally, let us try to tie together the concepts that we have highlighted

so far by analyzing falling dominos!

Problem: Model an array of dominoes as a line of vertical sticks of length l

that are separated by a horizontal distance d < l on a rough ground with a
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coefficient of static friction μ. Suppose we give the first stick a push such that

it topples, while its end on the ground remains stationary. It collides with

the next stick — causing the next stick to subsequently topple and collide

with its neighboring stick and so on. Assuming that only one collision occurs

between successive sticks and that the ith stick does not slip relative to the

ground until it collides with the (i+ 1)th stick, determine the condition for

the (i + 1)th stick to immediately rotate without slipping relative to the

ground after the ith stick collides with it.

Assuming that the previous condition is fulfilled and that energy is con-

served across all collisions, show that it is possible to give the first stick

a certain initial angular velocity such that all subsequent sticks possess a

common angular velocity ωf , immediately after they have been knocked by

their predecessors. Determine ωf .

Figure 6.4: Collision between ith and (i+ 1)th sticks

Consider the collision between the ith and (i + 1)th sticks depicted in

Fig. 6.4. Suppose that the impulse delivered between the sticks during the

collision is J . In addition to this impulse, the (i + 1)th stick experiences

impulses Jf and JN due to friction and the normal force from the ground too.

In order for the (i+1)th stick to not slip with respect to the ground, it must

rotate about its stationary end on the ground immediately after the collision.

This firstly requires the vertical velocity of its center of mass to be zero.

That is,

JN = J sin θ,

where sin θ = d
l (we shall use θ instead of d and l in this problem to simplify

our variables). Furthermore, the instantaneous center of rotation (ICoR) of

the stick must indeed be its end on the ground. The angular momentum

of the (i + 1)th stick with respect to its bottom end, immediately after the

collision, is Jl cos2 θ by the angular impulse-momentum theorem. Therefore,

its final angular velocity is

ω =
3J cos2 θ

ml
,
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where we have used the fact that the moment of inertia of a uniform stick of

mass m and length l about one of its ends is Iend =
1
3ml

2. By the impulse-

momentum theorem, the velocity of the center of mass of the (i + 1)th

stick is

vCM =
J cos θ − Jf

m
.

In order for the ICoR to be located at its bottom end, vCM = ωl
2 . This

implies that

Jf = J cos θ

(
cos θ − 3

2

)
.

Note that Jf may be negative as we could have guessed the direction of

friction wrongly. Imposing the constraint that
∣∣∣ JfJN

∣∣∣ ≤ μ, we require∣∣∣∣1− 3

2
cos θ

∣∣∣∣ ≤ μ

for the (i+1)th stick to immediately rotate about its bottom end after being

collided by the ith stick. For the second part, let the ith stick possess an

initial angular velocity ω0, immediately after it was knocked by the (i−1)th

stick. Then, its angular velocity immediately before its collision with the

(i+ 1)th stick, ω′
0, is given by the conservation of energy.

1

2
Iendω

′2
0 =

1

2
Iendω

2
0 +

1

2
mgl(1− cos θ)

ω′
0 =

√
ω2
0 +

3g(1 − cos θ)

l
.

Applying the angular impulse-momentum theorem to the ith stick about its

center of mass as it collides with the (i+1)th stick, its final angular velocity

ω′′
0 must obey

ICMω
′
0 −

Jl

2
= ICMω

′′
0

ω′′
0 = ω′

0 −
6J

ml
,

where ICM = 1
12ml

2 for a uniform rod. It is paramount to understand that

there are no impulses delivered by the normal force and friction to the ith

stick as the impulse J tends to lift it off the ground — causing the normal

force and hence, friction, to be zero. Moving on, notice that the final angular

velocity ω of the (i+1)th stick after the collision has already been computed
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previously as 3J cos2 θ
ml . Thus, applying the conservation of energy during the

collision,

1

2
m

(
lω′

0

2

)2

+
1

2
ICMω

′2
0 =

1

2
m

(
lω′

0

2
− J

m

)2

+
1

2
ICMω

′′2
0 +

1

2
Iendω

2,

where
lω′

0
2 and

lω′
0
2 − J

m are the velocities of the center of the ith stick imme-

diately before and after the collision. Substituting the expressions for ω and

ω′′
0 ,

J =
2mlω′

0

3 cos4 θ + 4

=⇒ ω =
3J cos2 θ

ml
=

6ω′
0 cos

2 θ

3 cos4 θ + 4
.

Substituting the expression for ω′
0 in terms of ω0,

ω =
6

√
ω2
0 +

3g(1−cos θ)
l cos2 θ

3 cos4 θ + 4
.

When the subsequent sticks attain the common initial angular velocity ωf ,

ω = ω0 = ωf in the above equation. Solving,

ωf =

√
108g cos4 θ(1− cos θ)

l(9 cos8 θ − 12 cos4 θ + 16)
.

Actually, ωf must be the initial angular velocity that we impart to the first

stick as well. In principle, we can use ωf to calculate the time interval between

successive collisions and hence the speed of propagation of the “domino

wave” (though we shall not do so due to its tedium).

Energy of a System of Interacting Particles

The previous section analyzed the energy of a single particle and rigid body.

In this section, we will analyze the energy of a system of interacting particles

whose forces of interaction only depend on the relative positions of the two

interacting particles. That is, the force on the ith particle due to the jth

particle satisfies

F ij = F ij(ri − rj).

Note that the brackets denote “a function of” and not multiplication. We first

consider a simple set-up which evokes a rather thought-provoking question.
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Problem: Two massesm1 andm2 are currently traveling at speeds v1 and v2
respectively. If they are connected by a spring with a zero relaxed length that

is currently of length x, determine the total conserved mechanical energy of

the system of the two masses, while assuming the absence of external forces

on both of them.

The spring plays the role of the force of interaction in this case. Now

consider the following flawed logic. If we take mass m1 as a single system

and imagine m2 to be fixed, the total mechanical energy of m1 should be

E1 =
1

2
m1v

2
1 +

1

2
kx2,

as this is identical to the case of a particle connected to a spring with a fixed

end. Similarly,

E2 =
1

2
m2v

2
2 +

1

2
kx2.

Then, we erroneously conclude that the total mechanical energy of the sys-

tem is simply the sum of the two energies:

Etot = E1 + E2 =
1

2
m1v

2
1 +

1

2
m2v

2
2 + kx2.

We have in fact double-counted the potential energy — you might expect

the reason behind this to be the fact that we cannot imagine the particles

to be separately fixed. This is true but the potential energy with a fixed end

can in fact be leveraged, as we shall soon see. On a side note, the correct

answer is

Etot =
1

2
m1v

2
1 +

1

2
m2v

2
2 +

1

2
kx2,

and we shall understand why in a moment.

Total Energy of a System of Two Particles

To be completely general in the determination of the conserved energy for

a system of particles, let us return to the fundamental work-energy theorem

for a single particle.

W 1
ext +W12 = ΔT1.

That is, the change in kinetic energy of the first particle ΔT1 is equal to the

work W 1
ext done on it by external forces and the work W12 done on it by the
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second particle. Adopting a similar notation,

W 2
ext +W21 = ΔT2.

Adding the two equations above,

(W 1
ext +W 2

ext) + (W12 +W21) = Δ(T1 + T2)

Wext +

∫ r11

r10

F 12 · dr1 +
∫ r21

r21

F 21 · dr2 = ΔTtot,

whereWext is the total work performed by external forces on the two particles

and Ttot is the total kinetic energy of the two particles. r10 and r20 are the

initial position vectors of the first and second particles respectively, while

r11 and r21 are their final position vectors. Notice that the two integrals

are difficult to integrate separately as F 12 and F 21 are dependent on both

r1 and r2. However, since Newton’s third law implies that F 21 = −F 12 at

every instance in time,

Wext +

∫ r11−r21

r10−r20

F 12 · d (r1 − r2) = ΔTtot.

Now, the integral can be evaluated readily if we are given the function F 12 —

remember that F 12 is a function of r1 − r2. Suppose that we can associate

an internal potential energy U12 for this interaction such that

U12 = −
∫ r11−r21

r10−r20

F 12 · d (r1 − r2) .

Then,

Wext = Δ(Ttot + U12) . (6.13)

This is the work-energy theorem for a system of two particles, which states

that the work done on the system by external forces is equal to its change in

kinetic energy and the internal potential energy associated with the interac-

tions between its constituents. Consider the case where the external forces

on the system are conservative, such that a potential energy due to external

interactions, Uext, can be defined as

Uext = −Wext.

Then,

Ttot + Uext + U12 = E (6.14)

for some constant E which is the total mechanical energy of the system

of two particles. This is the conservation of energy for a system of two
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particles — the sum of their total kinetic energies, the external potential

energy due to external influences and the internal potential energy due to

their interactions is conserved if there are no net external non-conservative

forces. Finally, let us examine U12 in greater detail.

U12(r1 − r2) = −
∫ r11−r21

r10−r20

F 12(r1 − r2) · d (r1 − r2) .

Observe that if we make a substitution of variables r′ = r1 − r2,

U12(r
′) = −

∫ r′
1

r′
0

F 12(r
′) · dr′.

Clearly, this integral is only dependent on the relative separation of the

two particles! Since this integral should be path-independent, we can fix the

second particle at the origin and evaluate the potential energy of the first

particle at a certain separation r′1 to determine U12. In the set-up concerning

two masses attached to a common spring above, U12 is thus the potential

energy of the first particle due to a spring with a fixed end.

U12 =
1

2
kx2.

The total mechanical energy of the previous set-up is then given by

Eq. (6.14).

E =
1

2
m1v

2
1 +

1

2
m2v

2
2 +

1

2
kx2.

Having understood the loophole in the previous logic, one may ponder if it is

valid to apportion the potential energy between the two particles (e.g. 1
4kx

2

each or 3
8kx

2 and 1
8kx

2). The answer is no — U12 is the potential energy

associated with the interactions between both particles and is dependent

on both r1 and r2, such that even if a particle claims that it owns a certain

amount of potential energy, the other particle can always move to receive

work and infringe on the previous particle’s “possessions”. Using the analogy

of money again, the joint firm founded by both particles now receives a

certain amount of funds from its investors. Whether the money is particle

1’s or particle 2’s cannot be distinguished as it is a joint venture so it makes

no sense to ascribe ownership. Both particles can withdraw money from

these funds as and when they want, until it is completely depleted. It just

so happens that in the cases where particle 2 is fixed such that its position

vector doesn’t change, U12 will only be dependent on r1 such that we can

associate the entire U12 with particle 1 — it is simply a fluke for particle 1

as it has found a not-so-greedy partner.
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Total Energy of an Arbitrary System of Interacting Particles

Applying the above process to a system of N particles, it is not difficult to

prove that the total internal potential energy associated with the interactions

between pairs of particles is

Uint =
∑
i<j

Uij . (6.15)

That is, the internal energy of the system is equal to the sum of the potential

energies associated with individual pairs of particles (i, j and j, i are counted

as the same pair — the i < j expression under the summation precludes

such double-counting). Once again, Uij can be computed by fixing the jth

particle at the origin and computing the potential energy associated with

the ith particle.

The work-energy theorem for a system of interacting particles states that

the external work performed on the system is equal to the change in its total

kinetic energy and internal potential energy.

Wext = Δ(Ttot + Uint). (6.16)

The total mechanical energy of a system of particles is then the sum of

the total kinetic energy, external potential energy associated with external

interactions and the internal potential energy.

E = Ttot + Uint + Uext. (6.17)

E is conserved once again if there is no net external non-conservative force

on the system. Now, you might be wondering why we could derive the work-

energy theorem and the conservation of energy for a rigid body before this

section. It just so happens that the forces of interactions between particles

on a rigid body often only depend on the magnitudes of their separations —

causing the associated potential energies between pairs of particles to follow

suit. As the relative distances between particles on a rigid body are preserved,

Uint is constant in the case of a rigid body, causing the work-energy theorem

and the conservation of energy equation above to be reduced to Eqs. (6.8)

and (6.10) (where E excludes Uint).

Non-conservative Forces

Unfortunately for non-conservative forces, we are unable to define a potential

energy function. However, our work-energy theorem is still valid and enables

us to derive certain useful results. The total work done by external forces

can be divided into two components: the work done by conservative forces,
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Wcon, and by non-conservative forces, Wnoncon. For a single particle or rigid

body,

Wcon +Wnoncon = ΔT.

Since Wcon = −ΔUext,

Wnoncon = Δ(T + Uext).

For a system of particles,

Wcon +Wnoncon = Δ(Ttot + Uint)

Wnoncon = Δ(T + Uint + Uext).

In all cases,

Wnoncon = ΔE.

The work done by non-conservative forces is equal to the change in the

mechanical energy of the system they act on.

6.4 Deriving the Equation of Motion from Energy

For a system whose energy is only dependent on a single coordinate, its

equation of motion can be obtained by differentiating the conservation of

energy equation. Consider the following problem.

Problem: A uniform sphere, of mass m and radius R, rolls down an inclined

plane with an angle of inclination, θ. Find the sphere’s acceleration, assuming

that it rolls without slipping and that the plane remains stationary.

Instead of analyzing forces and torques like we did in the previous chap-

ter, we can employ the fact that the total mechanical energy of the sphere is

conserved as static friction does no work (there is no relative motion at the

point of contact by the non-slip condition). The total mechanical energy E

Figure 6.5: Sphere on inclined plane
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at one instant in time is

E =
1

2
mv2 +

1

2
Iω2 +mgh,

where the instantaneous velocity of the center of the sphere, v, is in the

direction parallel to the plane (positive downwards) and h is the vertical

position of the center, as measured with respect to the bottom of the plane.

The instantaneous angular velocity ω is defined to be positive in the clockwise

direction. There are then two ways to proceed from here.

Method 1: Since the total mechanical energy is conserved, its rate of change

is zero, dEdt = 0.

mav +
2

5
mr2αω +mg

dh

dt
= 0,

where a is also in the direction parallel to the plane and α is the angular

acceleration clockwise. Next we observe that

dh

dt
= −v sin θ,

as dh
dt is the vertical velocity of the center of the sphere (positive in the

upward direction) while v is the velocity of the sphere in the downward

direction parallel to the plane. Lastly, using the non-slip condition v = rω

and a = rα, we can write

mav +
2

5
mav −mgv sin θ = 0.

Cancelling the v’s,

a =
5

7
g sin θ.

Note that we can cancel the v’s regardless of whether its magnitude is zero

for the following physical reason: the dynamical laws do not depend on the

current velocity of the sphere. Thus, regardless of whether the sphere just

begins moving or already possesses a certain velocity, it will experience the

same acceleration.
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Method 2: Let s be the distance of the point of contact of the sphere with

the plane, from the top of the plane. Then, v = ṡ and we can write

E =
1

2
mṡ2 +

1

5
mṡ2 +mgh.

Then, by taking dE
ds = 0,

7

10
m
dṡ2

ds
+mg

dh

ds
= 0.

Observing that dṡ2

ds = 2s̈ and dh
ds = − sin θ,

7

5
ms̈ = mg sin θ

s̈ =
5

7
g sin θ.

The two methods are essentially the same, except that the second method

adroitly circumvents the questionable boundary case when v = 0.

6.5 Galilean Transformations and Center

of Mass Frame

Before we apply the conservation laws in the previous sections in solving

new types of problems, let us digress for a while and discuss about Galilean

transformations and the center of mass frame which will be useful later.

6.5.1 Galilean Transformations

The Newtonian formulation assumes the existence of absolute space and

time. Inertial frames move at a constant velocity with respect to this absolute

space and share the same universal time. A Galilean transformation is a

transformation from one inertial frame to another under these assumptions

of space-time. Formally, consider two inertial frames S and S′. An event in

frame S occurs at position (x, y, z) and time t. Now suppose that frame S′

is moving at a velocity v with respect to frame S (Fig. 6.6). We wish to

derive the coordinates (x′, y′, z′) and t′ of the same event as measured by an

observer in S′. We shall append a prime, ′, behind our quantities to denote

that they are measured with respect to S′.
Based on the second axiom regarding a universal time,

t′ = t.
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Figure 6.6: Galilean transformation

Furthermore, the discrepancy in the coordinates of the event as measured

by S′ originates from its own motion. Assuming that the origins of the coor-

dinate frames coincided at t = 0,

x′ = x− vxt,

y′ = y − vyt,

z′ = z − vzt,

=⇒ r′ = r − vt,

where r and r′ are the position vectors of the event as measured by an

observer in S and S′ respectively. Let the velocity of a particle with respect

to frame S be u. Then the velocity of that particle with respect to S′, u′, is

u′ =
dr′

dt
=
dr

dt
− v = u− v,

which is a very intuitive result which states that we can simply subtract the

relative velocity of a frame with respect to another to calculate the velocity

of a particle as observed in the former frame. Moreover, since the mass of

a particle is assumed to be invariant across inertial frames (as it is deemed

an intrinsic property), we can then relate its momentum with respect to S′,
denoted by p′, to that with respect to S, which we will call p.

p′ = m(u− v) = p−mv

=⇒ Δp′ = Δp.

Summing these individual values for a system of particles, it implies that

the change in momentum of a system as measured by S is the same as that

measured by S′. Thus, if the total momentum of a system is conserved in S,

it is also conserved in S′.
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Now let us consider the acceleration of a particle in S, indicated by a,

and in S′, represented by a′.

a′ =
du′

dt
=
du

dt
= a.

This means that the acceleration of a particle is the same in both frames.

A last assumption of Galilean relativity is that forces are invariant. There-

fore, if the net forces in S and S′ are F and F ′ respectively,

F = F ′.

Since

F = ma = ma′

=⇒ F ′ = ma′.

That is, Newton’s second law is valid in all inertial frames. Lastly, we wish to

derive an expression for the kinetic energy of a system, T ′, in S′ but we shall
first introduce the center of mass frame as it has certain unique properties.

6.5.2 Center of Mass

As stated before, the position vector R of the center of mass of a system of

N discrete particles or a continuous mass distribution is defined as

R =

∑N
i=1miri∑N
i=1mi

=

∫
rdm∫
dm

.

The velocity of the center of mass, vCM is then

vCM =

∑N
i=1mivi∑N
i=1mi

=

∫
vdm∫
dm

.

Note that this implies that the center of mass of a system travels at a constant

velocity vCM if there are no net external forces as the total linear momentum

is conserved.

The Center of Mass Frame

Following from the expressions above, let us consider the motion of a system

with respect to a frame attached to the center of mass of the system. For

a discrete system (the following can be easily extended to the continuous
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case), let the velocity of the ith particle in the center of mass frame be u′
i

and that in the lab frame be ui. Then,

u′
i = ui − vCM ,

p′ =
N∑
i=1

miu
′
i

=
N∑
i=1

mi(ui − vCM )

=MvCM −MvCM ,

where M is the total mass of the system. Then,

p′ = 0. (6.18)

Thus, the total momentum of the system with respect to the center of mass

frame, p′, is 0.

6.5.3 Kinetic Energy Transformation

We now wish to relate the kinetic energy T ′ of a system of particles with

respect to frame S′, to T , its kinetic energy with respect to frame S. Once

again, frame S′ is traveling at velocity v with respect to frame S. Adopting

the same notation as before,

T ′ =
1

2

N∑
i=1

miu
′
i · u′

i

=
1

2

N∑
i=1

mi(ui − v) · (ui − v)

=
1

2

N∑
i=1

miu
2
i +

1

2

N∑
i=1

miv
2 −

N∑
i=1

miui · v

= T +
1

2
Mv2 − v ·

N∑
i=1

miui.

This expression is not particularly edifying in itself. However, if we choose

frame S to be our center of mass frame,
∑N

i=1miui = 0. Thus,

T ′ = TCM +
1

2
Mv2CM , (6.19)
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where vCM is the speed of the center of mass in frame S′. We see that the

kinetic energy of a system viewed in a frame S′ is simply the sum of the

kinetic energy of that system in the center of mass frame and the kinetic

energy by treating the system as a single mass M traveling at vCM . Further-

more, by taking the changes of both sides, it can be seen that the changes in

the kinetic energies of a system with respect to all inertial frames are identical

if there is no net external force acting on it (so that vCM is constant). More-

over, since the potential energy of a system of particles only depends on their

relative positions, the potential energy of a system is invariant across inertial

frames. Ultimately, this means that if there are no net external forces and

the total mechanical energy of a system is conserved in one inertial frame,

the total mechanical energy is conserved in all inertial frames.

6.6 Collisions

The collisions between objects constitute a typical class of problems. Gen-

erally, there can be two classifications — elastic and inelastic collisions. The

former refers to the situation where the total kinetic energy of the system of

colliding bodies is conserved while the latter means that some of that energy

is lost during the collision. Collision problems can generally be solved easily

using the conservations of linear and angular momenta, and predetermined

conditions on the energy of the system (such as the condition that 40% of

the system’s kinetic energy is lost after collision).

6.6.1 Elastic Collisions

One-dimensional Collisions

In a one-dimensional elastic collision, two particles initially traveling at cer-

tain velocities along a line collide and separate with certain velocities along

the same line. In such cases, we can apply the following theorem instead of

the conservation of energy principle, which involves a cumbersome quadratic

equation.

Theorem: The final relative velocity between two particles is the negative

of the initial relative velocity in a 1-D elastic collision.

Proof: We define ui to be the initial velocity of the ith particle and vi to be

the final velocity of the ith particle. We will adopt this definition throughout

this chapter. Applying the conservation of momentum and energy to the
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system comprising both particles, in light of the lack of external forces,

m1u1 +m2u2 = m1v1 +m2v2,

1

2
m1u

2
1 +

1

2
m2u

2
2 =

1

2
m1v

2
1 +

1

2
m2v

2
2 .

Rearranging,

m1(u1 − v1) = m2(v2 − u2),

1

2
m1(u1 − v1)(u1 + v1) =

1

2
m2(v2 − u2)(v2 + u2).

Dividing the second equation by the first and simplifying, we obtain

u1 − u2 = v2 − v1,

which is the statement we wish to prove. We can use this fact, in replace-

ment of the conservation of energy, in combination with the conservation

of linear momentum to solve such one-dimensional elastic collisions between

two particles.

Elastic Collisions with Massive Object

Consider the head-on elastic collision of a gas particle, with a small mass m

and initial velocity u1, and the stationary wall of a gas piston with mass M

where m�M . Find the final velocity of the particle v1.

Figure 6.7: Collision of gas particle with massive wall

Using both the equation we just derived and the conservation of

momentum,

u1 = v2 − v1,

mu1 = mv1 +Mv2
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where v1 and v2 are the final velocities of the particle and wall, positive in

the direction of u1. Solving, we get

v1 =
m−M

m+M
u1,

v2 =
2m

m+M
u1.

As m
M → 0,

v1 = −u1,
v2 = 0.

We see that the particle just reverses its direction and travels at the same ini-

tial speed while the wall remains practically stationary. Now let us consider

the case where the wall initially moves at a velocity u2 in a direction par-

allel to u1. Instead of rewriting the equations again, let us consider a frame

that is traveling at a constant velocity u2. In that frame, the wall is station-

ary while the particle is initially traveling at speed u1 − u2. Thus, we are

back to the above problem since the energy and momentum of this system

are still conserved after a Galilean transformation. Applying the result we

derived before, we see that the final velocity of the particle with respect

to this frame is simply u2 − u1. Thus, the final velocity of the particle

in the lab frame, which is the sum of the final velocity as viewed by the

moving frame and the velocity of the moving frame relative to the lab

frame, is 2u2 − u1. Interestingly, the change in the kinetic energy of the

particle is

ΔT = Tf − Ti =
1

2
m(2u2 − u1)

2 − 1

2
mu21 = 2(u22 − u1u2).

Observe that when u1 and u2 are opposite in direction, the total kinetic

energy of the particle increases. When u1 and u2 are in the same direction and

u1 > u2, which is valid most of the time for a gas piston, the kinetic energy

of the particle actually decreases. This is the microscopic reason behind the

gain and loss in the internal energy of a gas when a piston is pushed or pulled

to compress or expand a gas, respectively.

General One-Dimensional Collision

Problem: Two particles, with masses m1 and m2, travel along a line with

velocities u1 and u2. They then collide and still travel along the same line

after the collision. Find their final velocities v1 and v2.
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Considering the conservation of momentum and the relative velocities of

the particles,

m1u1 +m2u2 = m1v1 +m2v2,

u1 − u2 = v2 − v1.

Solving,

v1 =
2m2u2 + (m1 −m2)u1

m1 +m2
,

v2 =
2m1u1 + (m2 −m1)u2

m1 +m2
.

A special case occurs when m1 = m2 — the particles simply exchange their

velocities.

Two-Dimensional Elastic Collisions

Consider the following collision (Fig. 6.8). A particle of mass m and initial

velocity u1 undergo a side-on collision with another stationary particle of

mass m. Their final velocities are not along the same line. Given θ, find φ.

Figure 6.8: 2-D elastic collision

Define the xy-plane to be the plane the particles lie in after their collision.

Writing our equations based on the conservation of energy and momentum

in the x and y directions,

u21 = v21 + v22 ,

u1 = (v1 cos θ + v2 cosφ) =⇒ u21 = v21 cos
2 θ + v22 cos

2 φ+ 2v1v2 cos θ cosφ,

0 = v1 sin θ − v2 sinφ =⇒ 0 = v21 sin
2 θ + v22 sin

2 φ− 2v1v2 sin θ sinφ.

Adding the last two equations,

u21 = v21 + v22 + 2v1v2 cos(θ + φ).

Subtracting the above by the first equation,

cos(θ + φ) = 0 =⇒ φ =
π

2
− θ.
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Thus, we see that the particles travel at right angles to each other. We could

have also proven this result in a much less tedious way using vectors. By the

conservation of momentum and energy,

u1 = v1 + v2,

u1 · u1 = v1 · v1 + v2 · v2.

Taking the dot product of the first equation with itself and subtracting the

second, we obtain the result

v1 · v2 = 0,

which implies that the particles travel at right angles with respect to each

other after the collision. We now understand the physics behind billiards!

The Center of Mass Frame

Elastic collisions between two particles are often easy to deal with in the

center of mass frame. We shall first prove a property with regard to a collision

in the center of mass frame. Let the initial momenta of the two objects with

masses m1 and m2 be p1 and p2 in the center of mass frame, respectively.

Let their final momenta be p3 and p4. Then by definition of the center of

mass frame,

p1 + p2 = 0 =⇒ p1 = −p2,

p3 + p4 = 0 =⇒ p3 = −p4.

Furthermore, by the conservation of energy,

p1 · p1

2m1
+

p2 · p2

2m2
=

p3 · p3

2m1
+

p4 · p4

2m2
.

Since p2 = −p1 and p4 = −p3,

p1 · p1

2m1
+

−p1 · −p1

2m2
=

p3 · p3

2m1
+

−p3 · −p3

2m2
.

Thus,

p1 = p3,

p2 = p4.

We see that for the two particles, the magnitudes of their momenta, and thus

the magnitudes of their velocities, do not change after the collision, though

their directions may vary.
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General Two-Dimensional Collisions

Let us use the center of mass frame to analyze a general two-dimensional

collision. A particle m1 approaches a stationary particle m2 at velocity u in

the positive x-direction and undergoes an off-center collision. Our objective

is to analyze the resultant motion of these particles. Note that this problem

is rather general as we can simply switch to the frame of m2 and apply the

results of this problem in cases where m2 moves in the lab frame.

As we shall see, there is, in fact, still one variable parameter as the system

is indeterminate based on the above conditions. Consider the center of mass

frame which travels at

vCM =
m1u

m1 +m2

in the x-direction, with respect to the lab frame. The velocities of the two

particles in this center of mass frame (Fig. 6.9) are

Figure 6.9: Motion in CM frame

v′1 = u− vCM =
m2u

m1 +m2
,

v′2 = − m1u

m1 +m2
,

in the x-direction (the x-axis of the center of mass frame is aligned with

that of the lab frame). After the collision, the speeds of the particles —

|v′1| = m2u
m1+m2

and |v′2| = m1u
m1+m2

— are preserved but may be directed at

arbitrary angles relative to the x-axis. Let the final velocity of m1 be directed

at θCM above the positive x-axis, in the center of mass frame. This shall be

the only parameter in this system.

Let the final vectorial velocities of the particles in the center of mass

frame be v′
1 and v′

2, respectively. Then, the final velocity of each particle in

the lab frame is the sum of its final vectorial velocity, as measured in the

center of mass frame, and the velocity of the center of mass in the lab frame
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vCM . That is, for m1,

v1 = v′
1 + vCM =

u

m1 +m2

(
m1 +m2 cos θCM

m2 sin θCM

)
.

For the total momentum to be nullified in the center of mass frame, the

velocity of m2 in the center of mass frame must be the negative of the

velocity of m1 in the center of mass frame, scaled by a factor of m1
m2

.

v′
2 = −m1

m2
v′
1.

Thus,

v2 = v′
2 + vCM =

u

m1 +m2

(
m1 −m1 cos θCM

−m1 sin θCM

)
.

There are several interesting results from the above analysis. Firstly, consider

the possible angles of deflection in the lab frame for m1.

We have to consider two cases — namely, when vCM ≥ v′1 and vCM <

v′1. The former case occurs when m1 ≥ m2 while the latter occurs when

m1 < m2. For both cases, let OO′ denote the vector vCM and draw a circle

of radius v′1 about O′. v1 is the sum of vCM and v′
1. The latter vector can

be directed from O′ to any point on the circle (as θCM is not fixed).

Figure 6.10: Case 1: vCM ≥ v′1

In the first scenario, O lies outside or on the boundary of the circle —

imposing an upper bound on the possible angle of deflection. From Fig. 6.10

above, it is evident that the maximum angle of deflection in the lab frame,

θmax occurs when v1 and v′
1 are perpendicular.

θmax = sin−1 v′1
vCM

= sin−1 m2

m1
.

The final speed of m1 is then

v1 =

√
m2

1 −m2
2

m1 +m2
u.
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The final velocities are

v1 =

⎛
⎝ m1−m2

m1
u√

m2
1−m2

2m2

(m1+m2)m1
u

⎞
⎠ ,

v2 =

(
u

−
√
m2

1−m2
2

m1+m2
u

)
.

Furthermore, observe that for angles of deflection below θmax, there are

two possible final configurations and hence, two possible final velocities that

correspond to one angle of deflection (a line drawn with a smaller angle of

deflection has two intersections with the circle).

Figure 6.11: Case 2: vCM < v′1

When vCM < v′1 (i.e. m1 < m2), the point O lies within the circle

(Fig. 6.11). Then, all angles of deflection are possible. By considering the

two cases above, it can be seen that the backscattering of m1 (such that the

horizontal component of its final velocity is in the negative x-direction) is

only possible if m1 < m2. For particle m2, a similar analysis follows, with the

provision that vCM = |v′2|. Thus, O always lies on the boundary of the circle

around O′ for m2 — implying that particle m2 can never be backscattered.

Angle Between Resultant Velocities

The angle θsep between the resultant velocities of the particles in the lab

frame can be computed via the dot product of v1 and v2.

cos θsep =
v1 · v2

|v1||v2|
=
m2

1u
2 −m1m2u

2 + (m1m2 −m2
1)u

2 cos θCM√
m2

1u
2 + 2m1m2u2 cos θCM +m2

2u
2

·
√
m2

1u
2 − 2m2

1u
2 cos θCM +m2

1u
2

=
(m1 −m2)

√
1− cos θCM√

2(m2
1 +m2

2 + 2m1m2 cos θCM )
.



July 10, 2018 12:23 Competitive Physics 9.61in x 6.69in b3146-ch06 page 311

Energy and Momentum 311

It can be seen that θsep =
π
2 , when m1 = m2, is merely a special case of the

above result.

6.6.2 Inelastic Collisions

Perfectly Inelastic Collisions

A perfectly inelastic collision is a collision where the greatest loss of kinetic

energy is observed. We shall now prove that this happens when the particles

“stick” together after collision (i.e. they travel at the same final velocity).

Adopting the same notation for the initial and final velocities of the

particles, we attempt to minimize the final kinetic energy of the system,

which is

Tf =

N∑
i=1

1

2
miv

2
i .

This can be related to the final kinetic energy in the center of mass frame

Tf = TCM +
1

2
Mv2CM ,

as proven earlier. It is obvious that the kinetic energy of a system, with

respect to any frame of reference, is always greater than or equal to zero.

Since vCM is constant as a consequence of the conservation of linear momen-

tum, Tf is minimum when TCM is 0. In order for this to be true, all particles

must be stationary in the center of mass frame after the collision — meaning

that they travel at the same resultant velocity vCM in the lab frame.

Problem: A particle of mass m1 of initial velocity u1 collides and sticks to a

particle of mass m2 and initial velocity u2, which is along the same direction

as u1. Determine the energy lost in this inelastic collision.

We can again consider the center of mass frame, in which the initial

velocities of the particles are

u′1 =
m2(u1 − u2)

m1 +m2
,

u′2 =
m1(u2 − u1)

m1 +m2
.

Remember that the change in kinetic energy is invariant across all inertial

frames if there is no net external force on the system (such that vCM is

constant). Therefore, we can determine the total loss in kinetic energy in the
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center of mass frame, which is the total initial energy. This is given by

1

2
m1u

′2
1 +

1

2
m2u

′2
2 =

1

2

m1m2

m1 +m2
(u1 − u2)

2,

as the final velocities of the particles are zero in the center of mass frame.

Inelastic Collisions

In the more general case, an inelastic collision may occur such that some

energy is lost, but it may be less than or equal to that in the perfectly

inelastic case. Then, the coefficient of restitution, e, of a two-particle colli-

sion supersedes the conservation of energy equation. e is defined to be the

magnitude of the ratio of the final relative speed of the two particles to their

initial relative speed, usually along the line of impact.

e =
v2x − v1x
u1x − u2x

,

where the x-direction has been defined to be the line of impact. For a one-

dimensional collision,

e =
v2 − v1
u1 − u2

,

e = 1 corresponds to an elastic collision while e = 0 corresponds to a per-

fectly inelastic collision. We can analyze a collision associated with a coeffi-

cient of restitution e in the center of mass frame, while adopting the same

definitions for p1, p2, p3 and p4. Due to the definition of the center of mass

frame,

p2 = −p1,

p4 = −p3.

From the definition of the coefficient of restitution, and because relative

velocities do not vary across inertial frames,

e =
v2x − v1x
u1x − u2x

=

p4x
m2

− p3x
m1

p1x
m1

− p2x
m2

=
−
(

1
m1

+ 1
m2

)
p3x(

1
m1

+ 1
m2

)
p1x

=⇒ p3x = −ep1x.
Similarly,

p4x = −ep2x.
The above results imply that the component of the final velocities along the

line of impact is e times that of the negated initial velocities in the center of
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mass frame. For a one-dimensional collision,

v′1 = −eu′1,
v′2 = −eu′2,

where a prime has been used to denote that these quantities are measured

in the center of mass frame.

Problem: A particle of mass m1 and initial velocity u1 undergoes a head-

on collision with another particle of mass m2 and initial velocity u2. If the

coefficient of restitution is e, determine the final velocities of the particles

and the total loss in energy due to the collision.

In the center of mass frame, which travels at velocity vCM = m1u1+m2u2
m1+m2

with respect to the lab frame, the initial velocities of the particles are

u′1 =
m2(u1 − u2)

m1 +m2
,

u′2 =
m1(u2 − u1)

m1 +m2
.

The final velocities of the particles in the center of mass frame are

v′1 = −eu′1 =
em2(u2 − u1)

m1 +m2
,

v′2 = −eu′2 =
em1(u1 − u2)

m1 +m2

Thus, the final velocities of the particles in the lab frame are

v1 = vCM + v′1 =
em2(u2 − u1) +m1u1 +m2u2

m1 +m2
,

v2 = vCM + v′2 =
em1(u1 − u2) +m1u1 +m2u2

m1 +m2
.

The total loss in energy is the same in all inertial frames as the total momen-

tum of the system is conserved. Thus, we can simply compute the loss in the

center of mass frame which is

1

2
m1u

′2
1 +

1

2
m2u

′2
2 − 1

2
m1v

′2
1 − 1

2
m2v

′2
2 =

1

2
(1− e2)m1u

′2
1 +

1

2
(1− e2)m2u

′2
2

=
(1− e2)m1m2(u1 − u2)

2

2(m1 +m2)
.
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6.6.3 Collisions with a Rigid Body

In a collision between a particle and a rigid body, the principle of the con-

servation of angular momentum, with respect to an arbitrary fixed point,

should be leveraged in addition to that of momentum conservation. The

point of collision or a point lying on the line of impact generally functions

as a convenient origin.

Problem: A point bead of mass m travels at speed u and collides elastically

with a stationary uniform rod, of mass 3m and length l, at a point that

is l
4 distance away from its center of mass. The center of masses of both

objects travel in the direction of the the initial velocity of the bead after the

collision. What are the final velocities of the bead and the center of mass of

the rod, and the angular velocity of the rod?

Figure 6.12: Colliding bead and rod

Analyzing this problem, we see that angular momentum, linear momen-

tum and the total energy of this system are conserved as there is no net

external force on this system. Let the final velocities of the bead and the

center of mass of the rod be v1 and v2 respectively, and let the final clock-

wise angular velocity of the rod be ω. We pick a stationary origin, O, that

is at the same vertical level as the bead for our angular momentum calcu-

lations so that the angular momentum due to the bead is zero, both before

and after the collision.

mu = mv1 + 3mv2, (CoLM)

0 = ICMω +M (rCM × vCM )z =
1

4
ml2ω − 3

4
mlv2, (CoAM)

1

2
mu2 =

1

2
mv21 +

3

2
mv22 +

1

8
ml2ω2, (CoE)

where ICM = 1
12 · 3m · l2 = 1

4ml
2. From the second equation,

3v2 = lω.
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Substituting this into the first and third equations,

mu = mv1 +mlω,

mu2 = mv21 +
7

12
ml2ω2.

We can isolate and eliminate v1, so that

(u− lω)2 = u2 − 7

12
l2ω2

ω =
24u

19l
,

v2 =
8

19
u,

v1 = − 5

19
u.

6.7 Varying Amounts of Moving Mass

You and your (N − 1) friends have just come up with a brilliant idea —

a human-propelled boat! Coincidentally, you all possess the same mass m.

Initially all N of you stand on a stationary boat which has a mass assumed

to be negligible. Due to the limited strength of you and your friends, each

of you can only run on the boat and jump off at a velocity u with respect to

the boat. How should (N − 1) people jump to propel the last person at the

greatest velocity? The boat rests on frictionless ground.

Suppose that all (N−1) people jump off at the boat at the same time. Let

the final velocity of the boat be v. Then, by the conservation of momentum,

0 = (N − 1)m(v − u) +mv =⇒ v =
N − 1

N
u.

However, now suppose that the (N−1) people jump off one at a time. Let vi
be the speed of the boat after i people have jumped off. Consider the event

where the (i+1)th person jumps off. Before the jump, the total momentum

of the boat and the passengers on the boat is (N − i)mvi. After the jump,

the boat travels at vi+1 — implying that the person who leapt off the boat

travels at vi+1 − u in the lab frame (Fig. 6.13).

By the conservation of momentum,

(N − i)mvi = (N − i− 1)mvi+1 +m(vi+1 − u).

Thus,

vi+1 = vi +
1

N − i
u.
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Figure 6.13: Propelling a boat

Repeatedly applying this recursion formula with v0 = 0,

vN−1 =

(
1

2
+ · · ·+ 1

N

)
u = u

N∑
i=2

1

i
.

We observe that this is larger than the previous final velocity as there are

(N − 1) terms which are each individually equal to or larger than u
N . The

second solution is, in fact, the optimal solution. This is because the velocity

of the people that have jumped off the boat in the lab frame is −u relative

to the resultant velocity of the boat after the jump. If they had jumped off

in intervals, each individual would have left the boat at a larger velocity

towards the left in the lab frame as compared to the situation where they

simultaneously jumped, as the boat has not sped up yet. Since the total

momentum of the system of people must still be conserved, the final person

and boat will be propelled at a larger velocity.

Finally, suppose that there are now j(N − 1) people with mass m
j while

the final person has mass m (so that the total mass remains the same).

Repeating the above calculations where the people jump off one at a time,

the final velocity of the last person on the boat is

vjN−1 =

(
1

j + 1
+ · · · + 1

jN

)
u

= u

jN∑
i=j+1

1

i
>

(
j · 1

2j
+ j · 1

3j
+ · · · + j · 1

jN

)
u,

where the inequality is obtained from dividing consecutive terms into groups

of length j and where the last expression is vN−1 derived previously. It is,

therefore, also beneficial to divide the propulsion of masses into smaller bits,

in addition to thrusting them individually.

Fuel-Propelled Rocket

Encouraged by the fact that interspersed propulsions of small masses opti-

mize the speed of the boat, let us consider the case where we replace the boat



July 10, 2018 12:23 Competitive Physics 9.61in x 6.69in b3146-ch06 page 317

Energy and Momentum 317

Figure 6.14: Rocket

of people with a rocket that possesses an initial mass mi. Every instance,

which is not necessarily regular, it releases an infinitesimal amount of mass

at a velocity u with respect to itself, from its back. What is the speed of the

rocket when its mass reaches mf , assuming that its initial speed is vi?

Let the mass of the rocket and its speed at an instance be m and v,

respectively. When the rocket releases −dm amount of mass (−dm is positive

as dm is negative), its mass becomesm+dm and its velocity becomes v+dv in

the lab frame. Thus, the ejected fuel must have velocity v+dv−u (Fig. 6.14).

By the conservation of momentum,

mv = (m+ dm)(v + dv)− dm(v + dv − u)

dv = − u

m
dm,

vf − vi = −u
∫ mf

mi

1

m
dm = −u[ln |m|]mf

mi = u ln
mi

mf

vf = vi + u ln
mi

mf
.

The above example of rocket motion shows how to apply the conserva-

tion of momentum in solving problems. Unfortunately, the ln factor in the

expression looks especially disheartening — particularly when this method

of propulsion is the epitome of efficiency!

Systems under a Net External Force

The previous systems were not under the influence of a net external force —

enabling the application of the conservation of momentum. For systems

with variable masses under a net external force, we can apply the impulse-

momentum theorem to the system, across an infinitesimal time interval dt.

Problem: A cart is traveling at a velocity v. Suppose that you begin to

add sand traveling at a velocity u, to the cart at a mass per unit time σ,

determine the force F you need to exert on the cart so that it travels at a

constant velocity v.

Let the mass of the cart at the current instance be m. Then during a

time interval dt, the cart gains an additional dm amount of sand, which

was initially traveling at velocity u. Its final mass and velocity then become
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m+ dm and v + dv respectively. From the impulse-momentum theorem,

Fdt = Δp = (m+ dm)(v + dv)− (mv + udm).

Fdt is the impulse delivered during the short time interval while the right-

hand side represents the change in the combined momentum of the cart and

the incoming sand. Discarding the second order term dmdv and dividing the

entire equation by dt,

F =
dm

dt
(v − u) +m

dv

dt
.

Since dv
dt = 0 and dm

dt = σ,

F = σ(v − u).

Problem: A chain of uniform linear mass density λ and length l is initially

held motionless vertically downwards, with one of its ends just touching the

table. It is then released. Find the normal force that the table exerts on the

chain as a function of x, the distance that the top of the chain has fallen.

Assume that when a part of the chain collides with the table, it goes to rest

instantaneously.

Figure 6.15: Falling chain

The normal force of the table on the chain has two roles. Firstly, it

supports the weight of the chain that is already at rest on the table. Secondly,

it has to stop the part of the falling chain that collides with the table. Let

us analyze the force required for the second factor and then add the weight

of the chain that already rests on the table to find the normal force. In a

time interval dt, λvdt mass of chain that was initially traveling4 at v comes

4The additional velocity of this falling part due to its acceleration by gravity is a second-
order term and is thus negligible.
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to rest. Thus, by the impulse-momentum theorem,

Fdt = vdm = λv2dt.

v can be expressed in terms of x from the conservation of energy (or from the

kinematics equations) since the moving part of the chain must be in free-fall

due to there being no tension in the chain (see Chapter 4).

v2 = 2gx

=⇒ F = 2λgx.

Lastly, we can add back the weight of the motionless part of the chain to

find the normal force,

N = F + λgx = 3λgx.

Through this approach, the reason why N abruptly plummets from 3λgl

to λgl when x = l becomes lucid — there is no longer any falling segment

that collides with the scale (and this component contributes 2λgl to N when

x = l).

Sometimes, if the change in mass can be expressed in terms of some dis-

tance travelled, the work-energy theorem can be applied over an infinitesimal

distance — as illustrated in the following example.

Problem: A massless bucket initially contains a mass M of sand and is

stationary at the origin. You then pull it in the positive x-direction via a

constant tension T across the frictionless ground. If the bucket leaks sand

at a rate dm
dx = −M

L where m is the instantaneous mass of the bucket,

determine its kinetic energy as a function of its x-coordinate x for x < L.

(“An Introduction to Classical Mechanics”)

Let the instantaneous kinetic energy of the bucket-cum-sand be E(x).

Consider the change in kinetic energy dE as the bucket travels an infinitesi-

mal distance dx. By the work-energy theorem, the bucket gains Tdx amount

of kinetic energy due to the work done on it. However, it also gains dm
m E

amount of kinetic energy (this quantity is negative as dm is negative) as it

gains mass dm. Thus,

dE = Tdx+
dm

m
E.

Dividing the entire equation by dx,

dE

dx
= T +

dm

dx
· E
m
.
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Since dm
dx · Em = −M

L · E
M−M

L
x
= − E

L−x ,

dE

dx
+

E

L− x
= T.

Multiplying the above by the integrating factor 1
L−x ,

1

L− x

dE

dx
+

E

(L− x)2
=
d
(

E
L−x

)
dx

=
T

L− x∫ E
L−x

0
d

(
E

L− x

)
=

∫ x

0

T

L− x
dx.

Simplifying,

E = T (L− x) ln
L

L− x
.
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Problems

Conservation Laws

1. Nail*

A pendulum with a mass m attached at its end is released at rest from a

horizontal initial position. It then collides with a nail that is situated at

a distance d below the top of the pendulum. Find minimum distance d in

terms of l such that the mass will exhibit circular motion around the nail

after the collision.

2. Colliding Carts*

A cart of mass m and initial velocity v collides with another cart of mass M

on a frictionless, horizontal ground and sticks to it. There is a small pendu-

lum of length l with a mass μ attached to it, that is initially aligned with the

vertical. Assuming that μ� m, find the minimum initial velocity v required

for the pendulum to exhibit circular motion around point P .

3. Particle on Hemisphere*

A particle of mass m travels at an initial velocity v azimuthally on the top

of a smooth hemisphere of radius r. Find the maximum azimuthal velocity

of the particle in its motion afterwards, assuming that the hemisphere does

not move or rotate.

4. Raising a Pendulum*

A pendulum bob of mass m is attached to the ceiling via a massless string

of length l that currently makes an angle θ0 with respect to the vertical. If
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the bob and the string are in the x-y plane and the bob is at rest, determine

the minimum velocity in the z-direction, u, that is required to be imparted

to the bob for it to touch the ceiling.

5. Collision with Spring*

A particle of mass m is traveling at velocity u on a frictionless, horizontal

table. It then collides elastically with and sticks to a massless spring of spring

constant k, which is attached to a block of massM . Determine the maximum

compression and extension of the spring in the motion afterwards.

6. Maximum Height*

A block of mass m initially rests on a pair of frictionless rails with a massM

hanging vertically from it via a massless string of length l. Now, a bullet of

mass m, traveling at velocity u parallel to the rails, is embedded into the

block. Assuming that the string remains taut throughout the entire process,

determine the maximum height that the mass M reaches above its original

vertical position. How much work has been done by the tension in the string

on mass M when M first reaches this maximum height?

7. Crawling Ant*

An ant of mass m travels tangentially along a ring with radius r, mass M

and negligible thickness. When it reaches the opposite side of the ring (you

can mark a dot opposite to its initial position to indicate its destination),

find the angle through which the ring has rotated. The ring can only rotate

about its center and cannot translate.

8. Ladder on Wall**

A ladder, of mass m and length 2l, is initially held motionless along a wall

at an angle θ0 with respect to the wall. It is then released and the top

end begins to slide down the wall whereas the bottom end slides along the

ground. Assuming that all surfaces are frictionless, find θ̈ as a function of θ

by considering the total energy of the system and taking dE
dt = 0.

9. Toppling Cube**

In Cartesian coordinates, the eight vertices of a cube lie at coordinates

(0, 0, 0), (l, 0, 0), (0, l, 0), (l, l, 0), (0, 0, l), (l, 0, l), (0, l, l) and (l, l, l). Deter-

mine the largest impulse J that can be delivered to the cube at point ( l2 , 0, h)
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such that the cube does not topple under the following conditions: (1) the

edge of the cube at y = l, z = 0 is fixed, and (2) the ground (z = 0) on

which the cube lies is frictionless.

10. Spinning Earth**

Model the Earth as a uniform sphere of mass M and radius R, with its

rotational axis defined to be the z-axis. Currently, a point particle of mass

m � M rests at one of the Earth’s poles along the z-axis and the angular

velocity of the Earth is ω0. If the particle begins to move along a great circle

on the surface of the Earth such that its angular coordinate from the z-axis is

θ = αt (where α is a constant and t is the time elapsed) determine the angle

that the Earth has rotated by the time the particle reaches the opposite pole.

Assume that the initial angular momentum of the Earth is large enough such

that its angular velocity vector always lies along the z-axis.

11. Connected Masses**

Two particles, of masses m and 2m, lie on a frictionless, horizontal table

along the x-axis in the xy-plane. A spring of spring constant k and zero

relaxed length is attached to them. If the initial distance between them is

l and m and 2m travel at v1 and v2 in the positive y-direction respectively,

determine the minimum and maximum distances between them in their sub-

sequent motion.

12. Rolling over a Step***

A sphere of mass m and radius r approaches a rough step with height h < r.

If the initial velocity of its center of mass is v and it rolls without slipping,

under what conditions will the sphere collide with the step, rotate about the

point of collision and move up the step?

Collisions

13. Max Deflection*

A particle of mass m1 travels at speed v1 in the positive x-direction and

collides with a particle of mass m2 = 1
2m1 which was travelling at speed

v2 in the positive y-direction. The maximum observed angle of deflection

of m1, after myriad experiments, is π
2 radians. Given m1, m2 and v1,

determine v2.
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14. Particle Rocket**

n small particles are stacked on top of each other, with an infinitesimal

distance between adjacent particles. Number the particles from 1 to n in a

bottom-up fashion such that the ith particle has mass f i−1m where m is the

mass of the first particle and f is a constant. If the entire array of particles

is dropped from a height h onto horizontal ground, determine the velocity of

the nth particle immediately after it has collided with the (n−1)th particle.

Assume that all collisions are elastic.

15. T-Shape**

A T-shaped structure is formed from two uniform rods, A and B, each of

length l, mass m and negligible thickness (see figure below). The midpoint

of rod B is attached to one end of rod A. The structure is then put on a

frictionless horizontal table. A point mass m, moving horizontally to the

right at right angles to rod A (parallel to rod B), strikes the end of rod B

with an initial velocity v and sticks to it.

(a) Write down the equation for conservation of linear momentum. Is energy

conserved during the collision? Explain.

(b) Comment on the direction of the center of mass velocity of the combined

system in the motion thereafter. Which point (possibly external to the

body) has a constant linear velocity after the collision? Find the exact

location of the point.

(c) Find the moment of inertia of the whole system (after the collision)

about the point you found in (b).

(d) Solve for the angular velocity of the system after the collision.

16. Collision with Rod**

A ball of negligible size, mass m and initial speed u undergoes an elastic

head-on collision with a uniform, stationary rod of mass M and length

l, at a distance x above its center as shown in the figure below. If the

final velocities of the ball and the center of the rod are aligned, determine

their final velocities and the final angular speed ω of the rod. Determine
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the value(s) of x that maximise(s) ω. For this/these particular case(s),

find the point on the rod that is instantaneously stationary right after the

collision.

17. L-Shape Collision***

Two uniform rods, of mass M and length l each, are connected to form an

“L-shape” as shown in the figure below. If the resultant structure is initially

stationary and a particle of mass m undergoes a head-on elastic collision

with one of its ends (such that the final velocity of the particle and the

center of mass of the structure are directed along the same line), determine

all values of m
M such that a second collision occurs.

Work and Impulse

18. Zero Impulse*

A uniform rod of massm and length l is pivoted at one of its ends and stands

vertically. Determine the height h above the pivot at which an impulse should

be delivered such that the impulse on the rod due to the pivot is zero.

19. Relativity of Work**

An initially-stationary man of mass M throws a snowball of mass m at a

relative velocity u away from him on frictionless ground. Determine the work

done by the man’s muscles (assuming that no heat is generated and that the

mass of the man does not vary) in this process by applying the conservation
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of energy in the lab frame. Next, show that you obtain the same result if

you directly compute the work done in the man’s frame.

20. Spinning Collision**

A sphere, of mass m and radius r, is spinning at an angular velocity ω0

about an axis parallel to the plane of the table, with a coefficient of kinetic

friction μ. If the sphere is released with zero initial translational velocity

and collides with the table after its center of mass has fallen by a vertical

height h, determine the angle θ between the vertical and the instantaneous

velocity of the center of mass of the sphere after the collision. Assume that

the center of mass of the sphere rebounds with the same vertical speed as

that before the collision. Hint: There are two regimes of ω0 to consider.

21. Bouncing Mass**

A mass begins moving from a horizontal floor with a vertical velocity v0
and horizontal velocity u0. Every time it collides with the floor, its resultant

vertical speed is a fraction e of that before the collision. If the coefficient of

kinetic friction between the ground and the mass is μ, and the horizontal

velocity of the mass becomes zero after exactly n collisions, determine n.

22. Three Masses**

Three masses m, 2m and 3m are connected by two massless and rigid rods

of length l which are currently perpendicular to each other, as shown in the

figure. If the masses initially travel at velocity u towards a vertical wall and

mass m undergoes a collision with the wall, determine the impulse delivered

by the wall to mass m if the final horizontal velocity of mass m is zero. There

is no friction between the wall and mass m. Assume that the tensions in the

rods are strictly longitudinal (because they are massless).

23. N Disks***

There are N disks, numbered from 1 to N , on a horizontal table. The ith

disk has radius f i−1R and has initial angular velocity ωi. If the disks are
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now arranged next to each other such that each disk touches disks of num-

bers adjacent to its own, determine the final angular velocity of the disk

numbered 1. There is friction between the disks.

24. Rebounding Mass***

A mass is released on a rough and massive inclined plane, at a distance l

along the ramp, as measured from the bottom. The plane has an angle of

inclination θ and there is a coefficient of kinetic friction μ between the mass

and the plane. The bottom of the ramp is blocked by a massive barricade.

The head-on collision between the mass and the blockade is governed by the

coefficient of restitution e. Find the total distance traveled by the mass with

the assumption that the coefficient of static friction is smaller than tan θ.

Variable Masses

25. Drag Force on Sheet*

A massive sheet is surrounded by stationary sand of mass density ρ. If the

sheet travels at a constant speed v, determine the drag force per unit area

it experiences, assuming that collisions are elastic.

26. Propelling a Car**

You begin to throw baseballs at speed u towards a car of mass M that is

free to move frictionlessly on the ground. The baseballs leave your hand at

a mass per unit time σ and bounce elastically off the car window, directly

backwards. If the car starts at rest, find its speed and position as functions

of time. (“An Introduction to Classical Mechanics”)

27. Drag Force on Sphere**

A massive sphere of radius R is surrounded by non-interacting air particles

of mass density ρ. If the sphere travels at a speed v, determine the drag force

it experiences, assuming collisions are elastic.

28. Carrying Sand**

A massless circle of radius r is secured by a central axle that restricts it from

translational motion and only permits rotational motion about its center.

Initially-motionless sand is dropped from a height h at a mass rate σ and

lands on the circle at a clockwise angular coordinate θ from the vertical. If
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the sand sticks to the circle and is carried to a clockwise angular coordinate

θ from the bottom of the circle, where it is released (with no change in

tangential velocity), determine the angular velocity ω of the circle when it

has attained a steady state.

29. Sweeping Duster***

A rod-shaped duster has length l and initial mass M . It is initially held

motionless at the top of an inclined plane with an angle of inclination θ. The

whole plane is covered with dust with a surface mass density σ. The duster

is then given a slight push, picking up dust in its motion. Find its velocity

v along the plane as a function of x, the distance along the surface of the

inclined plane that it has traveled.

30. Raindrop***

Model a raindrop as a blob that constantly maintains the shape of a homo-

geneous sphere with a constant density. Now consider a raindrop, initially

of negligible size, that begins to fall through a uniform cloud of tiny water

droplets. If the raindrop accumulates the water droplets, determine its accel-

eration.
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Solutions

1. Nail*

The speed of the pendulum, v, immediately before the collision is given by

the principle of the conservation of energy.

v =
√

2gl.

The angular momentum of the system is conserved about the nail during the

collision. Thus, the pendulum mass still continues to travel at speed v after

the collision (we can also argue that its horizontal momentum is conserved

since tension can only be exerted along the rope, which is vertical at the

point of collision). Notice that the pendulum is most likely to deviate from

circular motion when it is directly above the nail as the radial component of

its weight is the largest while the required centripetal force is the smallest —

implying that the tension in the string is minimum. In the critical case where

the mass is just able to exhibit circular motion, the weight of the bob solely

provides the centripetal force at the top of the circle (the tension at this

juncture is zero). If the speed of the bob at the top of the circle is v′,

mg =
mv′2

l − d
.

Furthermore, by the conservation of energy,

1

2
mv2 =

1

2
mv′2 + 2mg(l − d)

d =
3

5
l.

2. Colliding Carts*

The total momentum of the two carts is conserved during the collision. Note

that the pendulum mass still travels at v as there is no impulsive force on it

to instantaneously change its velocity. Letting the final velocity of the two

carts be v′,

mv = (m+M)v′

v′ =
mv

m+M
.

Consider the frame of the cart, which is approximately an inertial frame

despite the tension that acts on it. This is because m 	 μ, where the change

in the momentum of the pendulum, and thus the momentum of the cart, is
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on the order of μ. The velocity of the pendulum in this frame immediately

after the collision is

vr = v − v′.

Assuming that it is able to exhibit circular motion, let the velocity of the

mass at the top of the circle be v′r in the frame of the cart. Then, the

gravitational force and tension must provide the centripetal force.

μg + T =
μv′2r
l
.

In the boundary case, v′r is just large enough that T = 0. When v′r is too

small, T is negative, which implies that the bob has deviated from circular

motion beforehand. Thus in the limiting case,

v′r =
√
gl.

By the conservation of energy,

1

2
μv2r =

1

2
μv′2r + 2μgl

vr =
√

5gl = v − v′

v − mv

m+M
=
√

5gl

v =
m+M

M

√
5gl.

3. Particle on Hemisphere*

We see that the angular momentum of the particle about a vertical axis

through the center of the hemisphere is conserved, as the normal and gravi-

tational forces on the particle produce no torque along that direction. Fur-

thermore, it is important to note that when the particle attains its maximum

azimuthal velocity, its velocity in the polar direction is zero. This is because

the particle reaches its maximum azimuthal velocity at its lowest height, as

implied by the conservation of angular momentum. If it were to have a veloc-

ity in the polar direction at that instant, its height at the next instant will be

lower — leading to a contradiction.5 We let the particle be at angle θ from

5In fact, the particle will undergo circular motion at a constant height when it attains
the minimum height. This is contrary to our common intuition which suggests that the
particle should eventually drop to the bottom. However, this occurs only because of the
friction acting on the particle, which produces a torque that reduces Lz in real life.
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the vertical axis when it reaches its minimum height. Then, conservation of

angular momentum along the vertical axis gives

Lz = mrv = mr sin θvmax.

By the conservation of energy,

1

2
mv2 +mgr cos θ =

1

2
mv2max.

Solving,

vmax =

√
1

2

(
v2 +

√
v4 + 16g2r2

)
.

4. Raising a Pendulum*

The angular momentum of the bob, with respect to a vertical axis passing

through the point on the ceiling at which the string is attached, must be

conserved as there is no external torque in the vertical direction. Thus, let v

be the final azimuthal velocity of the pendulum when it reaches the ceiling.

Then

ml sin θ0u = mlv

v = u sin θ0.

In order for u to be minimum, the velocity of the pendulum bob, perpendic-

ular to the plane of the ceiling, must be zero when it reaches the ceiling (as

energy must still be conserved). Applying the conservation of energy to the

bob (as the tension in the inextensible string does no work on the bob),

1

2
mu2 = mgl cos θ0 +

1

2
mv2

u =

√
2gl

cos θ0
.

5. Collision with Spring*

When the spring is at its maximum compression or extension, the particle

and the block must be traveling at the same velocity v, as a relative velocity

would imply that the relative separation at an earlier or later instance

in time will either be greater or smaller (the exact change depends on

whether the particle is faster than the block or vice-versa). By conservation of
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momentum,

v =
mu

M +m
.

By conservation of energy,

1

2
mu2 =

1

2
(M +m)v2 +

1

2
kx2,

where x is the maximum extension (defined to be positive) or compression

(defined to be negative) of the spring. Solving for x,

x = ±
√

mM

k(m+M)
u.

The positive value refers to a maximum extension of
√

mM
k(m+M)u while the

negative value indicates a maximum compression of
√

mM
k(m+M)u as well.

6. Maximum Height*

When M attains its maximum height, its instantaneous vertical velocity

must be zero. Since the vertical velocity of the block that it is connected

to is also zero, their horizontal velocities must be identical for the string to

remain taut (length of the string is preserved). This is the crucial observation.

Following from this and the conservation of momentum, the velocities of the

block and the mass at the required juncture are

v =
mu

2m+M
.

Furthermore, the energy of the system after the collision is conserved. The

total kinetic energy of the system directly after the collision is due to that

of a block with mass 2m travelling at velocity u
2 (owing to the conservation

of momentum). Thus, the total initial kinetic energy is

1

2
· 2m · u

2

4
=
mu2

4
.

Applying the conservation of energy,

1

2
(2m+M)v2 +MgΔh =

mu2

4

Δh =
mu2

4Mg
− m2u2

2(2m +M)Mg
,
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where Δh is the change in height of M . The work done by tension on mass

M up till this point results in the total change in its mechanical energy,

which is

WT =
1

2
Mv2 +MgΔh =

mu2

4
−mv2 =

(
m

4
− m3

(2m+M)2

)
u2.

Now, you may wonder why a tension in an inextensible string can lead to

work done. Well, even though the length of the string does not change, the

entire string is constantly displaced at a certain velocity — engendering work

done as the point of application of its force is moving.

7. Crawling Ant*

The key point is to note that when the ant moves, the ring rotates in the

opposite direction. Let v be the tangential velocity of the ant and ω be the

angular velocity of the ring, defined to be positive in the opposite direction.

Let the total time taken for the ant to reach the opposite side be τ . Then,∫ τ

0
vdt+

∫ τ

0
rωdt = πr.

The left term is the distance covered by the ant while the right term is

the distance that a point on the ring has rotated across. Furthermore, the

angular momentum of the ant-cum-ring system about the center of the ring

is conserved as the forces between the ant and the ring act along the same

line.

0 = mrv −Mr2ω,

where we have used the fact that the moment of inertia of a ring about its

center is Mr2. Then,

v =
M

m
rω,

∫ τ

0

(
1 +

M

m

)
rωdt = πr.

Thus, the angle that the ring has rotated is∫ τ

0
ωdt =

π

1 + M
m

.
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Figure 6.16: Ladder on wall

8. Ladder on Wall**

Referring to Fig. 6.16, the position and velocity of the center of mass are

xCM = l sin θ,

yCM = l cos θ,

ẋCM = l cos θθ̇,

ẏCM = −l sin θθ̇.

The total mechanical energy of the ladder is

E = mgl cos θ +
1

2
m(ẋ2CM + ẏ2CM ) +

1

2
ICM θ̇

2 = mgl cos θ +
2

3
ml2θ̇2,

where ICM = 1
12 ·m · (2l)2 = 1

3ml
2 for the ladder.

dE

dt
= 0 =⇒ −mgl sin θθ̇ + 4

3
ml2θ̇θ̈ = 0.

θ̈ =
3g sin θ

4l
.

9. Toppling Cube**

Note that if the cube is pivoted about the particular edge, there is generally

an impulsive force on the cube by the pivot in addition to the impulse J .

Thus, we cannot use J to determine the linear momentum of the cube.

However, we can calculate the angular momentum of the cube about the

fixed edge, as the impulse force due to the pivot does not produce any angular

impulse about the pivot. By the angular impulse-momentum theorem,

Ledge = Jh = Iedgeω,
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where Iedge =
1
6ml

2 + 1
2ml

2 = 2
3ml

2 for a cube. The total mechanical energy

of the cube is thus

E =
1

2
Iedgeω

2 +
mgl

2

=
1

2

L2
edge

Iedge
+
mgl

2

=
1

2

J2h2

2
3ml

2
+
mgl

2

=
3J2h2

4ml2
+
mgl

2
.

The cube will topple if it has a non-zero angular velocity when its center

of mass reaches its maximum height as the torque thereafter will cause its

angular velocity to accelerate further, in the direction that causes it to topple.

Thus, in the boundary case, the total mechanical energy is just sufficient to

raise the center of mass of the cube to this height.

3J2h2

4ml2
+
mgl

2
=

√
2mgl

2

J =

√
2m2gl3

3h2
(
√
2− 1).

This is the maximum value of J for which the cube will not topple. In the

case where the ground is frictionless and the cube is not pivoted, the only

impulse is J . Applying the angular impulse-momentum theorem, the angular

momentum about the center of mass of the cube is

LCM = J

(
h− l

2

)
= ICMω,

where ω is the initial angular velocity of the cube. The total mechanical

energy is

E =
1

2
mv2CM +

1

2
ICMω

2 +
mgl

2

=
p2

2m
+
L2
CM

2ICM
+
mgl

2
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=
J2

2m
+
J2
(
h− l

2

)2
2 · 1

6ml
2

+
mgl

2

=
J2

2m

(
1 +

6
(
h− l

2

)2
l2

)
+
mgl

2
.

In the same boundary case,

E =

√
2mgl

2

=⇒ J =

√
m2gl3

l2 + 6
(
h− l

2

)2 (√2− 1).

10. Spinning Earth**

The angular momentum of the Earth-and-particle system about the z-axis

must be conserved due to the lack of net external torques. The initial angular

momentum is 2
5MR2ω0. When the particle is at coordinate θ = αt, the

moment of inertia of the combined system is 2
5MR2+mR2 sin2 αt. Thus, the

angular velocity of the Earth-and-particle system about the z-direction is

ω =
2
5MR2

2
5MR2 +mR2 sin2 αt

ω0

=
ω0

1 + 5m
2M sin2 αt

≈ ω0

(
1− 5m

2M
sin2 αt

)
.

Note that the angular velocities of the Earth and particle must be identical

for the particle to travel along the same great circle. Now, the total angle φ

that the Earth has rotated when the particle reaches θ = π is obtained by

integrating the above expression with respect to t.

φ =

∫ π
α

0
ωdt

=

∫ π
α

0

(
ω0 − 5m

2M
ω0 sin

2 αt

)
dt

=
πω0

α

(
1− 5m

4M

)
.
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11. Connected Masses**

In the center of mass frame which travels at

vCM =
v1 + 2v2

3

in the positive y-direction, the velocities of the two particles in this frame

are

v′1 =
2v1 − 2v2

3
,

v′2 =
v2 − v1

3
.

In this center of mass frame, the center of mass, which lies at a distance
l
3 away from 2m, must not shift, due to the lack of a net external force

on this system. Therefore, these two particles must orbit about the center

of mass at some common angular velocity ω when they are at their closest

or furthest approach. ω is defined to be positive in the direction of the

initial angular momentum of m about the center of mass. Let an extremal

distance (maximum or minimum) between the particles be 3r, split into

2r and r between the center of mass and the particles. As there is no net

external torque, we can apply the conservation of angular momentum about

the center of mass to get

2l

3
·m · v′1 −

l

3
· 2m · v′2 = 2mr2ω +m(2r)2ω

ω =
l(v1 − v2)

9r2
.

Furthermore, at the closest or furthest distance of approach, the radial veloc-

ities of masses must be zero. Applying the conservation of energy,

1

2
m

(
2v1 − 2v2

3

)2

+
1

2
· 2m ·

(
v2 − v1

3

)2

+
1

2
kl2

=
1

2
·m · (2r)2ω2 +

1

2
· 2m · r2ω2 +

1

2
k · (3r)2 = 0.

Substituting ω and simplifying,

r4 −
(
2m

27k
(v1 − v2)

2 +
l2

9

)
r2 +

2ml2

243k
(v1 − v2)

2 = 0.

Without attempting to solve the above equation, we can already state a root

for r2. Since the initial state of the system has no relative radial velocity,
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r2 = l2

9 must be a solution to the above equation. This enables us to factorize

the above into (
r2 − 2m

27k
(v1 − v2)

2

)(
r2 − l2

9

)
= 0.

The other possible expression for r is

r =

√
2m

27k
|v1 − v2|

=⇒ 3r = l or

√
2m

3k
|v1 − v2|.

The maximum separation is the larger of the two; vice-versa for the minimum

separation.

12. Rolling over a Step***

In this problem, there are actually two different stages of motion. Firstly,

the sphere collides with the step — a process in which the linear momentum

and energy of the sphere are not conserved. Afterwards, the sphere might

rotate about the point of contact with the step or rebound from it.

Though the linear momentum and energy of the sphere are not conserved

during the collision with the step, if we choose our stationary origin O to

be at the point of contact with the step, the angular momentum about O

is conserved. This is because the only impulsive force is the contact force

on the sphere due to the step. This force acts at the origin, producing no

torque. The torque due to the weight of the sphere with respect to O imparts

negligible angular impulse during the short collision period. Let the initial

angular velocity of the sphere about its center be ω, and the angular velocity

of the sphere about O be ω′ after the collision. By the conservation of angular

momentum,

mv(r − h) + ICMω = (ICM +mr2)ω′,

where ICM = 2
5mr

2, the moment of inertia of the sphere about an axis

through its center. We have used the parallel axis theorem to calculate the

moment of inertia of the sphere about O on the right-hand side of the equa-

tion. Moreover, recall that we also have the initial non-slip condition.

v = rω.

Let us assume that the sphere manages to rotate about O. During this

rotational motion, the total mechanical energy of the system is conserved.



July 10, 2018 12:23 Competitive Physics 9.61in x 6.69in b3146-ch06 page 339

Energy and Momentum 339

Furthermore, in the boundary case where the sphere just manages to roll up

the step, its final angular velocity at the top of the step is zero. Thus, in

that boundary case,

1

2
· (I +mr2)ω′2 = mgh

7

10
mr2ω′2 = mgh,

as the vertical coordinate of the center of mass increases by h. Solving the

equations,

v − r

7r − 5h

√
70gh.

Thus for the sphere to roll up,

v ≥ r

7r − 5h

√
70gh.

This is the condition on v for the sphere to roll up the step, assuming that

it is able to rotate about O (i.e. does not lose contact).

Finally, the sphere might not be able to roll up the step if it loses contact

with point O. After it stops rotating about O, the sphere will just fall back

down due to its own weight. Thus, we must first determine where the sphere

is most likely to lose contact with the step. This is in fact at the bottom

of the step when the sphere initially begins to rotate about O. The angular

velocity of the sphere at this point is the largest (so the required centripetal

force follows suit) and the component of the gravitational force in the radial

direction towards O is the smallest — signifying that the normal force N

exerted on the sphere by the step is the smallest if it is indeed able to rotate

about O. Analyzing the forces in the radial direction when the sphere is at

the bottom of the step,

mg sin θ −N = mrω′2,

where θ = sin−1 r−h
r is the angle subtended by a line joining O and the

center of the sphere and the horizontal. The boundary case where N = 0

occurs when

ω′ =
√
g(r − h)

r
,

which requires

v =
7r

7r − 5h

√
g(r − h).
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Combining the two conditions,

r

7r − 5h

√
70gh ≤ v ≤ 7r

7r − 5h

√
g(r − h).

Dividing the upper bound by the lower bound, it is also necessary that

r ≥ 119

49
h.

13. Max Deflection*

Considering the initial frame of m2, m1 travels at an angle tan−1 v2
v1

with

respect to the horizontal. It was previously derived that the maximum angle

of deflection for a particle of mass m1 colliding with a stationary particle of

mass m2 < m1 is sin−1 m2
m1

. Thus, the maximum angle between m1’s final

velocity and the x-axis in the frame of m2 is the sum of this angle and the

angle that m1 makes in m2’s frame.

θmax = tan−1 v2
v1

+ sin−1 m2

m1
= tan−1 v2

v1
+
π

6
.

Since the maximum deflection angle is π
2 in the lab frame and the initial

frame of m2 only traveled in the y-direction, θmax = π
2 .

tan−1 v2
v1

=
π

3

v2 =
√
3v1.

14. Particle Rocket**

Before any collision event occurs, the particles all essentially travel at speed√
2gh downwards (as their sizes are negligible), by the conservation of energy.

Let the velocity of the ith particle, immediately after it has collided with

the (i − 1)th particle be vi (positive upwards). We have derived that in a

general one-dimensional elastic collision between two particles mA and mB

with initial velocities uA and uB , the final velocity of mB is

vB =
2mAuA + (mB −mA)uB

mA +mB
.

The equation above can be applied to the collision between the ith particle

and the (i − 1)th particle by setting mA = mi−1 = f i−2m and mB =

mi = f i−1m for i ≥ 2. The initial velocities in this case are uA = vi−1 and
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uB = −√
2gh (negative as mi is still traveling downwards).

vi =
2f i−2mvi−1 −

(
f i−1 − f i−2

)
m
√
2gh

(f i−1 + f i−2)m

vi =
2

f + 1
vi−1 − f − 1

f + 1

√
2gh

vi +
√

2gh =
2

f + 1

(
vi−1 +

√
2gh

)
.

Since the base case is v1 =
√
2gh (as the bottom-most particle is reflected

from the ground),

vn +
√

2gh =

(
2

f + 1

)n−1 (
v1 +

√
2gh

)

vn =
√

2gh

(
2n

(f + 1)n−1
− 1

)
.

15. T-Shape**

(a) Let v′ denote the final velocity of the combined center of mass of the

“T-shape” and the particle m. By the conservation of momentum,

mv = 3mv′

v′ =
v

3
.

Energy is not conserved due to the inelastic collision between the particle

and rod B which generates heat and sound energies that are dissipated to the

external environment. An obvious way of seeing this is to consider the center

of mass frame which travels at v′ with respect to the lab frame. Originally,

the particle m travels at 2v
3 while the “T-shape” purely translates at a center

of mass velocity − v
3 . After the collision, the combined system rotates about

its combined center of mass but does not translate. Choosing an origin at

the same vertical level as the center of mass of the “T-shape” (not including

the particle) and applying the conservation of angular momentum, the final

angular momentum of the combined system about its center of mass (since

there is no translational component of angular momentum) is identical to

the initial angular momentum of the particle about the origin. However,

since the moment of inertia of the combined system about its center of

mass is larger than that6 of the particle, the final rotational kinetic energy

6The instantaneous moment of inertia of the particle can be computed by taking mass
m multiplied by the perpendicular distance between the origin and the particle at the
juncture of collision.
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of the combined system (recall that there should not be any translational

component of energy) is smaller than the initial energy of the particle in this

new frame — signifying energy loss.

(b) The direction of the velocity of the center of mass of the combined system

is still rightwards by the conservation of momentum. The center of mass of

the combined system has a constant linear velocity after the collision as no

net external force acts on the combined system. The center of mass of the

“T-shape” is l
4 above the connection point — implying that the center of

mass of the combined system is l
6 left of the connection point and l

4 · 2
3 = l

6

above the connection point.

(c) The moment of inertia of the particle about the center of mass is

m
(
l2

32
+ l2

62

)
= 5

36ml
2. On the other hand, the moment of inertia of rod B

about the same point is 1
12ml

2 +m
(
l2

62
+ l2

62

)
= 5

36ml
2 while that of rod A

is 1
12ml

2 + m
(
l2

32
+ l2

62

)
= 8

36ml
2 by the parallel axis theorem. The total

moment of inertia about the center of mass is obtained from summing the

individual contributions.

ICM =
1

2
ml2.

(d) Applying the conservation of angular momentum with respect to the

center of mass of the combined system,

m · l
6
· v = ICMω

ω =
v

3l
,

in the anti-clockwise direction.

16. Collision with Rod**

Let the final velocities of the ball and the center of the rod be v1 and v2
respectively. Keeping in mind that the moment of inertia of the uniform rod

about its center is 1
12Ml2, the conservations of momentum and energy yield

mu = mv1 +Mv2 =⇒ m(u− v1) =Mv2,

1

2
mu2 =

1

2
mv21 +

1

2
Mv22 +

1

24
Ml2ω2.

Applying the conservation of angular momentum (while taking ω to be pos-

itive clockwise) about an origin, that passes through the line depicting the
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initial velocity of the ball,

1

12
Ml2ω −Mxv2 = 0

ω =
12xv2
l2

.

Substituting this expression for ω into the second equation,

m(u− v1)(u+ v1) =Mv22

(
1 +

12x2

l2

)
.

Dividing the first equation squared by this equation,

m(u− v1)

u+ v1
=

M

1 + 12x2

l2

.

Solving,

v1 =
1− k

1 + k
u,

where k = M

m
(
1+ 12x2

l2

) . Substituting this expression for v1 into the conserva-

tion of momentum equation,

v2 =
m(u− v1)

M
=

2mk

M(1 + k)
u

=⇒ ω =
24mkx

Ml2(1 + k)
u =

24xu(
1 + M

m + 12x2

l2

)
l2
.

To maximize ω, one has to find dω
dx = 0, which requires(

1 + M
m + 12x2

l2

)
− 24x2

l2(
1 + M

m + 12x2

l2

)2 = 0

=⇒ x2 =
m+M

12m
l2

x = ±
√
m+M

12m
l.

Both values of x above indeed correspond to maxima in terms of angular

speed (i.e. |ω|) as one can easily check by finding the first derivative evaluated

at adjacent values. The positive result corresponds to the largest clockwise

angular velocity while the other represents the largest anti-clockwise angular

velocity. Note that the above expression for x is only valid for |x| ≤ l
2 , or
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equivalently, M ≤ 2m. For M > 2m, dωdx > 0 for 0 ≤ x ≤ l
2 and dω

dx < 0 for

− l
2 ≤ x ≤ 0, such that the rod should be hit at its ends x = ± l

2 to maximise

|ω|. It is interesting to note that the values of x that maximise the angular

speed do not always correspond to the ends of the rod (see Ref. [2]). Moving

on, the next problem is essentially about locating the instantaneous center

of rotation (ICoR) right after the collision. The distance between the center

of the rod and the ICoR is

∣∣∣v2
ω

∣∣∣ = ∣∣∣∣ l212x

∣∣∣∣ =
⎧⎨
⎩
√

m
12(m+M) l for M ≤ 2m

l
6 for M > 2m.

Whether the ICoR is located above or below the center depends on the

direction of angular velocity. An anti-clockwise angular velocity corresponds

to an ICoR above the center and vice-versa for a clockwise angular velocity.

17. L-Shape Collision***

We first compute the moment of inertia of the “L-shape” structure with

respect to its center of mass. Its center of mass is located at a vertical

distance l
4 and horizontal distance l

4 away from the point of connection.

Thus, by applying the parallel axis theorem,

I = 2 ·
(

1

12
Ml2 +

1

8
Ml2

)
=

5

12
Ml2.

Let v1, v2 and ω be the final velocities of the particle and the center of mass

of the structure and the final angular velocity (positive anti-clockwise) of

the structure respectively. By the conservation of momentum,

m(u− v1) = 2Mv2.

By the conservation of energy,

1

2
mu2 =

1

2
mv21 +Mv22 +

1

2
Iω2.

Applying the conservation of angular momentum about a point on the line

that depicts the initial velocity of the particle (taking anti-clockwise to be

positive),

Iω − 2M · 3l
4
v2 = 0,
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as the original angular momentum about the same origin was zero.

=⇒ ω =
18v2
5l

.

Substituting this into the third equation,

1

2
m(u− v1)(u+ v1) =

37

10
Mv22 .

Dividing this equation by the square of the second equation and simplifying,

v1 =
37ε − 20

37ε + 20
u,

where ε = m
M . Solving for the other variables,

v2 =
20ε

37ε + 20
u,

ω =
72ε

37ε + 20
· u
l
.

There are a few cases under which a second collision can occur. The first is if

v1 = v2 such that the structure collides with the particle after one complete

rotation. This requires

37ε− 20

37ε+ 20
u =

20ε

37ε+ 20
u

=⇒ ε =
m

M
=

20

17
.

Now, let us consider other cases. If v1 > v2, the particle will never collide

with the structure again. Otherwise if v1 < v2, the only possible collision

configuration occurs when the structure has rotated π
2 + n2π radians where

n ∈ Z, n ≥ 0. Then, the center of mass of the structure must have traveled a

distance l
2 relative to the particle at this juncture, as depicted in the figure

below.

Figure 6.17: First and second (in dotted lines) collisions
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Note that l
2 stems from the fact that the distance between the vertical

rods in the original configuration and that after a π
2 -radian rotation about

its center of mass is l
2 . Thus,

l

2(v2 − v1)
=
T

4
+ nT,

where T is the period of the structure’s rotation. Rearranging,

l

2T
=

(
1

4
+ n

)
(v2 − v1).

Substituting 1
T = ω

2π and simplifying yields

ε =
5 + 20n

18
π + 17

4 + 17n
.

18. Zero Impulse*

Let the impulse delivered to the rod be J . Then, the angular momentum of

the rod about the pivot is Jh after the impulse has been delivered, as the

angular impulse imparted by the possible impulsive contact force exerted by

the pivot is zero with respect to the pivot.

1

3
ml2ω = Jh,

where ω is the instantaneous angular velocity of the rod. If the impulse on

the rod due to the pivot is indeed zero, the total impulse delivered to the

rod must be J . Thus,

J = mvCM =
mlω

2
.

Solving the two equations above,

h =
2

3
l.

19. Relativity of Work**

Define the x-axis to be along the relevant direction in this one-dimensional

motion. Suppose that the final velocity of the man is u − v0 while that of

the snowball is −v0. Since the initial momentum of the combined system is
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zero, by the conservation of momentum,

M(u− v0)−mv0 = 0

v0 =
Mu

m+M

u− v0 =
mu

m+M
.

The work done by the man’s muscles is the total increase in mechanical

energy of the combined system.

W =
1

2
mv20 +

1

2
M(u− v0)

2 =
mM

2(m+M)
u2.

The other perspective is significantly harder. Define the instantaneous veloc-

ity of the man in the lab frame as V and that of the snowball as −v when

they have yet to reach their final values. Let the instantaneous force exerted

by the man on the snowball be F in the negative x-direction. Note that

the rate of work done by the man in his own frame is not FV or Fv but

rather F (v + V ) (force multiplied by the relative velocity between the man

and the snowball) as the distance covered by the snowball in the man’s

frame (perhaps, due to the extension of the man’s arm) increases at the rate

vrel = v + V . By the conservation of momentum in the lab frame,

MV −mv = 0 =⇒ V =
mv

M

vrel =
(
1 +

m

M

)
v.

The rate of work done by the man in his own frame is thus

dW

dt
= Fvrel =

(
1 +

m

M

)
mav,

where a is the acceleration of the snowball in the negative x-direction, in the

lab frame. The total work done is then

W =

∫ t

0

(
1 +

m

M

)
mavdt =

∫ v20

0

1

2

(
1 +

m

M

)
md(v2) =

mM

2(m+M)
u2.

20. Spinning Collision**

The sphere may have stopped slipping during the collision or continues to

slip after the collision, depending on the magnitude of ω0. To determine the

conditions under which the sphere continues slipping, consider the maximum
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impulse and angular impulse delivered by friction. During the collision, the

impulse delivered by the normal force is

JN = 2mv,

where v is the speed of the center of the sphere before the collision.

v =
√

2gh.

The maximum impulse delivered by friction is thus

Jf = 2μmv.

The maximum angular impulse delivered by friction about the center is then

If = −2μmvr,

where the negative sign reflects the fact that the angular impulse is opposite

in direction to ω0. The maximum horizontal velocity of the center of mass

and the minimum angular velocity of the sphere after the collision are then

ux =
Jf
m

= 2μv,

ω = ω0 +
If
I

= ω0 − 5μv

r
.

In order for the sphere to continue slipping,

rω > ux

=⇒ ω0 >
7μv

r
.

In this regime, the horizontal velocity of the center of mass is 2μv. Thus,

θ = tan−1 ux
v

= tan−1 2μ.

When ω0 ≤ 7μv
r , the sphere stops slipping during the collision. Thus, the

maximum impulse If is not completely delivered and we cannot conclude

that ux = 2μv. However, we now know that

ux = rω,

where ω represents the final angular velocity of the sphere. Observe that

if we take the point of contact between the sphere and the table to be

our origin, the angular momentum of the system is conserved as all forces

(most notably impulsive forces) pass through this point. The initial angular



July 10, 2018 12:23 Competitive Physics 9.61in x 6.69in b3146-ch06 page 349

Energy and Momentum 349

momentum of the system about this origin is Iω0. After the collision, the

angular momentum is mrux + Iω. Hence,

Iω0 = mrux + Iω.

Applying the non-slip condition ux = rω,

ux =
2

7
rω0.

Thus,

θ = tan−1 ux
v

= tan−1 2rω0

7
√
2gh

.

21. Bouncing Mass**

Let vi and ui be the vertical and horizontal speeds of the mass immediately

after the ith collision. Then,

vi = evi−1

=⇒ vi = eiv0.

Thus, the impulse delivered by the normal force on the ball due to the ground

during the ith collision is

IN =

∫
Ndt = m(vi + vi−1) = (1 + e)mvi−1.

Then, the maximum impulse (as the mass may stop moving before the max-

imum impulse is completely imparted) delivered by the friction force on the

mass is then

If =

∫
fdt = −μ

∫
Ndt = −μ(1 + e)mvi−1.

Therefore, the minimum final horizontal velocity after the ith collision can

be determined by the impulse-momentum theorem.

mui ≥ mui−1 + If ,

where the minimum value is always taken if it is positive. After n collisions,

un which is given by

un ≥ un−1 − μ(1 + e)vn−1

= un−2 − μ(1 + e)vn−1 − μ(1 + e)vn−2

= un−3 − μ(1 + e)vn−1 − μ(1 + e)vn−2 − μ(1 + e)vn−3
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= u0 − μ(1 + e) ·
n−1∑
k=0

vk

= u0 − μ(1 + e) ·
n−1∑
k=0

ekv0

= u0 − μ(1 + e)v0
1− en

1− e

becomes 0. Thus, n is the minimum positive integer for which

u0 − μ(1 + e)v0
1− en

1− e
≤ 0

=⇒ n ≥ loge

∣∣∣∣1− u0(1− e)

μ(1 + e)v0

∣∣∣∣ ,

where e refers to the coefficient of restitution and not Euler’s constant. Note

that e < 1 which causes the inequality sign to reverse when taking loge on

both sides of a preceding inequality. The minimum positive integer is thus

n =

⌈
loge

∣∣∣∣1− u0(1− e)

μ(1 + e)v0

∣∣∣∣
⌉
.

22. Three Masses**

Define the x and y axes to be positive rightwards and upwards, respectively,

and the z-axis to be positive in the direction pointing out of the page such

that anti-clockwise rotations are positive. Number the masses m, 2m and

3m from 1 to 3 in ascending order. Let the final velocity of m be

v1 =

⎛
⎜⎝

0

vy

0

⎞
⎟⎠ .

Then, let ω1 and ω2 be the angular velocities of 2m and 3m with respect

to m, immediately after the collision. Choosing m as the reference point for
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v = vref + ω × r, the final velocities of 2m and 3m are

v2 =

⎛
⎜⎝

0

vy

0

⎞
⎟⎠+

⎛
⎜⎝

0

0

ω1

⎞
⎟⎠×

⎛
⎜⎝
−l cosα
l sinα

0

⎞
⎟⎠

=

⎛
⎜⎝

−ω1l sinα

vy − ω1l cosα

0

⎞
⎟⎠ ,

v3 =

⎛
⎜⎝

0

vy

0

⎞
⎟⎠+

⎛
⎜⎝

0

0

ω2

⎞
⎟⎠×

⎛
⎜⎝
−l sinα
−l cosα

0

⎞
⎟⎠

=

⎛
⎜⎝

ω2l cosα

vy − ω2l sinα

0

⎞
⎟⎠ .

Firstly, the total momentum of the three masses in the y-direction must still

be zero after the collision as there is no friction between the wall and m.

Then,

6vy = 2ω1l cosα+ 3ω2l sinα.

Now, we require two more equations which can be obtained from the fact

that the momenta of masses 2m and 3m must be conserved in the directions

perpendicular to the corresponding rods due to the absence of tensions in

the transverse directions. Then,

vy cosα− ω1l = u sinα,

ω2l − vy sinα = u cosα.

Solving these three equations simultaneously would yield

vy =
u sinα cosα

3 + cos2 α
,

ω1l = − 3u sinα

3 + cos2 α
,

ω2l =
4u cosα

3 + cos2 α
.

The total impulse delivered by the wall can be computed via the change

in the total horizontal momentum of the system of masses. The final total
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horizontal momentum is

p′x = mv1x + 2mv2x + 3mv3x =
6 + 6 cos2 α

3 + cos2 α
mu.

Thus, the required impulse J is

J = Δpx =
6 + 6 cos2 α

3 + cos2 α
mu− 6mu = − 12

3 + cos2 α
mu.

23. N Disks***

Let the angular velocities ωi be defined to be positive in the clockwise direc-

tion. Let Mi be the total anti-clockwise angular impulse exerted on the ith

disk by the (i+1)th disk. Then, fMi would be the total anti-clockwise angu-

lar impulse exerted on the (i+1)th disk by the ith disk — the factor f stems

from the change in radius. Next, let the final clockwise angular velocity of

the first disk be Ω. For the system to equilibrate, the disks must not slip

relative to each other. Therefore, the final angular velocity of the ith disk

must be (−1)i−1 Ω
f i−1 . If we compare the final and initial velocities of each

disk, we obtain N equations.

I1(ω1 − Ω) =M1,

I2

(
ω2 +

Ω

f

)
= fM1 +M2,

I3

(
ω3 − Ω

f2

)
= fM2 +M3,

and so on with the ith equation, where 1 < i < N , being

Ii

(
ωi + (−1)i

Ω

f i−1

)
= fMi−1 +Mi,

and the Nth equation being

IN

(
ωN + (−1)N

Ω

fN−1

)
= fMN−1.

Observe that the Nth equation minus f times of the (N−1)th equation plus

f2 times of the (N −2)th equation minus f3 times of the (N −3)th equation

and so on produces a null result on the right-hand side. Then,

N∑
i=1

(−1)i+1Ii · fN−i
(
ωi + (−1)i

Ω

f i−1

)
= 0.

This is valid for both odd and even values of N as their corresponding

equations only differ by a minus sign. Now, divide the entire equation by I1.
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Since Ii
I1

= f2i−2,

N∑
i=1

(−1)i+1fN+i−2

(
ωi + (−1)i

Ω

f i−1

)
= 0.

Dividing the summation into two parts,

N∑
i=1

(−1)i+1fN+i−2ωi =
N∑
i=1

fN−1Ω

NfN−1Ω =

N∑
i=1

(−1)i+1fN+i−2ωi

Ω =

∑N
i=1(−1)i+1f i−1ωi

N
.

24. Rebounding Mass***

Let vn denote the velocity of the mass immediately after the nth collision,

v′n denote the velocity of the mass immediately before the (n+1)th collision

and xn be the distance traveled by the mass up the ramp, until it attains its

peak, between its nth and (n + 1)th collisions. Let the friction force on the

mass be f = μmg cos θ. Then, we can obtain a relationship between xn and

vn based on the work-energy theorem.

1

2
mv2n = mg sin θxn + fxn

xn =
mv2n

2(mg sin θ + f)
=

v2n
2g(sin θ + μ cos θ)

.

We can also relate vn and v′n in a similar fashion

1

2
mv2n − 2fxn =

1

2
mv′2n .

From the previous two equations, we obtain

v′2n = kv2n,

where

k =

(
mg sin θ − f

mg sin θ + f

)
=

sin θ − μ cos θ

sin θ + μ cos θ
.
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Furthermore, based on the definition of the coefficient of restitution, we have

vn+1 = ev′n
=⇒ v2n+1 = ke2v2n,

xn+1 = ke2xn.

Now we just need our base case for x which is given by x0 = l (you can

imagine the initial state of the system as a particle that attains its peak

between its 0th and 1st collision). The total distance traveled by the mass is

then

Δx = x0 + 2x1 + 2x2 + 2x3 + · · ·
= l + 2ke2l + 2k2e4l + · · ·
= 2l(1 + ke2 + k2e4 + · · · )− l

=
2l

1− ke2
− l

=
1 + ke2

1− ke2
l,

where k = sin θ−μ cos θ
sin θ+μ cos θ .

25. Drag Force on Sheet*

Let the total area of the sheet be A. In time dt, the sheet collides with

dm = ρAvdt amount of mass which gains 2vdm amount of momentum as

they leave the sheet at 2v (the change in velocity can be computed in the

sheet’s frame where the particles approach at −v and rebound at v). The

change in momentum of the sheet during this time interval is negative of

this. Thus,

dp = −2ρAv2dt

Fdrag =
dp

dt
= −2ρAv2

Fdrag
A

= −2ρv2.

26. Propeling a Car**

Let the instantaneous velocity of the car at a point in time be v(t). Now

imagine that you throw a mass dm of baseballs at the car. In the frame

which is traveling at v, the baseballs approach the car at a velocity (u− v)
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and rebound with velocity (v − u). The change in the momentum of the

snowball ((2v − 2u)dm) is the negative of the change in the momentum of

the car in the moving frame. Thus, the change in the momentum of the car

in the moving frame is

dp = 2(u− v)dm

F ′ =
dp

dt
= 2(u− v)

dm

dt
= F,

where F ′ is the force on the car in the moving frame and F is the force on

the car in the lab frame. They are equal as a consequence of the properties

of Galilean transformations. Furthermore, note that dm
dt �= σ where dm

dt is

the mass rate of baseballs colliding with the car. This is because, though

the baseballs leave your hand at velocity u, they travel at (u − v) relative

to the cart. Think of this as something analogous to the Doppler effect.

Quantitatively, if adjacent snowballs were separated by a distance l, the

time between collisions would be l
u−v as compared to l

u if the cart were

stationary. Thus,

dm

dt
=
u− v

u
σ,

M
dv

dt
= 2

(u− v)2

u
σ,

∫ v

0

1

(u− v)2
dv =

2σ

Mu

∫ t

0
dt

1

u− v
− 1

u
=

2σt

Mu

v = u− u

1 + 2σt
M

,

∫ x

0
dx =

∫ t

0
u− u

1 + 2σt
M

dt

x = ut− Mu

2σ
ln

(
1 +

2σt

M

)
.

27. Drag Force on Sphere**

Let the sphere travel at a velocity v in the positive y-direction. In the sphere’s

frame, the incoming particles travel at a velocity −v. Consider the collision

between a particle and an infinitesimal surface element on the sphere at
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azimuthal coordinate φ and an angle θ from the z-axis in spherical coordi-

nates. The particle will experience a change in velocity equal to twice of the

negated component of its initial velocity along the area vector of the surface

element (which is radially outwards). The unit area vector is

r̂ =

⎛
⎜⎝
sin θ cosφ

sin θ sinφ

cos θ

⎞
⎟⎠ .

Thus, the component of the sand’s initial velocity along this is⎛
⎜⎝

0

−v
0

⎞
⎟⎠ ·

⎛
⎜⎝
sin θ cosφ

sin θ sinφ

cos θ

⎞
⎟⎠ = −v sin θ sinφ.

The change in the particle’s velocity is −2 times in magnitude of this, in the

radial direction.

Δv = 2v sin θ sinφr̂.

The change in momentum of the particle, of mass dm, is then

dmΔv = 2v sin θ sinφr̂ · dm.
The change in momentum of the sphere is negative of this by the conservation

of momentum.

dp = −2v sin θ sinφr̂ · dm.
Now, we simply have to determine how much mass collides with the infinites-

imal surface element at φ, θ in a time interval dt. The volume swept by this

surface element (in the lab frame now) in time dt is the dot product of the

velocity of the sphere and the area vector of the surface element, multiplied

by dt. Thus,

dm = ρv · dAr̂dt

= ρ

⎛
⎜⎝
0

v

0

⎞
⎟⎠ ·

⎛
⎜⎝
sin θ cosφ

sin θ sinφ

cos θ

⎞
⎟⎠ r2 sin θdφdθdt

= ρvr2 sin2 θ sinφdφdθdt.

Hence,

dp

dt
= −2ρv2r2 sin3 θ sin2 φr̂dφdθ.
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The total drag force on the sphere will only be along the y-direction by

symmetry. Thus, we can simply compute the y-component of the above.

dpy
dt

= −2ρv2r2 sin4 θ sin3 φdφdθ.

The total drag force on the sphere is obtained by integrating the above over

half the surface of the sphere (as only half collides with the particles).

Fdrag = −
∫ π

0

∫ π

0
2ρv2r2 sin4 θ sin3 φdφdθ = −πρv2r2.

Interestingly, comparing this result with the drag force of a sheet shows that

the “effective area” of a sphere turns out to be half its cross-sectional area,
1
2πr

2.

28. Carrying Sand**

At steady state, the kinetic energy of the circle plus the sand stuck to it is

constant. There are two factors which affect the kinetic energy of this com-

bined system. Firstly, the falling sand collides with the circle and imparts in

it kinetic energy. Secondly, the torque about the center due to the weight of

the sand clinging on the circle engenders an angular acceleration — a more

enlightening perspective of this is to observe that the decrease in gravita-

tional potential energy of the sand is equal to the increase in kinetic energy

of the combined system. Let us compute the changes in kinetic energy due

to these factors separately and then add them together. For the first fac-

tor, though both energy and linear momentum are not conserved during the

inelastic collision (the latter is because of the impulsive force due to the

axle), angular momentum is conserved about the axle (where the impulsive

force due to the axle generates no angular impulse). Let the instantaneous

angular momentum and moment of inertia of the combined system about

the center of the circle at steady state be L and I respectively. I can be

computed from the fact that the linear mass density of the sand on the sur-

face of the circle at steady state should be λ = σ
rω as σdt mass of sand drops

on to an arc of length rωdt in time dt. This implies

I = πrλ · r2 = πσr2

ω
.

The speed of incoming sand is v =
√
2gh. By the conservation of angular

momentum, the angular momentum of the combined system at a time dt
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from the current instance is

L+ dL = L+ σr sin θvdt =⇒ dL = σr sin θ
√

2ghdt,

where the change stems from the angular momentum of the falling sand.

The new instantaneous moment of inertia I + dI is

I + dI = I + r2dm =⇒ dI = σr2dt.

Since the total kinetic energy of the combined system is T = L2

2I , the change

in kinetic energy due to the collision event is

dT1 =
(L+ dL)2

2I
(
1 + dI

I

) − L2

2I

≈ L2 + 2LdL

2I

(
1− dI

I

)
− L2

2I

=
L

I
dL− L2dI

2I2

= ωdL− 1

2
ω2dI

=

(
σr sin θ

√
2ghω − 1

2
σr2ω2

)
dt.

Proceeding with the second factor, the circle rotates an angle dθ = ωdt in

time dt at steady state. Then, λrωdt amount of sand is effectively transferred

from the point of collision to the point where sand is ejected — implying a

loss in gravitational potential energy of 2λr2g cos θωdt. By the conservation

of energy, the increase in the kinetic energy of the combined system due to

the second factor is correspondingly

dT2 = 2λr2g cos θωdt = 2σrg cos θdt.

At steady state, the total change in kinetic energy is zero.

=⇒ σr sin θ
√
2ghω − 1

2
σr2ω2 + 2σrg cos θ = 0

ω2 − 2
√
2gh sin θ

r
ω − 4g cos θ

r
= 0,

Solving,

ω =

√
2gh sin θ

r
+

√
2gh sin2 θ

r2
+

4g cos θ

r
,

where the negative solution has been rejected.
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29. Sweeping Duster***

The total mass of the duster plus collected-dust system is m =M+σlx. The

net force on the duster plus dust system at an instant is mg sin θ. Applying

the impulse-momentum theorem across a time interval dt,

mg sin θdt = (m+ dm)(v + dv)−mv

=⇒ mg sin θ =
dm

dt
v +m

dv

dt
.

Observe that

dm

dt
v +m

dv

dt
=
dm

dx
· dx
dt
v +mv̇

= σlv2 +mv̇.

Hence

(M + σlx)g sin θ = σlv2 + (M + σlx)v̇.

If we let y = M
σl + x,

yg sin θ = ẏ2 + yÿ.

Using ÿ = 1
2
dẏ2

dy ,

ẏ2 +
1

2
y
dẏ2

dy
= yg sin θ.

Multiplying by the integrating factor 2y,

2yẏ2 + y2
dẏ2

dy
=
d(y2ẏ2)

dy
= 2y2g sin θ

∫ y2ẏ2

0
d(y2ẏ2) =

∫ y

M
σl

2y2g sin θdy

y2ẏ2 =
2

3
y3g sin θ − 2M3

3σ3l3
g sin θ

ẏ =

√
2

3
yg sin θ − 2M3g sin θ

3σ3l3y2
,

ẋ =

√
2

3

(
M

σl
+ x

)
g sin θ − 2M3g sin θ

3σ3l3(Mσl + x)2
.
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30. Raindrop***

Define ρ and λ as the uniform mass densities of the raindrop and the water

droplets in the cloud, respectively and let r(t), m(t) and v(t) be the instan-

taneous radius, mass and velocity of the raindrop. We need three equations

to solve for these 3 variables and these comprise 2 equations for ṁ and the

impulse-momentum theorem. Firstly, the only force acting on the raindrop

at an instant in time is the gravitational force. Taking downwards to be

positive,

mgdt = (m+ dm)(v + dv)−mv

mg = ṁv +mv̇.

Furthermore, following from the assumption that our raindrop constantly

takes the form of a sphere,

m =
4

3
πr3ρ =⇒ ṁ = 4πr2ṙρ.

We can derive another expression for ṁ by observing that in a time interval

dt, the raindrop sweeps a volume equal to its cross-sectional area multiplied

by vdt. Thus, the gain in mass dm in an interval dt is

dm = λdV = λπr2vdt =⇒ ṁ = λπr2v.

Comparing the two expressions for ṁ,

v =
4ρ

λ
ṙ,

v̇ =
4ρ

λ
r̈.

Substituting the appropriate expressions into the equation obtained from

the impulse-momentum theorem,

4

3
πr3ρg = 4πr2ṙρ · 4ρ

λ
ṙ +

4

3
πr3ρ · 4ρ

λ
r̈

gλ

4ρ
r = 3ṙ2 + rr̈.

Using r̈ = 1
2
dṙ2

dr ,

3ṙ2 +
1

2
r
dṙ2

dr
=
gλ

4ρ
r.
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Multiplying the above by the integrating factor 2r5,

6r5ṙ2 + r6
dṙ2

dr
=
gλ

2ρ
r6

∫ r6ṙ2

0
d(r6ṙ2) =

∫ r

0

gλ

2ρ
r6dr =⇒ r6ṙ2 =

gλ

14ρ
r7

ṙ =

√
gλ

14ρ
r =⇒

∫ r

0

1√
r
dr =

∫ t

0

√
gλ

14ρ
dt

2
√
r =

√
gλ

14ρ
t =⇒ r =

gλ

56ρ
t2.

This gives the acceleration of the raindrop, v̇, as

v̇ =
4ρ

λ
r̈ =

g

7
,

which is independent of ρ, λ and t. A faster but less rigorous way of solving

mg = ṁv +mv̇

is to deduce from the problem statement that v̇ should be a constant a (such

that v = at) since the question did not ask for the acceleration as a function

of time. Since v = 4ρ
λ ṙ, r ∝ t2 such that m = 4

3πr
3ρ implies that m = kt6

for some constant k. Substituting m = kt6, v̇ = a and v = at,

kt6g = 6kt5 · at+ kt6a = 7kt6a

a =
g

7
.
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Chapter 7

Statics

As its nomenclature implies, statics refers to the study of objects that are

immobile, both translationally and rotationally. Such immobile objects are

known to be under a state of static equilibrium. The conditions for static

equilibrium are directly linked to the concepts of forces and torques which

have been covered in the past few chapters. In a similar vein, objects mov-

ing at a constant translational velocity and rotating at a constant angular

velocity are said to be under dynamic equilibrium. However, our analysis

will mostly be restricted to stationary set-ups as systems with uniformly

translating and rotating components are often not meaningful — most of

the time, the forces and torques in the system change as the system evolves,

such that the dynamic equilibrium is often transient.

7.1 Equilibrium

Translational Equilibrium

For a system to not accelerate translationally, it must not be acted upon by

a net external force. ∑
F = 0. (7.1)

Consider a tug-of-war between two people (Fig. 7.1).

If the forces exerted on the massive rope due to the two people are bal-

anced (i.e. F1 = F2), the rope does not accelerate. Otherwise, the person who

exerts a greater force will win the game as the rope will accelerate towards

him or her. Of course, sufficient static friction must exist to “glue” the two

to the ground too.

363
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Figure 7.1: Tug-of-war

Rotational Equilibrium

An extended body that is not undergoing a translational acceleration may

still not be “static” due to its possible rotational motion.

If the two people then decide to play their game of tug-of-war with a

pole and exert equal forces on both sides, the initially stationary pole will

definitely undergo angular acceleration and begin to rotate even though its

center of mass does not move.

Figure 7.2: Tug-of-war 2

For a system to be in rotational equilibrium, there must be no net torque

due to external forces on the system about every point.1∑
τ = 0. (7.2)

Note that internal forces, which obey the strong law of action and

reaction — that requires the lines of actions of an action and reaction pair

to be coincident — produce no net torque in a system.

Thankfully, when an object is in a state of translational equilibrium,

there is no need to show that the net torque about every point is zero. It is

sufficient to show that the net torque about a single point, which can be

1This is because the angular momentum of a static system is required to be constant
about any point. A change in the angular momentum of a system about any point definitely
implies that a particle has undergone acceleration.
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located anywhere, is zero. This is due to the fact that the net torques about

any two points are the same if the vector sum of forces is zero.

Proof: Consider two origins O and O′. R is the vector pointing from O′ to
O. Let ri and r′i be the vectors from origins O and O’ to the point of action

of the ith force F i respectively (Fig. 7.3).

Figure 7.3: Torques about two origins O and O’

Then, if there are a total of N forces on the system, the net torque about

origin O is

∑
τ =

N∑
i=1

ri × F i.

The net torque about origin O’ is

∑
τ ′ =

N∑
i=1

r′i × F i

=

N∑
i=1

(ri +R)× F i

=
N∑
i=1

ri × F i +R×
(

N∑
i=1

F i

)

=

N∑
i=1

ri × F i

=
∑

τ
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since
∑N

i=1F i = 0. Hence, the net torques about any two points of a system

in translational equilibrium are equal. In light of this property, we should

always wisely pick our origin at locations that exclude as many torques,

which arise due to unknown forces, as possible, to swiftly solve for our desired

variables. This is in stark contrast with the stance in rotational dynamics

where the origin is predominantly chosen at the center of mass or an ICoR.

Static Equilibrium

For a system to be in a state of static equilibrium, it must be under both

translational and rotational equilibrium and thus must satisfy both of their

respective conditions. Such static situations form the core of this chapter.

The crux of analyzing static set-ups involves considering appropriate systems

and sub-systems and balancing the external forces and torques on them. The

importance of free-body diagrams in this process cannot be understated.

General Procedure for Solving Static Systems

The general procedure in analyzing an n-dimensional static system is to

write down n equations (
∑
Fq = 0 where q indicates a certain direction)

that balance the components of forces along n independent directions which

are not necessarily perpendicular and write down a number of torque bal-

ance equations (
∑
τq = 0) about judiciously-chosen origins corresponding

to the possible number of rotational motions of the system. In the common

case where n = 2, we need 2 force balance equations and 1 torque balance

equation about a certain origin. However, any number of force balance equa-

tions can be replaced by an equivalent number of torque balance equations

about different origins. For example, we can have 1 force balance equation

and 2 torque balance equations about different origins or 3 torque balance

equations about 3 different origins that are not collinear. To show this, sup-

pose we write
∑

τ = 0 and
∑

τ ′ = 0 with respect to two different origins O

and O′ (see diagram in previous section). Note that we use vector notation

instead of taking the component in a particular direction as there can only

be a single rotational direction in a two-dimensional problem. Subtracting

the former equation from the latter,

∑
τ ′ −

∑
τ = R×

(
N∑
i=1

F i

)
= 0,

where R is the position vector of O with respect to O′. The above equa-

tion is equivalent to stating that the sum of forces perpendicular to R
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is zero — analogous to a force balance equation. Therefore, an additional

torque balance equation about an origin whose position vector relative to

other already-chosen origins is not parallel to other relative vectors between

already-chosen origins generates at least one additional force balance equa-

tion along a new direction — implying that force balance equations can

be superseded by torque balance equations. However, note that there must

always be a torque balance equation as the total number of linearly inde-

pendent directions (for force balance) is limited.

Trading a force balance equation for a torque balance equation is actually

very favourable. The reason is that by balancing the sum of forces along a

particular direction, we can usually only eliminate a single force (by choosing

the direction of interest to be perpendicular to this force). However, by taking

torques about an origin that is the intersection of various forces, many forces

can be eliminated in one fell swoop. We shall see how we can exploit this fact

later, but let us first practise balancing forces and torques in a few simple

systems.

Systems as a Whole

Problem: A rope is attached to a vertical pole. Then, a horizontal force F

is exerted on the left end of the rope. The rope remains stationary and its

right end makes an angle of 30◦ with the vertical pole. Determine the mass

of the rope, m.

Figure 7.4: Rope attached to pole

This simple example serves to highlight an important fact about ropes.

A rope segment cannot withstand or exert a force perpendicular to its instan-

taneous gradient as it will deform under such a force (or its reaction) —

implying that the tension in an infinitesimal segment of a immobile rope can

only exist in the longitudinal direction. Therefore, we can conclude that the

force on the rope at its right end subtends 30◦ with the vertical. Drawing a

free-body diagram of the rope, we obtain
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Figure 7.5: Free-body diagram of rope

where F ′ is the force on the rope due to the pole. Note that the center of mass

of the rope may not be at the midpoint of the rope. It does not even need

to be on the rope. Balancing forces in the horizontal and vertical directions

respectively,

F = F ′ sin 30◦

W = F ′ cos 30◦ = mg

=⇒ m =

√
3F

g
.

Problem: There is a man of mass m who walks on a uniform pole of mass

M and length l. The right end of the pole is attached to the ceiling via a

massless rope that makes an angle of 60◦ with the pole. On the other hand,

there is a hinge H at the left end. If the rope snaps when the tension reaches

a critical limit T0, what is the maximum distance from the left end of the

pole that the man can attain if the pole remains static throughout the whole

process?

Figure 7.6: Man on pole

Let the current position of the man be a distance x from the left end of

the pole. Balancing torques on the pole-and-man system about the hinge H,

T sin 60◦ · l = mgx+Mg
l

2
.
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Thus, when the tension force reaches its maximum value T0, the maximum

distance that the man travels xmax is given by

xmax =
(
√
3T0 −Mg)l

2mg
.

Note that we deliberately defined our pivot to be at hinge H as we want to

ignore the force on the pole due to the hinge which is not given.

Neat Tricks

When there are three unknown forces, with known directions, in a system

and we wish to solve for one of them, the equilibrium equations can be

applied in a convenient manner.

Problem: Consider a section of a truss structure in the figure below. All

member sections are massless and a force P is applied at the right end of the

truss. Determine2 F1, F2 and F3 if the system remains in static equilibrium.

Figure 7.7: Three unknown forces

To solve for F1, we can extend the lines of action of F2 and F3 to their

point of intersection A. Then by taking moments about pivot A, the net

torque due to F2 and F3 is zero. Thus,

F1 =
2P√
3
.

To solve for F2, notice that F1 and F3 are parallel. Then, we can balance

forces in the direction perpendicular to them to eliminate the need to con-

sider them.

F2 cos 30
◦ = P

F2 =
2P√
3
.

2These forces can only be directed longitudinally along the rods as the rods are two-force
members (see section after this).
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Having solved for F1 and F2, we can solve for F3 by balancing forces in the

horizontal direction. However, the point of this exercise is to determine the

forces with the use of a single equation. Hence, we shall consider torques

about the point of intersection of F1 and F2, denoted by B. Then,

F3 =
P√
3
.

In conclusion, when solving for a force and given two other unknown non-

parallel forces, one should take torques about the point of intersection of

the two other forces. Next, when solving for a force with two other parallel

unknown forces, one should balance forces in the direction perpendicular to

those unknown forces.

Forces at Two Points of a System

When there are two net external forces at two points of a system (there

may be more than one force at a point but these forces can be vectorially

combined into a net force), they must be equal in magnitude and opposite

in direction for the system to remain in static equilibrium. Furthermore,

the two net forces must be directed along the line joining the two points of

action. The first two conditions stem from the fact that the vector sum of

the external forces must be zero. The latter results from the constraint that

the net torque about any point must be zero. By considering torques about

one point of action, it is obvious that the line of action of the net force at

the other point of action must pass through this point of action.

An important consequence of this fact pertains to massless members,

which are structural components, on which forces act at two different points

(depicted on the right of Fig. 7.8). Such members are known as two-force

members. As the two points of action are usually the ends of the member,

the net forces at the two ends of the member can only be longitudinal — as

seen in the previous example.

Figure 7.8: Net external force at two different points of a system
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Forces at Three Points of a System

If net external forces are exerted with three non-overlapping lines of action

on three unique points of a system, the lines of action of the net external

forces must be concurrent or parallel for the system to remain static.

Figure 7.9: Concurrency of forces

This is because, if the three lines of actions are not parallel and are not

concurrent, the net torque taken about the point of intersection of two lines

of actions will be non-zero due to an external torque created by the other

force. Thus, if the lines of actions are non-parallel, they must be concurrent.

In the case of three parallel lines of actions, static equilibrium is attain-

able as the external torques about any point can be balanced. One can also

understand this by imagining that these three parallel lines are concurrent at

infinity.

This is a useful theorem for determining the possible configurations of a

system — acted upon by external forces at three unique points — in which

it can remain in static equilibrium.

Problem: A thin uniform pole of length l is placed on two frictionless ramps

with angles of inclination α and β respectively. What is/are the possible

angle(s) of θ for the pole to remain at static equilibrium?

Observe that there are external forces exerted at three different points

on the pole — namely the normal forces at its two ends and a gravitational

force at its centroid. It is then necessary for the lines of action of these three

forces to intersect in order for the pole to be in static equilibrium.

Define a coordinate system with a vertical y-axis that is positive in the

upwards direction and a horizontal x-axis that is positive rightwards. The ori-

gin is at O as shown in Fig. 7.10 on the next page. Let the coordinates of

the left end of the rod be (x, y) (point A). Then, the coordinates of the right

end of the rod (point B) and the centroid are (x + l cos θ, y − l sin θ) and
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Figure 7.10: Pole on ramps

(x+ l cos θ
2 , y − l sin θ

2 ) respectively. In order for the three forces to be concur-

rent, the x-coordinate of the point of intersection of the two normal forces

must be x+ l cos θ
2 .

Let us assume that this condition is satisfied and define the coordinates

of the point of intersection as (x+ l cos θ
2 , k) (point C). Furthermore, we know

that the gradients of the two normal forces N1 and N2 are 1
tanα and − 1

tanβ

respectively. Thus, in order for our proposed coordinates of the point of

intersection to be correct, the slopes between the points of action of the

normal forces and this point of intersection must be commensurate with the

aforementioned values.

y − l sin θ − k

x+ l cos θ − (x+ l cos θ
2 )

= − 1

tan β
,

k − y

x+ l cos θ
2 − x

=
1

tanα
.

Solving the equations above for θ, we obtain

tan θ =
1

2
(cot β − cotα) .

There is only one solution for θ in the range −π
2 ≤ θ ≤ π

2 . For readers

who are more geometrically inclined, we can consider the circle that passes

through the points A, B and C (Fig. 7.11). Draw a vertical line through C

and let its point of intersection with the circle and line AB (the rod) be D

and E respectively.

Since angles of the same segment are equal,

∠DBA = ∠DCA = α,

∠DAB = ∠DCB = β.
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Figure 7.11: Circle passing through points A, B and C

Let h be the perpendicular length from point D onto line AB. For point E

to be the midpoint of line AB,

h cotα+ h tan θ = h cot β − h tan θ

=⇒ tan θ =
1

2
(cot β − cotα).

Problem: A cuboid lies on a rough, massive inclined plane. If the total

normal force on the cuboid can be reduced to an equivalent normal force

that only acts at one point on the cuboid, where should that one point be

so that the cuboid is able to remain at static equilibrium?

Figure 7.12: Cuboid on inclined plane

The block is again acted upon by three forces, namely the friction due

to the plane, its own weight and the normal force due to the plane. Since

the friction force is aligned with the slope of the ramp, the normal force on

the block due to the plane must act at the point at which a line drawn ver-

tically downwards from the center of mass intersects with the surface of the

plane.

7.2 Connected Components

In static set-ups, different components may be related to others in vari-

ous fashions via diverse connections and supports. The following table in

Fig. 7.13 summarizes the common forms of connections and supports.
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Figure 7.13: Cuboid on inclined plane

The left-hand side of the above figure depicts possible pictorial repre-

sentations of the corresponding supports and connections while the right

illustrates the possible forces and moments on the the members connected

to the supports.

• When connected to a roller, a member experiences a force perpendicular

to the surface that supports the roller. The member is free to move in the

translational direction parallel to the surface and to rotate. A roller is a

support and cannot be used to connect structural members.

• In a pinned connection, the connected members can experience a force

due to the pin in any direction. The corresponding points of connection

on each member cannot move translationally relative to each other (i.e. the

members cannot be separated) but the members are able to rotate relative

to each other.

• In a fixed connection, the member experiences both forces and moments

due to the connection, usually because it is embedded in a medium. The

member is neither able to translate nor rotate.

• A simple support is one in which a member leans on a surface. It is similar

to the roller support; a force that is perpendicular to the surface acts on

the member.

When components in a static system are connected by pinned supports,

it becomes necessary to divide the system at the pins and consider the inter-

nal forces on the sub-systems due to the pin to generate sufficient equations

to entirely solve for the system. This is due to the fact that a pinned connec-

tion can only exert forces and not moments. Thus, “dismembering” the sys-

tem at a pin introduces at most two variables but generates three additional
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equilibrium equations due to the addition of a new sub-system. If an external

force acts on a pin, forces on the pin have to be balanced too so that the

forces on the two connected members due to the pin can be related.

Problem: Two sticks of masses m and M are connected by a pin as shown

below. They produce a right angle with respect to each other. If a force P

is exerted on the pin, determine the reaction forces on the sticks due to the

ground. Assume that the ground is sufficiently rough such that the sticks do

not slip.

Figure 7.14: Two sticks

We begin by drawing free-body diagrams of the sticks and pin.

Figure 7.15: Free-body diagrams

If F1 is the horizontal component of the force on the left stick due to the

pin, F1+P must be the horizontal component of the force on the right stick

due to the pin as the forces on the pin must be balanced. Similarly, if F2 is

the vertical component of the force on the left stick due to the pin, F2 must

also be that on the right stick. We then proceed to label the other forces

while accounting for translational equilibrium in the horizontal direction.

Balancing forces on the sticks in the vertical direction,

N1 + F2 = mg,

N2 =Mg + F2.
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Balancing torques about the bottoms of the sticks,

F1 cos θ + F2 sin θ =
mg sin θ

2
,

(F1 + P ) sin θ − F2 cos θ =
Mg cos θ

2
.

Solving,

F1 =
(m+M)g sin θ cos θ

2
− P sin2 θ,

F2 =
mg sin2 θ

2
− Mg cos2 θ

2
+ P sin θ cos θ,

N1 =
mg

2
+

(m+M)g cos2 θ

2
− P sin θ cos θ,

N2 =
Mg

2
+

(m+M)g sin2 θ

2
+ P sin θ cos θ,

where F2 is extraneous in a certain sense as it was not asked for in the prob-

lem. Notice that if we did not consider the two sticks as two separate systems,

there will be four force variables (a horizontal and vertical component for

each of the reaction forces due to the ground) but only three equilibrium

equations. Hence, we could not have solved for the reaction forces without

considering the internal forces of this system.

Now, you may be tempted to think that one should always divide a

system into smaller sub-systems to generate more equations. Progressively

dividing beams into smaller and smaller sections should produce more and

more equations! Well, the obvious trade-off is the increase in the number

of variables. In the case of fixed connections, there is an increase in three

variables (two components of force and a moment) when dividing a system

at a fixed connection. This evens out the increase in equilibrium equations.

Furthermore, there is already nothing interesting to solve for as it is already

known that the connected members cannot translate or rotate with respect

to each other. Hence, dividing a system into smaller sub-systems in this

case is not beneficial, but redundant. In the case of a single rigid beam,

each section is fixed relative to each other — rendering the consideration of

individual sections superfluous. We should only consider sub-systems when

there are additional degrees of freedom. A degree of freedom is a possible,

independent translational or rotational motion of a component in a system.

By independent, we mean that if we keep all other components of the system

fixed, the particular component can still move.



July 10, 2018 12:24 Competitive Physics 9.61in x 6.69in b3146-ch07 page 377

Statics 377

7.3 Friction

The previous situations were devoid of static friction. However, in systems

containing static friction, there will be a constraint on the relationship

between certain physical properties of a system that must be satisfied for

the system to remain in static equilibrium. This is due to the upper limit on

the magnitude of static friction between two relatively stationary surfaces,

|f | ≤ μsN where μs is the coefficient of static friction and N is the normal

force between the surfaces. The absolute value sign is extremely important

here as we could have incorrectly guessed the direction of the frictional force

which causes f to be negative. Static friction always acts in a direction to

oppose impending motion. On a side note, the coefficient of static friction

is often greater than that of kinetic friction, μs > μk which explains why

heavy objects become easier to push once they begin moving.

If static friction acts on a system, a variable for each frictional force

should be defined and solved in terms of the other variables. Only after

obtaining the expressions for the frictional forces and the corresponding

normal forces should we impose the condition pertaining to the maximum

magnitude of friction. Then, a number of inequalities, which is equal to the

number of static frictional forces, will be obtained.

Problem: A block of mass m lies on a massive inclined plane with an angle

of inclination θ and is attached to another mass M via a frictionless fixed

pulley. If the coefficient of static friction between the plane and the block is

μ, determine the appropriate conditions that must be satisfied so that the

two blocks remain in static equilibrium.

Figure 7.16: Two connected blocks on inclined plane

Firstly, we can identify and label the forces on the two blocks as shown

in the diagram above. f refers to the static friction force between the plane

and the block on the ramp. The free-body diagrams are superimposed here

for convenience. Balancing forces, we obtain

T =Mg,

T = mg sin θ + f,

N = mg cos θ.
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Solving for f ,

f =Mg −mg sin θ.

Lastly, we can impose the condition that |f | ≤ μN .

|Mg −mg sin θ| ≤ μmg cos θ.

Now, two separate cases need to be considered. If M ≥ m sin θ,

Mg −mg sin θ ≤ μmg cos θ

M ≤ (sin θ + μ cos θ)m.

Thus, the overall condition in this case is

m sin θ ≤M ≤ (sin θ + μ cos θ)m.

Otherwise if M ≤ m sin θ,

mg sin θ −Mg ≤ μmg cos θ

M ≥ (sin θ − μ cos θ)m.

The overall condition in this second case is then

(sin θ − μ cos θ)m ≤M ≤ m sin θ.

Ultimately, as long as (sin θ − μ cos θ)m ≤ M ≤ (sin θ + μ cos θ)m, the two

masses will remain in static equilibrium.

Problem: A ladder with a uniform mass distribution is placed on a rough

ground and leans on a smooth wall. The ladder subtends an angle θ with

the horizontal. Determine the conditions required for the ladder to remain

in static equilibrium.

Figure 7.17: Leaning ladder on rough ground
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As always, we label the forces on the ladder. Balancing torques about

the point of intersection of the two normal forces,

fl sin θ = mg · l cos θ
2

f =
mg cot θ

2
.

Balancing the forces on the ladder in the vertical direction,

N2 = mg.

If we impose the condition that |f | ≤ μN ,

mg cot θ

2
≤ μmg

cot θ

2
≤ μ.

We did not need to consider two cases as f = N1 > 0 — we are certain of

the direction of friction.

Impending Motion

The previous situations dealt with conditions for static equilibrium in sys-

tems with static friction. On the other hand, there are scenarios in which a

system is just on the verge of moving or slipping. In such situations, certain

static friction forces attain their largest attainable value: |f | = μN . This

leads to a neat condition for surfaces with a single point of contact — the

net contact force (comprising friction and the normal force) subtends an

angle tan−1 μ from the normal when the surfaces are about to slip relative

to each other. Let us first consider a system with a single friction force.

Problem: A small block of mass m is placed on a massive, rough inclined

plane with an angle of inclination θ. If the coefficient of static friction between

the block and the plane is μ > tan θ (so that the block does not slip under

its own weight), determine the minimum external force required to move the

block.

Firstly, we introduce the notion of a force triangle which is applicable

when we have three forces and are unconcerned with the torques produced

by them. The vector sum of the contact force on the block due to the plane

F (normal force-cum-friction), its weight W and the external force P yields

the null vector at equilibrium (when the block has yet to slip). Therefore, if

the heads and tails of the three pairs of these three vectors are conjoined,
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Figure 7.18: Force triangle

a vector triangle must be formed (Fig. 7.18). Its cyclic nature signifies the

fact that their sum yields the null vector.

When the block is on the verge of slipping, F is directed at an angle

tan−1 μ from the normal of the slope — implying that the angle α between

F and W is either θ − tan−1 μ or θ + tan−1 μ (depending on the direction

of impending motion). Applying the sine rule,

P

sinα
=

W

sin β
=⇒ P =

W sinα

sinβ
,

where β is the angle between F and P . It is variable as the magnitudes

of F and P are not fixed. Evidently, |P | is minimized when we choose

α = θ − tan−1 1
μ and β = π

2 .

Pmin = mg sin(θ − tan−1 μ) = mg[sin θ cos(tan−1 μ)− cos θ sin(tan−1 μ)]

=
mg√
μ2 + 1

(sin θ − μ cos θ).

Pmin is perpendicular to F at this juncture and subtends an angle π−α−β =
π
2 − θ + tan−1 μ with the vertical. As seen from the fact that this angle is

larger than π
2 or from the fact that the above value of Pmin is negative,

the component of Pmin parallel to the inclined plane points downslope —

agreeing with our intuition that it should be easier to push the block down

the slope as gravity is aiding us.

When there are multiple friction forces, the situation becomes more com-

plicated as it is necessary to determine which point slips first or whether

different points slip simultaneously. Generally, applying an external force to

a system with many frictional forces will not lead to simultaneous slipping.

To determine the minimum external force required to cause a system

comprising multiple static frictional forces to slip, one should determine the

force required to make each of the points slip. That is, one should plug in

|f | = μN for the appropriate f and N for each of the individual friction

forces, one at a time, and solve for the external force required. Then, the

minimum of all computed forces is chosen.
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Problem: Referring to the previous problem on Fig. 7.14, if the coefficient

of static friction between the ground and the sticks is now μ, determine the

minimum P required to make the system slip.

We will use the results that we have previously calculated. Assuming that

the left stick slips first,

F1 = μN1,

P1 =
g[(m +M) sin θ cos θ − μm− μ(m+M) cos2 θ]

2(sin2 θ − μ sin θ cos θ)
.

Assuming that the right stick slips first,

F1 + P = μN2,

P2 =
g[(m +M) sin θ cos θ − μM − μ(m+M) sin2 θ]

2(sin2 θ + μ sin θ cos θ − 1)
.

The minimum P is then the smaller of the values of P1 and P2.

Next, the assumption of simultaneous slipping is usually made in

determining the optimal configuration of systems that are statically

indeterminate — a concept that will be explored in a later section. Simply

put, there are more force variables than equations. Then, the exact values of

these forces can vary according to how the system was constructed. Hence,

it is possible to make the points in a statically indeterminate system slip

simultaneously — generating additional equations that enable the system to

be solvable and leading to situations which are optimal in a certain respect,

most of the time. Consider the following example.

Problem: A ladder leans on a rough wall with a coefficient of static friction

μ1 and is placed on a rough ground with a coefficient of static friction μ2.

Determine the minimum angle θ that the ladder makes with the horizontal,

for which it does not slip.

Figure 7.19: Ladder on rough ground and wall
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At the minimum angle θ, both friction forces f1 and f2 attain their max-

imum values μ1N1 and μ2N2 respectively. When the ladder slips, it tends to

decrease the angle it makes with the horizontal. Hence, the bottom of the

ladder tends to slip towards the right while the top of the ladder tends to

slip downwards.

N1 = f2 = μ2N2,

f1 = μ1N1 = μ1μ2N2.

Balancing forces in the vertical direction,

f1 +N2 = mg

=⇒ N2 =
mg

1 + μ1μ2
.

Taking torques about the bottom of the ladder,

N1 sin θ + f1 cos θ =
mg

2
cos θ

μ2
1 + μ1μ2

mg sin θ +
μ1μ2

1 + μ1μ2
mg cos θ =

mg

2
cos θ

θ = tan−1

(
1
μ2

− μ1

2

)
.

In most situations, μ1 < 1 and μ2 < 1 such that θ is positive. The above is a

common method presented by various sources. However, it is not extremely

convincing as it is not obvious that the simultaneous attainment of the max-

imum values of the two frictional forces is possible — though intuition may

hint at this. Consider the following proof based on the concurrency of the

net forces at the three points of the ladder.

Figure 7.20: Reaction forces and weight

In order for the system to remain static, the lines of action of the two

reaction forces at the ends of the ladder and its weight must be concurrent.
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Let the origin be at the bottom end of the wall and denote the length of the

ladder as l. The coordinate system is such that the upwards and rightwards

directions are positive. Then, the coordinates of the top and bottom ends of

the ladder are (0, l sin θ) and (l cos θ, 0) respectively. Since the x-coordinate of

the ladder’s centroid is l cos θ
2 , let the coordinates of the point of concurrency

be ( l cos θ2 , y). Then, for the three forces to be concurrent at that point,

y − l sin θ
l cos θ

2

= tanα

y
l cos θ

2

= cot β.

Eliminating y and solving for θ,

tan θ =
cot β − tanα

2
.

It can be observed that θ is minimized when cot β is minimized and when

tanα is maximized. Furthermore, from the upper limit on the magnitude of

friction at a surface relative to the normal force due to that same surface,

cot β ≥ 1

μ2
,

tanα ≤ μ1.

Hence, the minimum value of θ is

θ = tan−1

(
1
μ2

− μ1

2

)
.

To see why simultaneous slipping is attainable, consider the case where α

has reached its maximum value while β has not. Then, β can be increased

further to lower the point of concurrency and hence decrease α— saving the

ladder from the verge of slipping. A similar argument can be made in the

reverse direction.

Normal Force in Impending Motion

Generally, the normal force between two surfaces with a non-negligible con-

tact area is distributed (not necessarily uniformly) along the entire common

surface. Determining the pressure distribution is generally an intractable

problem as the force and torque balance equations only yield aggregated

values of the force and torques associated with the normal force. However,

when a system is on the verge of slipping, the normal force undertakes a
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boundary case which is often tractable. A frequent condition in such situa-

tions is that the entire normal force acts at a single point on the common

surface.

Problem: A uniform pencil with a hexagonal cross-section lies on a rough,

massive inclined plane with an angle of inclination θ (cot θ ≤ √
3). If the

coefficient of static friction between the slope and the pencil is μ > 1√
3
, deter-

mine the minimum α for which the pencil can remain at static equilibrium.

Figure 7.21: Pencil on slope

A common trick in evaluating torques along a certain direction in a three-

dimensional problem is to squash the set-up along the direction of the torque

(forces which act at points squashed along the same line are vectorially

combined) as the extent of the set-up in that direction does not matter in the

cross-product r×F (the component of r parallel to r×F is inconsequential).

Therefore, we can compress the pencil in the direction perpendicular to its

cross-section to obtain the following free-body diagram.

Figure 7.22: Free-body diagram after squashing

Let the mass of the pencil be m. The mg cos θ component of the pencil’s

weight acts at the center of the hexagon in the direction normal to the slope

while the mg sin θ cosα component of its weight acts in the plane of the

slope and perpendicular to the axis of the pencil. Generally, friction and a

normal force also act at the bottom of the pencil’s base (the edge at the

bottom of the hexagon). Though the normal force is generally distributed

along the entire edge (represented by the vectors with white arrowheads),

we argue that in the limit where α is minimum, the entire normal force
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acts at the left end of the bottom edge. To see why this is so, compute

torques about the left end of the bottom edge — the anti-clockwise torque

due to the leftwards component of the pencil’s weight (mg sin θ cosα) and

the possible anti-clockwise torque due to the normal force on the bottom

edge must balance the fixed clockwise torque due to the downwards (normal

to the slope) component of the pencil’s weight (mg sin θ). In order for α to

be minimized, the former anti-clockwise torque must be maximized while

the latter anti-clockwise torque must be minimized — implying that the

boundary case occurs when the normal force solely acts at the left end such

that it generates zero torque about the left end. At this juncture, the torques

due to the two components of the pencil’s weight about the left end must

be balanced — implying that the vector obtained from combining these two

components must pass through the left end. Thus,

tan 30◦ =
sin θ cosα

cos θ
.

The minimum α satisfies

cosα =
cot θ√

3
=⇒ α = cos−1

(
cot θ√

3

)
.

The ratio between the friction force f and the normal force N at this junc-

ture is

f

N
=
mg sin θ cosα

mg cos θ
= tan θ cosα =

1√
3
< μ,

which shows that the system does not slip.

7.4 Strings under Distributed Force

This section will explore how a string can remain in static equilibrium when

acted upon by a force distributed along its entire length. A string “transmits”

a force via tension, which means that every section is being pulled by its

adjacent sections. A string cannot transmit a compressive force as it will

become flimsy when pushed upon and collapses.

The important variables here are the shape of the string and the tension

in the string. The common denominator in such problems is the need to con-

sider infinitesimal sections of the string and integrate the relevant variables

over the entire string. This is because the tension in a string is an internal

force which necessitates the consideration of different segments to find the

tension at each point.

Let us begin by considering a simple example. A string of length l and

uniform linear mass density λ is hung vertically from a ceiling. The string
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remains static. Find the tension in the string at a height y from the bottom

of the string.

Well, the simple approach would be to consider the bottom segment of the

string of length y. The tension on this segment must balance its weight which

is λgy. Thus, the tension at that height must be λgy. However, let us make

things more interesting by considering infinitesimal segments of the string.

Figure 7.23: Hanging string

Consider an infinitesimal segment of string with ends at vertical coordi-

nates y and y + dy (Fig. 7.23). The y-axis is defined to be positive upwards

with the origin O at the bottom of the string. The tension at these ends are

T and T+dT respectively. Balancing the forces on this infinitesimal segment,

T + dT = T + λgdy

dT = λgdy.

Integrating this,

T = λgy + c.

Now, we need to impose a boundary condition on the tension to solve for

c. We can either use the fact that T = 0 at y = 0 as there is no mass that

needs to be supported at the free bottom end, or T = λgl at y = l, as the

tension at the top must support the weight of the entire string. Substituting

either condition, we obtain

T = λgy.

Massless String wrapped around a Rough Pole

So far, we have been dealing with pulleys without friction between the axle

and the rope. In the following problem, let us analyze a situation where a

static massless rope is wrapped around a rough cylindrical pole.

Problem: A massless rope is wrapped around a rough pulley with a coeffi-

cient of static friction μ. The segment of the rope in contact with the pulley

subtends an angle φ. If one end of the rope is vertically attached to a weight
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Figure 7.24: Holding a weight around a rough pole

of mass m, what is the minimum force F that has to be exerted at the other

end for the rope and mass to remain static?

To solve this problem, we first note that the tension at the right end

of the string segment in contact with the pulley must be mg, so that the

weight remains stationary. Furthermore, the tension should vary along the

string segment in contact with the pulley as friction can aid in preventing

the weight from sliding downwards in the ideal scenario. The shape of the

string segment is constrained to be an arc on a circle. Hence, infinitesimal

segments of the string in contact with the pulley can be considered in polar

coordinates.

Figure 7.25: Infinitesimal sector of the pole and string

The forces that act on this infinitesimal segment of string that is between

angles θ and θ+dθ, as measured clockwise from the horizontal, are depicted

above. dN is the normal force, df is the friction force while T and T+dT refer

to the tensions at its ends at angular coordinates θ and θ + dθ. Balancing

forces in the tangential direction,

(T + dT ) cos
dθ

2
= T cos

dθ

2
+ df.
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Friction must be pointing in the anti-clockwise direction so that F

(on the left) is a minimum. Furthermore, using the small angle approxi-

mation cos x ≈ 1 when x is small,

T + dT = T + df

dT = df.

Now, balancing forces in the radial direction,

dN = T sin
dθ

2
+ (T + dT ) sin

dθ

2
.

Using the small angle approximation sinx ≈ x and discarding second-order

infinitesimal terms,

dN = Tdθ.

Lastly, there is a constraint that

df ≤ μdN

=⇒ dT = df ≤ μTdθ.

Shifting T to the left-hand side and integrating,∫ mg

F

1

T
dT ≤

∫ θ0+φ

θ0

μdθ,

where θ0 corresponds to the angle of the left end of the segment in contact

with the pole. Then,

ln
∣∣∣mg
F

∣∣∣ ≤ μφ

F ≥ mge−μφ. (7.3)

It can be seen that the minimum amount of force required to maintain the

system in static equilibrium decays exponentially with φ. Thus, friction can

be leveraged to hold heavy objects (the above suggests that we should wrap

more rounds of the rope around the pulley). Now, what is the minimum

external force F ′ required for the weight to just begin to move upwards

(impending motion)? In such a scenario, the impending motion is opposite

to that in the previous situation as the mass now tends to move upwards.

Hence, friction will act in the opposite direction and F ′ can be computed as

F ′ = mgeμφ.

In the previous inequality, F ′ plays the role of mg while F is replaced by

mg. Thus, friction is beneficial when we want to keep objects stationary, but
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detrimental when we need to move them. Actually, we can observe that the

assumption of the rope taking the form of an arc was not essential in our

treatment. Therefore, the above result can in fact be generalized to a rope

clinging on a surface of an arbitrary shape (the angle φ just refers to the

angle subtended by the normals from the two extreme points of the rope

that are in contact with the surface).

7.5 Statically Indeterminate Situations

Hence far, the problems that we have encountered are all solvable based

on the conditions for static equilibrium alone. In two-dimensional problems,

applying the conditions for static equilibrium to a single system only results

in three equations — namely, two for translational equilibrium and one for

rotational equilibrium. Thus, static situations can be solved purely through

these conditions if there are three or fewer independent force variables. How-

ever, in scenarios where the total number of force variables exceeds the num-

ber of degrees of freedom of a system — the number of translational and

rotational motions that are independent — not all force variables can be

completely solved for. This occurs when the system has too many supports

and is known as a statically indeterminate system. The values of the forces

in the final configuration depend on how the system was assembled in the

first place.

Consider the following example: a block of mass m lies motionless on top

of a table. The block is also vertically attached to the ceiling via a massless

string. What is the normal force N on the block due to the table and the

tension in the string, T ?

Figure 7.26: Block on table

Well, we obtain the lone equilibrium equation by balancing forces in the

vertical direction:

T +N = mg.
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Evidently, there are two unknowns but only one equation. The forces are

indeterminate and their magnitudes depend on the way the system was con-

structed. In reality, bodies deform under stress and this affects the forces in

a system, as we shall see. Let the final length of the string be l and consider

the three different scenarios below.

In the first scenario, a rope of length l − ε1, where ε1 is small, is tied to

the ceiling. Then, the block is attached to the rope and allowed to come to

rest, stretching the rope to length l in the process. At this point T = mg.

Finally, the table is slid under the block. In this case, it is evident that

T = mg,

N = 0.

In a different situation, the block is first placed on the table. N = mg at this

juncture in order for the block to remain stationary. Then, a rope of length

l is tied from the block to the ceiling. In the final configuration,

T = 0,

N = mg.

In the last situation, the block is first placed statically on the table. The

magnitude of the normal force is still equal to the weight at this point. Now,

a rope of length l − ε2 where ε2 < ε1 is attached to the block. The rope is

then pulled upwards and tied to the ceiling, extending to a length l in the

process. In this case, both the magnitudes of tension and the normal force

acquire intermediate values between 0 and mg. Their exact values depend

on the value of ε2 and the elastic modulus of the rope.

Generally, deformations have to be considered and the rigid body assump-

tion is discarded in order to generate more equations to solve a stati-

cally indeterminate problem. However, such situations are not particularly

common — one should rather pay heed to identifying special conditions

regarding the forces in a system that result from how the system was placed.

Consider the following example.

Problem: Cylinder A, of radius R, is initially placed on the ground and

gently rests against the wall. Now, cylinder B, of radius r < R, is placed on

top of A, as shown in Fig. 7.27, while A is gently held by a person. Both

cylinders remain static at this juncture. If the person now retracts his hand

from cylinder A, what conditions must be fulfilled for the cylinders to remain

in static equilibrium? The coefficients of static friction between cylinder A

and the ground, the cylinders and the wall and between the cylinders are

μ1, μ2 and μ3 respectively. The cylinders both have mass m.
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Figure 7.27: Two cylinders

As always, a free-body diagram for each of the two cylinders is drawn

(Fig. 7.28).

Figure 7.28: Free-body diagrams

There are a total of 8 variables to solve for. However, there are only 6

possible equilibrium equations relating them. Hence, there must be another

constraint imposed on this system so that the problem is tractable. The

critical observation is that when cylinder B is placed onto cylinder A, there

is no tendency for cylinder A to move to the right. Hence, the normal force

N4 must be zero. Correspondingly, f4 is also zero. Now, there are exactly 6

variables and 6 equations which enables the system to be solvable. Balancing

torques about both cylinders about the axes through their centers,

f1 = f2 = f3.

Hence, we shall just denote the friction forces as f henceforth. Balancing

forces in the vertical and horizontal directions for both cylinders, we obtain

the following set of simultaneous equations.

N1 = mg + f cos θ +N3 sin θ, (7.4)

f(1 + sin θ) = N3 cos θ, (7.5)

f(1 + cos θ) +N3 sin θ = mg, (7.6)

N2 + f sin θ = N3 cos θ. (7.7)
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From Eqs. (7.5) and (7.7) (or from balancing forces on the combined system

in the horizontal direction), it can immediately be seen that

N2 = f.

Hence, for the system to remain static,∣∣∣∣ fN2

∣∣∣∣ ≤ μ2

=⇒ μ2 ≥ 1.

Next, f can be solved via Eqs. (7.5) and (7.6),

f =
cos θ

1 + sin θ + cos θ
mg.

Substituting this into Eq. (7.5),

N3 =
1 + sin θ

1 + sin θ + cos θ
mg.

Finally, substituting the relevant expressions for f and N3 into Eq. (7.4),

N1 =
2 + 2 sin θ + cos θ

1 + sin θ + cos θ
mg.

Hence, the conditions for the system to remain static are∣∣∣∣ fN1

∣∣∣∣ =
∣∣∣∣ cos θ

2 + 2 sin θ + cos θ

∣∣∣∣ ≤ μ1. (7.8)

∣∣∣∣ fN3

∣∣∣∣ =
∣∣∣∣ cos θ

1 + sin θ

∣∣∣∣ ≤ μ3. (7.9)

Note that

cos θ =
R− r

R+ r
> 0,

sin θ =
2
√
Rr

R+ r
> 0.

Hence, the values in the absolute value brackets are both positive. Substi-

tuting these into Eq. (7.8),

(1− 3μ1)R− 4μ1
√
Rr − (1 + μ1)r ≤ 0.

The left-hand side can be factorized into

(
√
R+

√
r)[(1 − 3μ1)

√
R− (1 + μ1)

√
r] ≤ 0.
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Since the term enclosed in brackets on the left is always positive,
√
r√
R

≥ 1− 3μ1
1 + μ1

.

Lastly, from Eq. (7.9),

(1− μ3)R− 2μ3
√
Rr − (1 + μ3)r ≤ 0(√

R+
√
r
) [

(1− μ3)
√
R− (1 + μ3)

√
r
]
≤ 0

√
r√
R

≥ 1− μ3
1 + μ3

.

Based on the relative magnitudes of μ1 and μ3,
√
r√
R
has to satisfy the stricter

lower bound. Furthermore, recall that there is an upper bound that is given

as
√
r√
R
< 1.

7.6 Virtual Work

Recall that the infinitesimal work done by a force F on a point that under-

goes a displacement dr is

dW = F · dr.
In static systems, a concept of virtual work can be conjured by imagining a

virtual displacement δr of a point at which a force F acts on. Recall that

a general displacement δr of a point on a rigid body consists of both a

translation and a rotation about a reference point.

δr = δDref + δθ × rref .

δDref is a small translation of a reference point O on the body in a cer-

tain direction (which drags the entire body with it while maintaining its

Figure 7.29: Translation and rotation about a point in two dimensions
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orientation relative to O). δθ denotes an infinitesimal rotation of the rigid

body about point O of magnitude δθ, in the plane perpendicular to δθ, and

whose direction is given by the right-hand corkscrew rule. Note that even

though general finite rotations cannot be represented by vectors, an infinites-

imal rotation can be represented by a vector3 (it can be seen as the angular

velocity multiplied by a small time interval). rref is the position vector of

the point of concern (whose displacement is δr) on the body relative to point

O. Correspondingly, the total virtual work done by a force on a point on a

body that undergoes a virtual displacement δr is

δW = F · (δDref + δθ × rref ).

Using the triple-product rule

a · (b× c) = b · (c × a).

The total virtual work can be expressed in a familiar form.

δW = F · δDref + δθ · (rref × F ).

The first term can be seen as the translational work done due to the force

(associated with the virtual displacement of point O) while the second term

can be understood as the rotational work done due to the torque produced

by the force about the reference point O.

The total virtual work done by N forces at various points on a body due

to a virtual displacement of the body is then given by

δW =

(
N∑
i=1

F i

)
· δDref + δθ ·

N∑
i=1

τ i.

Since internal forces result in no net force and torque, virtual work is only

produced by external forces.

3The reason behind this is that three-dimensional rotations are not commutative (the
order of rotation matters). Pick up your pen and hold it vertically between your thumb
and index finger, with the tip pointing downwards. Now, rotate the pen by 90◦ such that
the tip points towards you. Afterwards, rotate it by 90◦ again such that the tip points
towards your palm. You will see that if you repeat these rotations in the reverse order,
a different final configuration will be obtained (the pen tip points towards you). However,
for infinitesimal rotations, this error is negligible and an infinitesimal rotation can be
represented by a vector denoting the rotations about three different axes (without any
mention of the sequence of rotations).
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7.6.1 The Principle of Virtual Work

The principle of virtual work states that a system is in static equilibrium

if and only if the total virtual work done by external forces acting on the

system is zero for all virtual displacements of the system, consistent with its

constraints.

Proof:

=⇒ If a system is in static equilibrium, the vector sum of forces is zero and

the net torque about any point, including the reference point O, is zero —

implying that
∑

F = 0 and
∑

τ = 0. Hence,

δW = 0.

⇐= Consider a pure virtual translation in the x-direction, δDx. Let Fix
denote the x-component of the ith force. Then, if the virtual work due to a

virtual translation in the x-direction is zero,

δW =
(∑

F i

)
· δDx =

(∑
Fix

)
δDx = 0

=⇒
∑

Fix = 0.

This implies that there must be no net force in the x-direction. A similar

conclusion can be obtained for the other directions. Now, consider a pure

virtual rotation of the body about the x-direction with respect to a certain

origin. Then, if the total virtual work done due to this virtual rotation is

zero,

δW = îδθ ·
∑

τ = 0

=⇒
∑

τx = 0.

Hence, the net torque about the origin in the direction of the infinitesi-

mal rotation must be zero. Repeating this process for rotations in other

directions, one can show that the system is in rotational equilibrium. Since

the system must be in both translational and rotational equilibrium, it has

attained a state of static equilibrium.

Applications

The principle of virtual work really shines in determining configurations of

connected components that are possible for static equilibrium. Such utility

stems from the fact that the virtual work of internal forces, which come in

opposite and collinear pairs, can be neglected entirely. Hence, there is no
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need to “dismember” the connected components and to consider internal

forces when applying the principle of virtual work.

Problem: Determine the angle θ for which the system below can remain

in static equilibrium. The members are incompressible and have lengths l.

The left member is pinned at one end while the right member is placed on

a roller. An external force P is exerted on the frictionless pin that connects

the two members. The relaxed length of the spring, with spring constant k,

is l0. Neglect the weight of the members.

Figure 7.30: Connected members

Internal Forces: We shall first solve the problem by considering internal

forces. We divide the entire system into three sub-systems — the left mem-

ber, the right member and the pin connecting them. Drawing their free-body

diagrams,

Figure 7.31: Free-body diagrams

N1, N2 and N3 are forces on the members due to their supports at the

bottom. As the left member is pinned, it can experience a force due to the

pin in both the horizontal and vertical directions. Next, the forces F1 and

F2 are exerted by the central pin on the respective members. They must

act along the longitudinal directions of the members which are two-force

members.
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Balancing forces in the vertical and horizontal directions of the pin,

F1 sin θ = F2 sin θ

=⇒ F1 = F2 = F,

where we introduce a new unified variable F .

P = 2F cos θ

F =
P

2 cos θ
.

Balancing forces on the right member in the horizontal direction,

F cos θ = Fspring.

The force due to the spring can be computed as

Fspring = k(2l cos θ − l0).

Hence,

P

2
= k(2l cos θ − l0)

cos θ =
P

4kl
+
l0
2l
.

Principle of Virtual Work: Let us now solve the problem using virtual

work. Define the x-axis to be along the horizontal direction with the origin

at O. We shall consider the virtual work done by the external forces when

the angle θ increases by a small angle δθ. Let the x-coordinates of point A

and B be xA and xB respectively.

xA = l cos θ,

xB = 2l cos θ.

The only external forces that act on points which undergo virtual displace-

ments when θ is increased by δθ are the force P at point A and the spring

force on point B. Since the external forces only act in the horizontal direc-

tion, we simply need to consider the virtual displacements of A and B in

the horizontal direction in computing virtual work. These virtual displace-

ments, δxA and δxB , can be computed via the derivative of their respective
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x-coordinates with respect to θ.

δxA = −l sin θδθ,
δxB = −2l sin θδθ.

The total virtual work done by the forces on the system is then

δW = δWP + δWspring = −l sin θδθP + 2l sin θδθFspring = 0.

Substituting the expression for Fspring, we obtain the same result:

cos θ =
P

4kl
+
l0
2l
.

It can be seen that there was completely no need to consider internal forces

and external forces that produce zero work when the system undergoes a

certain virtual displacement. Hence, the principle of virtual work can greatly

simplify one’s analysis in appropriate situations.

7.6.2 Potential Energy

If a virtual displacement leads to work done by only conservative forces,

the principle of virtual work can be expressed in an equivalent form. Let qi
represent a generalized coordinate of the system — it could be an angular

or translational coordinate. In static systems, the number of independent

coordinates required to define the state of a system is equal to the number

of degrees of freedom, f . Following from this, the potential energy of a system

can be defined by f coordinates. Then, the virtual work done by conservative

forces when the system undergoes a virtual displacement from a particular

coordinate q1 to q1 + dq1 is

δWcons = −(U(q1 + dq1, q2, . . .)− U(q1, q2, . . .)),

where U refers to the total potential energy of the system. By the principle

of virtual work, if the work done is only due to conservative forces, then

δWcons = 0,

=⇒ U(q1 + dq1, q2, . . .)− U(q1, q2, . . .) = 0.

If we divide the above expression by dq1 and take the limit as dq1 → 0,

∂U

∂q1
= 0.

This means that at positions of static equilibrium, the total potential energy

of a system should undertake a stationary value with respect to a coordi-

nate q if virtual displacements in coordinate q result in virtual work done
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by only conservative forces. This provides another handy tool in enforcing

static equilibrium for a system that is under the influence of gravitational

forces, spring forces and other conservative forces. It is still possible to apply

this technique to systems with non-conservative forces if the virtual displace-

ments are set to be perpendicular to these forces. Systems with normal forces

immediately come to mind.

Problem: A uniform ladder of massm and length l is placed on a frictionless

ground and leans on a frictionless wall. There are two springs, of spring

constants k1 and k2, attached to the left end and the center of the ladder

respectively. The other ends of both springs are both attached to the left

end of the ceiling. If the height between the ceiling and the ground is h,

determine the angles θ at which the ladder is in static equilibrium. Assume

that the relaxed lengths of the springs are zero.

Figure 7.32: Leaning ladder

The total potential energy of the system is

U = mg
l

2
sin θ +

1

2
k1(h− l sin θ)2 +

1

2
k2

[(
h− l

2
sin θ

)2

+
l2 cos2 θ

4

]
,

dU

dθ
= mg

l

2
cos θ − k1(h− l sin θ)l cos θ − k2hl

2
cos θ

=
cos θl

2
[mg − 2k1(h− l sin θ)− k2h] .

When the system is at static equilibrium, dUdθ = 0

=⇒ cos θ(2k1l sin θ +mg − 2k1h− k2h) = 0.
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The two solutions to this equation are

cos θ = 0

=⇒ θ =
π

2

and

sin θ =
2k1h+ k2h−mg

2k1l

θ = sin−1

(
2k1h+ k2h−mg

2k1l

)

if 0 ≤ 2k1h+k2h−mg
2k1l

≤ 1. Note that θ is constrained to be between 0 and
π
2 . θ >

π
2 would imply that the ladder is on the left of the wall which is

physically impossible. The equations above could have also been obtained

by considering torques about the point of intersection of the normal forces

due to the wall and the ground.

Problem: Two identical members, of length l and mass m, are fixed

perpendicularly with respect to each other. The two free ends of the mem-

bers are attached to springs of spring constant k = mg
l that are verti-

cally connected to the ceiling. If the relaxed length of the springs is l0,

what are the possible configurations of the system such that it is in static

equilibrium?

Figure 7.33: Hanging members

The system has two degrees of freedom. Hence, we need two coordinates

to uniquely define its state. We will adopt the coordinates x and θ as labeled
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in Fig. 7.33. The total potential energy of the system is

U = −mg
(
x+

l

2
cos θ

)
−mg

(
x+ l cos θ − l

2
sin θ

)

+
1

2
k(x− l0)

2 +
1

2
k(x+ l cos θ − l sin θ − l0)

2.

The partial derivatives of the total potential energy with respect to both x

and θ must be zero for the system to remain in static equilibrium.

∂U

∂x
= −2mg + k(x− l0) + k(x+ l cos θ − l sin θ − l0) = 0, (7.10)

∂U

∂θ
= mgl

(
3

2
sin θ +

1

2
cos θ

)

−kl(x+ l cos θ − l sin θ − l0)(sin θ + cos θ) = 0. (7.11)

Multiplying Eq. (7.10) by sin θ + cos θ and adding it to Eq. (7.11), divided

by l, yields the following after some rearrangement.

k(x− l0) =
mg(sin θ + 3cos θ)

2(sin θ + cos θ)
=⇒ x =

sin θ + 3cos θ

2(sin θ + cos θ)
l + l0,

since k = mg
l . Substituting this expression into Eq. (7.10),

(cos θ − sin θ)(cos θ + sin θ + 1) = 0.

One solution is

tan θ = 1

=⇒ θ =
π

4
,

x =
mg

k
+ l0 = l + l0.

Another solution is

sin θ + cos θ = −1

√
2 sin

(
θ +

π

4

)
= −1

θ = −π
2

or π,

x =
l

2
+ l0 or

3l

2
+ l0.
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Figure 7.34: Static equilibrium positions

The two possible configurations are depicted in the figure above. The two

cases θ = −π
2 and θ = π are combined into the diagram on the right, as the

two situations only differ by a flip in the horizontal direction.

7.6.3 Stability of Equilibrium

The potential energy function of a conservative system in terms of a certain

coordinate can be used to investigate the stability of an equilibrium with

respect to that coordinate. We will only analyze systems with a single degree

of freedom. Recall that at points of equilibrium, the first derivative of the

potential energy with respect to a coordinate is zero, that is, dUdq = 0.

• In a stable equilibrium with respect to a certain coordinate, any deviation

in that particular coordinate tends to produce a force that minimizes the

deviation and returns the system back to the equilibrium position. As a

conservative force is oriented towards points of lower potential energy, this

requires the potential energy function to be a local minimum, d2U
dq2 > 0.

This is commensurate with our intuition that a lower potential energy

implies a more stable state. A possible configuration is shown in the left-

most diagram in Fig. 7.35. A circle is attached to a ceiling like a pendulum.

Any deviation in its angle with respect to the vertical will be reduced by

the torque arising from its weight.

• In a neutral equilibrium with respect to a coordinate, any deviation in

that particular coordinate does not lead to a response by the conserva-

tive system to amplify or reduce the deviation. A truly neutral equilibrium

requires all (higher-order) derivatives of the potential energy function with

respect to that coordinate to be zero. In a neutral equilibrium, the system

possesses a constant potential energy with respect to a particular coordi-

nate, though the neutral state may have a finite width. An example of a

neutral equilibrium would be a cylinder lying on a tabletop, as shown in

the middle diagram of Fig. 7.35. If the cylinder translates forwards slightly,

there is no tendency for further translation backwards or forwards.
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Figure 7.35: Illustrations of different stabilities

• In an unstable equilibrium with respect to a certain coordinate, any devi-

ation in that particular coordinate tends to produce a force that further

amplifies the deviation. This requires the potential energy to be a local

maximum relative to that coordinate, d
2U
dq2

< 0. A example of an unstable

equilibrium would be the cylinder resting on top of a small hill, as shown

in the rightmost diagram in Fig. 7.35. A slight rotation of the cylinder with

respect to its point of contact with the hill will produce a gravitational

torque that causes the cylinder to rotate further away from its equilibrium

position.

In the rare case where the second derivative is zero, higher order deriva-

tives of U need to be examined. Performing a Taylor expansion of U(q) about

the equilibrium position q0,

U(q) = U(q0)+
U ′′(q0)

2!
(q−q0)2+U

′′′(q0)
3!

(q−q0)3+· · ·+U
n(q0)

n!
(q−q0)n+· · · .

Note that we have omitted the term of degree one, as U ′(q0) = 0 by definition

of an equilibrium point. Now if the first non-zero derivative is of odd order,

the equilibrium point is neither a maximum nor minimum as increasing and

decreasing q− q0 changes the value of U(q) in opposite directions. However,

if the first non-zero derivative is of even order, the equilibrium point is a

turning point. If the first non-zero derivative is of even order and has a

positive value, the equilibrium is stable (as adjacent values of U are larger).

Otherwise, if it is of even order and negative, it is unstable.

Problem: An equilateral triangle, of side length l and uniform mass density,

is at static equilibrium when it is placed in a gap of width d. One side of

the triangle is parallel to the horizontal such that the axis of the triangle is

placed vertically in the gap. Determine the minimum value of d for which

the triangle remains at stable equilibrium. (Estonian Finnish Olympiad)

The only degree of freedom of the triangle is a rotation about the vertical

axis. Our strategy would be to determine the coordinates of the vertex of

the triangle in the gap and use the fact that the CG is a distance l√
3
away
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Figure 7.36: A slight displacement

from any vertex of an equilateral triangle.4 Let the origin be defined at the

left end of gap, denoted as O in the figure. Let the coordinates of the bottom

tip be (x, y). Then,

x

−y = tan(30◦ − θ),

d− x

−y = tan(30◦ + θ)

y = − d

tan(30◦ + θ) + tan(30◦ − θ)
.

The y-coordinate of the center of mass yCG is the addition of the vertical

component of the length between the vertex and the centroid, to y.

yCG = − d

tan(30◦ + θ) + tan(30◦ − θ)
+

l√
3
cos θ.

Since the gravitational force is the only conservative force in this conservative

system, the second derivative of yCG at θ = 0 must be greater than zero for

the system to be in stable equilibrium at θ = 0.

dyCG
dθ

=
d

[tan(30◦ + θ) + tan(30◦ − θ)]2
[
sec2(30◦ + θ)− sec2(30◦ − θ)

]

− l√
3
sin θ.

4Note that the center of mass of a triangle is the point of concurrency of the medians of
the triangle. Furthermore, the point of concurrency divides each median into a 2 : 1 ratio,
with the segment closer to the base having a shorter length.
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As expected, substituting θ = 0 into the first derivative gives zero. The

second derivative is

d2yCG
dθ2

= − 2d

[tan(30◦ + θ) + tan(30◦ − θ)]3
[sec2(30◦ + θ)

− sec2(30◦ − θ)]2 − l√
3
cos θ

+
2d

[tan(30◦ + θ) + tan(30◦ − θ)]2
[sec2(30◦ + θ) tan(30◦ + θ)

+ sec2(30◦ − θ) tan(30◦ − θ)].

Substituting θ = 0 and concluding that the second derivative at this point

must be greater than zero,

4√
3
d− l√

3
> 0

d >
l

4
.
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Problems

Balancing Forces and Torques

1. Hanging Chain*

A uniform chain of massm is hung from two walls with ends at equal heights.

If the slope of the chain makes an angle of 30◦ with the vertical at its ends,

determine the tension T at the center of the chain.

2. Maintaining a Member*

Two massless members are connected by frictionless pins to each other as

shown in the figure below. One member is attached to the wall using a pinned

support while the other member is horizontal and touches the wall. A force P

is exerted at the center of the bottom member. If the angle between the two

members is θ > 0 and if the coefficient of static friction between the bottom

member and the wall is μ, what condition must θ satisfy for the system to

attain static equilibrium?

3. Three Circles*

Three identical circles, of uniform mass m, are arranged as shown in the fig-

ure below. If the coefficients of static friction between a circle and the ground

and between the circles are μ1 and μ2 respectively, determine the conditions

for the system to remain in static equilibrium.
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4. Hanging Rod*

A rod, of uniform mass density and length l, is connected to a friction-

less wall via a massless string of length s. Determine height h, which

is defined in the figure below, for which the rod can remain in static

equilibrium.

5. Resting Rod**

A rod of length l rests in a massive semi-circular bowl of radius r with its two

ends at different halves of the bowl. It makes an angle θ with the horizontal.

Assuming that all surfaces are frictionless and that the rod protrudes out

of the bowl, determine θ (if any) required for the rod to remain in static

equilibrium and the conditions for such θ to exist.

6. Driving a Wedge**

An isosceles wedge of angle 2θ and massm is sandwiched between two circles

of mass M . A slowly increasing force F is exerted on the wedge. If the

coefficients of static friction between the circles and the wedge and between

the ground and the circles are μ0 and μ respectively, what is the condition

on μ0 for the system to remain at static equilibrium before a critical value

of F is reached? What is the critical value of F for which one can drive the

wedge deeper between the circles?
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7. Two Bricks**

Two identical bricks of mass m are attached to two pulleys and placed on an

inclined plane, as shown in the figure below. The pulleys are connected to

a massive wall. If the coefficients of static friction between the brick and

the ramp and between the bricks are μ1 and μ2 respectively, determine

the angle θ for which the bricks begin to slip if θ is gradually increased

from 0.

8. Supporting a Wedge**

An equilateral triangle, of length l and uniform mass density, is supported by

a gap as shown below. Determine the minimum value of d for the wedge to

remain in static equilibrium. Assume all surfaces to be frictionless. (Estonian-

Finnish Olympiad)

9. Turning Car**

A car can be modeled as two wheels separated by a distance s, connected by

a body in the middle. If the center of mass of the car is a height h above the

ground and undergoes circular motion of radius l, determine the maximum

angular velocity of the car’s motion ω such that it does not topple. Assume

that the coefficient of static friction between the wheels and the ground is

large.
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10. Crawling on Ladder**

An ant of mass m is initially stationary at the top of a ladder of mass

M and length l that leans against a smooth wall and rests on smooth

ground. The ladder is initially held by you such that it is stationary.

Now, you release your grip and the ant begins to travel down the ladder,

towards the end at the ground. If the ladder remains stationary through-

out the ant’s motion, determine the time required by the ant to reach the

bottom end.

11. A Spool**

A spool, of total mass m, consists of an axle of radius r and a larger circle

of radius R. A string is attached to the axle and pulled with a force F at

an angle θ with respect to the horizontal. The spool lies on rough ground.

(“Introduction to Classical Mechanics”)

• In terms of r and R, what should angle θ be such that the spool remains

in static equilibrium? Assume that static friction is large enough for the

spool to remain static.

• Given r, R and the coefficient of static friction between the ground and

the spool μ, what is the maximum value of F for which the spool does not

move?

• Given R and μ, what should r be so that one can make the spool slip with

the smallest F possible?

12. Circle and Stick**

A stick of length l and mass m rests on a circle of mass 3m, with a quarter

of its length protruding above the circle as shown in the figure on the next

page. The stick and the circle lie on top of a rough, horizontal table. If the

stick subtends a 60◦ angle relative to the horizontal and friction is present

between all surfaces, determine the conditions required for this system to

remain in static equilibrium.
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Strings

13. Tension in a String**

A string with mass density λ and one end at x-coordinate x0 is placed on an

arbitrary frictionless surface described by y(x), where the x-axis has been

defined as the horizontal axis. If the tension at x = x0 is T0, determine T (x).

Do this in two ways: (1) by considering infinitesimal segments of string and

(2) by considering virtual displacements. How would T (x) vary if you fix its

two ends and remove the surface such that the string now hangs under its

own weight to form a new shape y(x)? The tension in the end at x = x0 is

still T0.

14. Shape of String**

A massless string hangs between two walls at horizontal coordinates x = 0

and x = l. If an infinitesimal segment of string between horizontal coordi-

nates x and x+dx experiences a force λxdx vertically downwards, show that

the shape of the string at equilibrium obeys

y =
λx3

6F
+ y′(0)x+ y(0)

where y is the vertical coordinate (positive upwards) and F is a constant.

y′(0) and y(0) are the gradient and vertical coordinate of the end at x = 0

respectively. In your derivation, interpret the meaning of F .

15. Static Atwood**

Consider the Atwood’s machine on the next page; the strings subtend an

angle θ with respect to the pulleys, with a coefficient of static friction μ.

What are the minimum and maximum tensions that you can exert on the

right end of the string such that the system remains static? Assume that
mg
eμθ

> m1g.
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Virtual Work and Potential Energy

16. String and Sticks**

Two identical uniform sticks of mass m and length l are pinned together.

They both make an angle θ with respect to the vertical. A massless string

is connected to the bottom of one rod and perpendicularly to the other

rod as shown in the figure below. Determine the tension in the string

if the table, on which the sticks are located, is frictionless. Solve this

problem by balancing forces and torques, and applying the principle of

virtual work.

17. Table**

The legs of a table are each formed by two massless rods of length l, connected

by a pinned connection. The pinned connections are connected via a spring of

rest length l0 and spring constant k. If the base of the table is a massless rod

of length l0 and if the legs of the table are fixed to the ground, determine the

possible angles of θ such that the system can remain in static equilibrium

when a point mass m is placed at the center of the table. Examine the

stability of the equilibrium(s).



July 10, 2018 12:24 Competitive Physics 9.61in x 6.69in b3146-ch07 page 412

412 Competitive Physics: Mechanics and Waves

18. Block on Cylinder***

A block of height h rests directly on top of a cylinder of radius r, whose

cylindrical axis is in the plane of the table. If the block does not slip with

respect to the cylinder, determine the condition for the block to be in a

stable equilibrium.
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Solutions

1. Hanging Chain*

Divide the chain into half about the midpoint and consider the free-body

diagram of one of the halves. The tension at the bottom end of half the chain,

which is at the center of the original chain, T , only points in the horizontal

direction. Let the tension at the top of half the chain be T0. It makes an

angle of 30◦ with the vertical. The weight of this half section is mg
2 . Hence,

for static equilibrium to be attained,

mg

2
= T0 cos 30

◦

T0 =
mg√
3
,

T = T0 sin 30
◦ =

mg

2
√
3
.

2. Maintaining a Member*

Observe that the diagonal member is a two-force member. Hence, the force

on that member can only be in the longitudinal direction. Correspondingly,

the force due to that member on the horizontal member also makes an angle

θ with respect to the horizontal. The free-body diagram is shown below.

Figure 7.37: Free-body diagram

Taking torques about the right end, it can be deduced that

F sin θ =
P

2

F =
P

2 sin θ
.
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Balancing forces,

f = P − F sin θ =
P

2
,

N = F cos θ =
P cos θ

2 sin θ
,∣∣∣∣ fN

∣∣∣∣ = | tan θ| ≤ μ.

It is obvious that the physical situation corresponds to 0 < θ < π
2 . Since

tan θ is positive in this regime, we can simply remove the absolute value

brackets to obtain

tan θ ≤ μ.

3. Three Circles*

Let the normal forces between a circle and the ground and between the

bottom circles and the top circle be N1 and N2 respectively. Then, let the

friction between the ground and the bottom left circle be f rightwards.

The friction between the bottom left circle and the top circle is also f , in

order for torques to be balanced about the bottom left circle. A similar

situation occurs for the bottom right circle. Thus, all friction forces are of

magnitude f . Balancing horizontal forces on the left circle,

N2 cos 60
◦ = f(1 + cos 30◦)
f

N2
=

1

2 +
√
3
= 2−

√
3 ≤ μ2.

By balancing forces on the top circle in the vertical direction,

2(N2 sin 60
◦ + f sin 30◦) = mg

f =
mg

4 + 2
√
3
=

(2−√
3)mg

2
.

Furthermore, by considering the three circles as an entire system,

N1 =
3mg

2

by symmetry. Hence,

f

N1
=

2−√
3

3
≤ μ1.
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4. Hanging Rod*

Observe that there are three forces on the rod — the tension force, nor-

mal force and its weight. Hence, in order for it to attain a state of static

equilibrium, the lines of action of these forces must be concurrent.

Figure 7.38: Lines of action

The lines of action of the normal force and the tension force intersect at

point C. In order for the line of action of the weight to intersect at this point

as well, segment BC must have length l cos θ
2 . Observe that triangles ABC

and ADE are similar, so that

	ABC ∼ 	ADE,
AB

AD
=
BC

DE
=⇒ h√

s2 − l2 cos2 θ
=

1

2
.

Since, h =
√
s2 − l2 cos2 θ − l sin θ,

2l sin θ =
√
s2 − l2 cos2 θ

3l2 sin2 θ = s2 − l2

l2 cos2 θ =
4l2 − s2

3

h =

√
s2 − l2 cos2 θ

2
=

√
4s2−4l2

3

2
=

√
s2 − l2

3
.

5. Resting Rod**

There are forces at three points of the rod — two normal forces and its

weight.

Refering to the figure on the next page if we define the origin O to be at

the left end of the rod, the x-coordinate of the point of intersection of lines
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Figure 7.39: Resting rod

of action of the two normal forces is 2r cos 2θ. Hence, for the weight and the

two normal forces to be concurrent,

2r cos 2θ =
l

2
cos θ

8r

l
cos2 θ − cos θ − 4r

l
= 0

cos θ =
l +

√
l2 + 128r2

16r
,

where we have rejected the negative solution which implies that the two ends

of the rod lie in the same half of the bowl. For θ to exist, the right-hand side

must be smaller than or equal to one.

l +
√
l2 + 128r2

16r
≤ 1√

l2 + 128r2 ≤ 16r − l

l2 + 128r2 ≤ 256r2 − 32rl + l2

=⇒ r ≥ l

4
.

6. Driving a Wedge**

We first draw free-body diagrams of the wedge and circles in Fig. 7.40.

The friction forces on each circle must be the same to satisfy the equality

of torques about the center. Furthermore, the friction forces on the bottoms

of the circles must be equal for the horizontal forces on the entire system to

be balanced. We then denote all friction forces as f . Balancing forces in the

horizontal direction of a circle,

N2 cos θ = f(1 + sin θ).
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Figure 7.40: Free-body diagrams

In order for the system to remain in static equilibrium,

f

N2
=

cos θ

1 + sin θ
≤ μ0.

Note that f is always positive in this case, as N2, cos θ and (1 + sin θ) are

non-negative for 0 ≤ θ < π
2 . Thus, we did not need to consider the absolute

value in |f | ≤ μ0N2. Balancing forces on the wedge in the vertical direction,

2(f cos θ +N2 sin θ) = F +mg.

Substituting the expression of N2 in terms of f , we solve the equations to

obtain

f =
(F +mg) cos θ

2(sin θ + 1)
,

N2 =
F +mg

2
.

In fact, this is a general trend in problems in which an object is balanced

between two identical circles, with friction between the object and the circles,

and between the circles and the ground. The normal force that is exerted

on a circle due to the object is half the total vertical force experienced by

the object (including its weight), excluding the forces due to the circle. This

can be seen from the fact that the zero net torque and force equations could

have been rewritten for any general set-up. Next, if we consider the entire

set-up as a whole, 2N1 must balance the entire weight of the system plus F .
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Hence

N1 =
F +mg

2
+Mg.

When the system is just about to slip, f = μN1. Equating these two expres-

sions and solving for F , impending motion occurs when F attains the value

F =
mg(μ sin θ + μ− cos θ) + 2μMg(sin θ + 1)

cos θ − μ sin θ − μ
.

7. Two Bricks**

Let the friction forces between the block and the ramp and between the

two blocks be f1 and f2 respectively. Similarly, define N1 and N2 as the

normal force on the bottom block due to the ramp and that on the top

block due to the bottom block. The key observation is that these bricks tend

to slip simultaneously in opposite directions as they are connected by a fixed

pulley. Assume that f2 and f1 are directed upwards and downwards along

the ramp, respectively. In other words, the top block tends to slip downwards

while the bottom block tends to slip upwards. Let the tension in the string,

connected to the top block, be T and consider the forces on the block on

top. At equilibrium,

T + f2 = mg sin θ,

N2 = mg cos θ.

When the top brick is about to slip, f2 = μ2N2.

T + μ2mg cos θ = mg sin θ.

Considering the forces on the two blocks as a whole,

3T = f1 + 2mg sin θ,

N1 = 2mg cos θ.

Similarly, at this juncture, f1 = μ1N1.

3T = 2μ1mg cos θ + 2mg sin θ.

Eliminating the tensions,

2μ1mg cos θ + 2mg sin θ = 3mg sin θ − 3μ2mg cos θ

tan θ = 2μ1 + 3μ2.

If the friction forces were assumed to point in the opposite directions, a neg-

ative value of θ will be obtained and hence, this case is rejected.
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8. Supporting a Wedge**

Firstly, observe that the distribution of the normal force on the right side of

the wedge generally depends on the width of the gap. When the gap attains

its minimum width, we argue that the entire normal force on the right side

is at the bottom tip of the wedge.

To understand this, consider torques about the bottom end of the right

edge, B. The clockwise torque due to the normal force N2 on the slanted side

of the triangle balances the anti-clockwise torques due to the wedge’s weight

and possibly due to the normal force on the right edge. Observe that N2 has

a fixed magnitude for different d’s as its vertical component must balance

the wedge’s weight. Therefore, as d decreases, the clockwise torque due to

N2 decreases as the length of the moment’s arm is reduced — implying that

the anti-clockwise torque due to the normal force on the right edge follows

suit. In the boundary case where d reaches its minimum value, the normal

force on the right edge must contribute zero anti-clockwise torque and act

entirely at point B. Any gap of a smaller width would require a normal force

outside the wedge, which is impossible.

Figure 7.41: Three forces on the wedge

At the minimum gap width, the forces act on the wedge at exactly three

points. Hence, the concurrency criterion can be used to determine the gap

width. The lines of action of the forces are depicted above. The length of

line segment AB is

lAB = d.

Hence, the length of segment BC is

lBC =
lAB

cos 30◦
=

2d√
3
.

The length of segment BD is

lBD =
lBD

cos 30◦
=

4d

3
.
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In order for the lines of action to coincide, lBD must be equal to the horizontal

distance between the center of mass of the wedge and the right side of the

wedge, which is l
2
√
3
. Thus,

4d

3
=

l

2
√
3

=⇒ d =

√
3l

8
.

9. Turning Car**

Friction provides the required centripetal force for the car to undergo circular

motion. Let the friction forces on the left and right wheels be f1 and f2
respectively, pointing towards the left. Let the corresponding normal forces

be N1 and N2. For the car to remain in circular motion,

f1 + f2 = mlω2,

where m is the mass of the car. Balancing forces in the vertical directions,

N1 +N2 = mg.

Now, balancing torques about the center of mass of the car,

(N2 −N1)
s

2
= (f1 + f2)h.

Note that it is essential to define our pivot at the center of mass as the body

is accelerating. The net torque is not necessarily zero with respect to other

origins. Solving this system of equations for N1 and N2,

N2 =
mg

2
+
mlω2h

s
,

N1 =
mg

2
− mlω2h

s
.

Since N1 must be non-negative,

ω ≤
√

gs

2lh
.

10. Crawling on Ladder**

Consider the situation when the ant is at a distance x from the top of a

ladder. In order for the ant to remain on the ladder, there must be a normal

force on it due to the ladder that balances the mg cos θ component of its

weight perpendicular to the ladder. Generally, there is also a force f between
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the ladder and the ant in the direction parallel to the ladder, as depicted in

the free-body diagrams below.

Figure 7.42: Free-body diagrams of ladder and ant

Balancing torques on the ladder about the point of intersection of the

normal forces on the ladder due to the wall and the ground,

mg cos θ(l cos2 θ − x) = fl sin θ cos θ

f =
mg(l cos2 θ − x)

l sin θ
.

The acceleration of the particle along the ladder is due to f and the tangen-

tial component of its weight, mg sin θ.

f +mg sin θ = mẍ

ẍ =
g

l sin θ
(l − x).

Observe that if we introduce a new variable y = x− l,

ÿ = − g

l sin θ
y.

The above equation of motion describes a simple harmonic motion about an

equilibrium position located at the bottom end of the ladder (x = l). The

angular frequency of this simple harmonic motion is

ω =

√
g

l sin θ
.

The period is

T = 2π

√
l sin θ

g
.

The time required for the ant to travel to the bottom end is a quarter of

this period (as it begins at a point of greatest displacement with zero initial
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velocity and ends at the equilibrium position).

T

4
=
π

2

√
l sin θ

g
.

11. A Spool**

Let the friction and the normal force between the spool and the ground be

f and N respectively. Balancing torques about the center of the spool,

Fr = fR.

Balancing forces in the horizontal direction,

F cos θ = f

=⇒ cos θ =
r

R

θ = cos−1
( r
R

)
.

Balancing forces in the vertical direction,

N = mg − F sin θ.

At the maximum value of F , f = μN .

F cos θ = μ(mg − F sin θ)

F =
μmg

cos θ + μ sin θ
=

μmgR

r + μ
√
R2 − r2

.

Given R, μ and r, the value of F that makes the spool slip is given by the

expression above. To minimize this by varying r, the denominator needs to

be maximised. The derivative of the denominator with respect to r is

1− μr√
R2 − r2

= 0.

Solving for the required value of r,

r =
R√
1 + μ2

.

12. Circle and Stick**

Let the friction force on the bottom of the circle be f rightwards. Then, the

friction force between the circle and the stick must also be f for the torques

on the circle to be balanced. Furthermore, in order for the horizontal forces
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on the combined system to be balanced, the friction on the stick due to the

table must also be f leftwards. Let N1, N2 and N3 be the normal forces on

the circle due to the table, between the circle and the stick, and that on

the stick by the table, respectively. Balancing torques on the stick about its

bottom end,

3

4
N2l =

1

2
mgl cos 60◦

N2 =
1

3
mg.

Balancing horizontal forces on the stick,

f(1 + cos 60◦) = N2 sin 60
◦

f =

√
3

9
mg.

Balancing vertical forces on the stick,

N3 = mg − f sin 60◦ −N2 cos 60
◦

N3 =
2

3
mg.

Balancing vertical forces on the circle,

N1 = 3mg +N2 cos 60
◦ + f sin 60◦

N1 =
10

3
mg.

Let μ1, μ2 and μ3 be the coefficients of friction between the ground and

the circle, between the circle and the stick, and between the stick and the

ground, respectively. Then,

μ1 ≥ f

N1
=

√
3

30
,

μ2 ≥ f

N2
=

√
3

3
,

μ3 ≥ f

N3
=

√
3

6
.

13. Tension in a String**

Consider an infinitesimal segment of string between x-coordinates x and

x+ dx.
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Balancing forces in the tangential direction (parallel to the segment),

(T + dT ) cos dθ − T = dT = λdsg sin θ.

Since ds sin θ =
√

1 + y′2dx · y′√
1+y′2

= y′dx,

∫ T

T0

dT =

∫ x

x0

λgy′dx =

∫ y

y(x0)
λgdy

T = λg (y(x)− y(x0)) + T0.

To apply the principle of virtual work, isolate the string segment between

x = x0 and x = x. Then, consider a virtual displacement δs of this string

segment (towards x = x), tangential to the surface at all points. Then, the

work done by the tensions on the ends of the strings is (T−T0)δs. To compute

the work done by gravity, observe that we have effectively transferred δs

amount of string from a vertical level y(x0) to y. Thus, the change in potential

energy is

ΔU = λg (y(x)− y(x0)) δs.

By the principle of virtual work,

Wtension +Wgravity = 0

Wtension = −Wgravity = ΔU

=⇒ T = λg (y(x)− y(x0)) + T0.

T (x) will remain the same after removing the surface. From the perspective

of the first method, the tangential component of the forces will not change,

resulting in the exact same T (x). In the case of the second method, the string

can still be displaced in an identical fashion to lead to the same work done
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by tension and gravity. Then, the same conclusion will naturally be reached.

Interestingly, in the case of massless strings where λ→ 0,

T = T0,

which shows that the tension is, in fact, uniform in a massless string that

is resting on a surface or hanging under its own weight (this is intuitive as

a massless string segment cannot experience a net force in the tangential

direction).

14. Shape of String**

Consider the free-body diagram of a string segment between coordinates x

and x+dx. Since there are no forces in the horizontal direction, the horizontal

component of tension must be a constant F .

T cos θ = F.

Balancing forces in the vertical direction,

(T + dT ) sin(θ + dθ)− T sin θ = λxdx.

Dividing both sides by dx,

d(T sin θ)

dx
= λx.

Since T sin θ = F tan θ = Fy′,

d (Fy′)
dx

= λx

y′′ =
λ

F
x
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y′ =
λ

2F
x2 + y′(0)

y =
λ

6F
x3 + y′(0)x+ y(0).

15. Static Atwood**

Let the tension you exert be T , the tension exerted on the bottom of m1 be

T1 and the tension on top be T2. Intuitively, the minimum T occurs when

m2 tends to move downwards and m1 tends to move upwards. Applying

Eq. (7.3),

m2g ≤ T2e
μθ

T1 ≤ Teμθ.

Balancing the forces on m1,

T1 = T2 −m1g ≥ m2g

eμθ
−m1g

=⇒ T ≥ m2g

e2μθ
− m1g

eμθ
.

The above equality is satisfied when both of the first two inequalities reach

their boundary case (impending motion) — this concurrency is definitely

possible. Consider the case where the first equality is satisfied but not the

second. At this juncture, T2 has reached its minimum but T1 has yet to reach

its maximum. Then, it is possible for T1 to increase further, thus increasing

T2 and preventing impending motion. A similar argument can be made in

the reverse direction. Moving on, when T is maximum, the string tends to

slip in the other direction. Then,

T2 ≤ m2ge
μθ

T ≤ T1e
μθ

T1 ≤ m2ge
μθ −m1g

T ≤ m2ge
2μθ −m1ge

μθ.

An argument, similar to that above, can be made to show that the equality

case is attainable. The maximum T is thus m2ge
2μθ −m1ge

μθ.
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Figure 7.43: Three forces on the wedge

16. String and Sticks**

We divide the system into two sub-systems.

We take torques about the black circles depicted in Fig. 7.43 above, to

eliminate the normal forces and F2. Then,

F1 · l sin θ + T cos θ · l cos θ = mgl sin θ

2

T (cos 2θ − sin2 θ)l = F1l sin θ +
mg sin θl

2
.

Solving for T ,

T =
mg sin θ

2 cos 2θ
.

To solve this problem via the principle of virtual work, we use θ0 to replace

the angle θ defined in the problem and instead denote 2θ as a variable angle

subtended by the two sticks. The idea here is to apply the principle of virtual

work to the two sticks (excluding the string) after a virtual angular displace-

ment δθ such that θ becomes θ+ δθ. The virtual works done in this process

are due to their weights (which can be computed as the negative of the total

change in their gravitational potential energy) and the tensions acting on

the two sticks. There is a slick way of computing the work done due to the

latter factor — the work done by tension on the two sticks is simply the

negative of the tension in the string, T , multiplied by the virtual extension

of the string (negative as tension tugs on the sticks but an extension implies

that the sticks move outwards, in the direction opposite to tension).

To this end, observe that the right end of the stick is located at a distance

l cos 2θ0 from the point of connection. Therefore, as a general function of θ,

the length of the string is

s =
√
l2 + l2 cos2 2θ0 − 2l2 cos 2θ0 cos 2θ
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by the cosine rule. The virtual extension due to the virtual angular displace-

ment δθ is

δs =
2l2 cos 2θ0 sin 2θ√

l2 + l2 cos2 2θ0 − 2l2 cos 2θ0 cos 2θ
δθ.

When θ = θ0 initially, the virtual extension is

δs0 = 2l cos 2θ0δθ.

Moving on, the gravitational potential energy of the two sticks at angle θ,

relative to the table, is

U = mgl cos θ.

The change in U due to an infinitesimal angular displacement δθ is

δU = −mgl sin θδθ = −WG,

where WG is the virtual work performed by gravity. When θ = θ0 initially,

the virtual work due to gravity is

WG = mgl sin θ0δθ.

Applying the principle of virtual work to the two sticks,

−Tδs0 +WG = 0

T · 2l cos 2θ0 = mgl sin θ0

T =
mg sin θ0
2 cos 2θ0

.

17. Table**

The system has only one degree of freedom, θ, as the two legs must be

symmetrical. A virtual displacement in θ results in there being no exter-

nal non-conservative forces. Therefore, for the system to remain in static

equilibrium, its total potential energy must be a stationary point. The total

potential energy is due to the stretching of the spring and the gravitational

potential energy of mass m.

U = 2kl2 sin2 θ + 2mgl cos θ,

dU

dθ
= 4kl2 sin θ cos θ − 2mgl sin θ.
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For the system to remain in static equilibrium,

sin θ(4kl2 cos θ − 2mgl) = 0.

θ = 0 is a trivial equilibrium state. If kl > mg
2 , another equilibrium position

occurs when

cos θ =
mg

2kl
.

To examine the stability of these equilibriums, take the second derivative

of U .

d2U

dθ2
= cos θ(4kl2 cos θ − 2mgl)− 4kl2 sin2 θ.

When θ = 0,

d2U

dθ2
= 4kl2 − 2mgl.

If kl > mg
2 , the equilibrium is stable. Otherwise if kl < mg

2 , the equilibrium

is unstable. If kl = mg
2 , one can show that all derivatives of U , evaluated at

θ = 0, are zero (as only the cos θ terms matter when θ = 0) — leading to a

neutral equilibrium.

If kl > mg
2 such that another equilibrium position exists when cos θ = mg

2kl ,

d2U

dθ2
= −4kl2 sin2 θ < 0.

Thus, the equilibrium is definitely unstable.

18. Block on Cylinder***

Consider the side-view corresponding to the cross-section of the cylinder. Let

θ be the angle that the block has rotated. Then, θ is also the angle between

the line joining the center of the cross-section to the point of contact and

the vertical axis as shown in the figure.

Since the block does not slip relative to the cylinder, the point of contact

must have been displaced by a distance rθ from the center of the relevant

edge. To explicitly see why, the instantaneous center of rotation of the block
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is the point of contact (let its instantaneous coordinate be at θ). After the

block rotates by an infinitesimal angle dθ, the new point of contact is located

at θ+dθ with respect to the cylinder — thus the point of contact must have

shifted by a distance rdθ. Another perspective is that the cylinder “rolls”

relative to the block (and we already know how to analyze this). Let the

origin be located at the center of the circular cross section. Then, the y-

coordinate of the center of mass of the block is

y =

(
r +

h

2

)
cos θ + rθ sin θ.

Since the gravitational potential energy of the block is directly proportional

to y, we can simply compute the second derivative of y to check for stability

(because static friction does no work).

dy

dθ
= −

(
r +

h

2

)
sin θ + r sin θ + rθ cos θ,

d2y

dθ2
= −

(
r +

h

2

)
cos θ + 2r cos θ − rθ sin θ.

At θ = 0,

d2y

dθ2
= r − h

2
.

Since d2y
dθ2

> 0 for a stable equilibrium,

r >
h

2
.
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Orbital Mechanics

This chapter will introduce Newton’s law of gravitation and its ramifications

for planetary motion — a phenomenon that was described by Kepler via

his three empirical laws. Due to the inverse-squared nature of the law of

gravitation, it has many aspects that are analogous to electrostatics. As

such, we will mainly be discussing the central force problem and briefly run

through the concepts of the gravitational field, potential and other relevant

attributes of a mass distribution. The latter will be covered in-depth in the

electrostatics chapter.

Before we embark on this topic proper, it is interesting to ponder why

gravity — the weakest of the four fundamental forces — dominates inter-

actions on the astronomical scale. The first factor is its infinite range — as

opposed to the microscopic range of weak and strong interactions. However,

this leaves yet another option — electromagnetic interactions — and leads

us to the next factor. Gravitational interactions are dictated by mass, which

can only be positive while charges in electromagnetism can be of opposite

signs. The charge of a system on a galactic scale is rather neutral but the

system is massive. Therefore, gravitational interactions outstrip electromag-

netic interactions. That said, we can ask yet another question: why are large

systems approximately neutral? Well, it is precisely because of the enor-

mous strength of electromagnetic interactions that charges of opposite signs

are pulled together — causing systems to be approximately neutral as a

whole.

8.1 Newton’s Law of Gravitation

Newton’s law of gravitation states that every point mass attracts every other

point mass. Explicitly, the gravitational force on a point mass m1 by another

431
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point mass m2 is

F 12 = −Gm1m2

|r21|2 r̂21 = −GMm

|r21|3 r21, (8.1)

where r21 is the vector pointing from m2 to m1. r21 = r1 − r2 where r1
and r2 are the position vectors of m1 and m2 respectively. G is known as

the universal gravitation constant and has a numerical value of 6.674 ×
10−11m3kg−1s−2.

8.1.1 Conserved Quantities in Planetary Motion

Conservation of Energy

Now, consider the system of two masses m and M where M � m such that

M remains stationary at the origin (m could be a planet while M could be

the Sun, for instance). We write the gravitational force on m as

F = −GMm

r2
r̂,

where r is the position vector of m. Observe that this takes the form of

F = F (r)r̂.

That is, F is strictly in the radial direction and its magnitude is only depen-

dent on the distance of m from the origin. Forces that can be expressed in

such a form are known as central forces. They can be easily proven by the

curl-test to be conservative. Thus, a potential energy can be associated with

the gravitational force on m. If we imagine bringing m from infinity to its

current radial distance r in a strictly radial manner (because the integral is

path-independent) while maintaining M at the origin,

U = −
ˆ r

∞
F · dr

=

ˆ r

∞

GMm

r2
r̂ · drr̂

=

[
−GMm

r

]r
∞
,

where infinity has been defined to be the reference point at which the poten-

tial energy is zero. Thus,

U = −GMm

r
. (8.2)
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Observe that the gravitational potential energy is a negative quantity. An

intuitive explanation can be deduced from the fact that the potential energy

is the work done by an external force in bringing mass m from infinity to

its current state, without a change in kinetic energy. Since the external force

must oppose the gravitational force which is attractive in nature, it must be

directed radially outwards and thus performs negative work on m.

If m andM are the only interacting particles and if there are no external

forces, the total mechanical energy E of m is conserved.

T + V =
1

2
mv2 − GMm

r
= E.

In light of the fact that the mass of the orbiting particle often cancels out in

the end, we define the specific mechanical energy ε of m to be that obtained

by dividing E by m. Furthermore, GM is defined to be the gravitational

parameter μ.

1

2
v2 − μ

r
= ε.

ε is also conserved in m’s resultant motion.

Conservation of Angular Momentum

Since the gravitational force on m is strictly radial, its angular momentum

about the origin is conserved, such that

mr × v = mr × ṙ = L

for some constant vector L. Again, we define the specific angular momentum

h to be the above expression divided by m, so that

r × ṙ = h

for another constant vector h. From these conserved quantities alone, many

problems can be solved.

Problem: The impact parameter b is defined to be the closest distance of

approach between an incoming body and a central force source if the cen-

tral force were to be switched off. If a body starts off at infinity, with an

impact parameter b and initial velocity v0, under the gravitational influ-

ence of a massive particle of mass M , determine the closest distance of

approach r.

Let the velocity of the body at its closest approach be v. This must be

perpendicular to its position vector with respect to M . By the conservation
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of angular momentum and energy,

bv0 = vr,

1

2
v20 =

1

2
v2 − μ

r
.

Substituting the expression for v in terms of r obtained from the first equa-

tion and simplifying,

v20r
2 + 2μr − b2v20 = 0

r =

√
μ2

v40
+ b2 − μ

v20
,

where the other negative root has been rejected, as it is physically incorrect.

8.2 Trajectory under Gravity

Before even manipulating any equations, we can actually greatly simplify a

central force problem due to the conservation of angular momentum! This

is because both the position vector r and velocity ṙ must be perpendicular

to the fixed specific angular momentum vector h — that is, r and ṙ lie in a

plane normal to h. Since they have to lie in this plane at all instances, the

central force problem can be reduced to a two-dimensional one.

Ideally, we wish to determine the trajectory of m in this plane in terms of

Cartesian or polar coordinates. But before this, let us prove that its specific

mechanical energy and angular momentum are conserved as consequences of

its equation of motion. You might feel that this is trivial but this process is

crucial later in extending our analysis to the case where both m and M can

move, as the equation of motion takes a similar form. Applying Newton’s

second law to m and canceling the m’s,

r̈ = − μ

r3
r.

Proof of Conserved Quantities Based on Equation of Motion

To prove the conservation of specific mechanical energy, take the dot product

of ṙ with the equation of motion:

ṙ · r̈ = − μ

r3
r · ṙ.
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To evaluate r · ṙ, consider the following derivative.

d

dt
(r · r) = 2r · ṙ

=⇒ r · ṙ =
1

2

dr2

dt
= rṙ.

Similarly,

ṙ · r̈ =
1

2

d

dt
(ṙ · ṙ) = 1

2

d(v2)

dt
,

where v is the instantaneous speed of m. Note that v is different from ṙ

which is only the rate of change in the radial distance of m and does not

take into account its tangential velocity. Substituting these expressions,

1

2

d(v2)

dt
= − μ

r2
ṙ =

d

dt

(μ
r

)
d

dt

(
1

2
v2 − μ

r

)
= 0

=⇒ 1

2
v2 − μ

r
= ε,

for some constant ε which we term the specific mechanical energy. To prove

the conservation of angular momentum, consider the total time derivative of

r × ṙ.

d

dt
(r × ṙ) = ṙ × ṙ + r × r̈ = 0+ r ×− μ

r3
r = 0

=⇒ r × ṙ = h

for some constant vector h which we call the specific angular momentum.

Trajectory

The trajectory of m can be derived via the following subtle manipulations —

so follow closely. Firstly, take the cross-product of its equation of motion

with h.

r̈ × h = − μ

r3
r × h.

The left-hand side is the time derivative

r̈ × h =
d

dt
(ṙ × h) ,
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as h is constant. The right-hand side can also be expressed in terms of a total

time derivative by using the BAC-CAB rule a× (b× c) = b(a · c)− c(a · b).
Thus,

− μ

r3
r × (r × ṙ) =

μ

r3
[ṙ(r · r)− r(r · ṙ)] .

Substituting r · ṙ = rṙ,

− μ

r3
r × (r × ṙ) =

μ

r
ṙ − μṙ

r2
r

=
d

dt

(μ
r
r
)
.

The original equation becomes

d

dt
(ṙ × h) =

d

dt

(μ
r
r
)

ṙ × h =
μ

r
r + μe, (8.3)

where μe has been set to be a constant vector of integration. e can be shown

to lie in the plane of motion of m by taking the dot product of the equation

above with h. The first two expressions yield the null vector as they are

perpendicular to h — implying that e follows suit. Finally, take the dot

product of the above with r.

r · (ṙ × h) = μr + μr · e.
The left-hand side can be simplified via the vector identity a · (b × c) =

b · (c × a) = c · (a× b) such that

r · (ṙ × h) = h · (r × ṙ) = h2.

Lastly, if θ is defined to be the angle that r makes with e,

h2 = μr + μre cos θ.

Then,

r =

h2

μ

1 + e cos θ
. (8.4)

Since e is defined to be a constant vector in the plane of motion of m, the

x-axis of our fixed coordinate system can be defined to be along e such that

Eq. (8.4) describes the trajectory of m in polar coordinates (r, θ). Finally, e
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can in fact be expressed in terms of the conserved quantities in the previous

section. Isolating e in Eq. (8.3),

1

μ
ṙ × h− 1

r
r = e.

Taking the dot product of each side of the above with itself,∣∣∣∣ 1μ ṙ × h

∣∣∣∣
2

+ 1− 2

μr
r · (ṙ × h) = e2.

Since ṙ is perpendicular to h, the magnitude of ṙ×h is the product of their

respective magnitudes vh where v is the instantaneous speed of m. The third

term can be simplified into 2h2

μr as we have shown that r ·(ṙ × h) = h2. Thus,

e2 =
v2h2

μ2
+ 1− 2h2

μr

= 1 +
2h2

μ2

(
1

2
v2 − μ

r

)

= 1 +
2h2ε

μ2
.

Therefore, we have the following elegant result:

e =

√
1 +

2εh2

μ2
. (8.5)

8.3 Conic Sections

Equation (8.4) in fact describes a conic section in general — a surface that is

obtained from the intersection of a cone with a plane. In general, each conic

section has one or two foci, points with respect to which the conic section

has certain special properties. In polar coordinates, the equation of a general

conic section with respect to one focus is

r =
p

1 + e cos θ
, (8.6)

where θ is measured with respect to the x-axis. e determines the exact geo-

metrical shape and is known as the eccentricity. p is half the length of a

chord, parallel to the y-axis, that passes through the focus and is known as

the semilatus rectum. The point that is closest to one of the foci is known as

the periapsis and occurs when θ = 0. The point, diametrically opposite to the

periapsis and is furthest away from that focus, is known as the apoapsis and
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occurs when θ = π radians (if possible). Note that not all conic sections have

an apoapsis as the furthest separation may tend to infinity (when e ≥ 1).

We shall now show that the equations of various conic sections can be

expressed in the form of Eq. (8.6) about a focus.

8.3.1 Circles

If e = 0,

r = p. (8.7)

This is evidently the equation of a circle about the origin as the radial

distance is independent of θ.

8.3.2 Ellipses

In the case where 0 < e < 1, observe that the radius is no longer a constant

but it still cannot tend to infinity (as the denominator is larger than zero).

That is, the motion of m is still bounded to a certain region of space.

The equation of an ellipse whose center is defined at the origin is

x2

a2
+
y2

b2
= 1.

Without any loss of generality, suppose a > b such that the ellipse is “fatter”

than it is “taller.” Then, a is known as the semi-major axis and is half the

distance between the diametrically opposite points on the longer axis, which

is the x-axis in this case. Similarly, b is known as the semi-minor axis and

is half the distance between the diametrically opposite points on the shorter

axis, which is the y-axis. Instead of a and b, an ellipse is often parameterized

in terms of a and e, the latter of which was introduced as the eccentricity.

Figure 8.1: Ellipse
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We define the eccentricity of an ellipse to be

e =

√
1− b2

a2
,

such that

b = a
√

1− e2.

An ellipse also possesses the following unique property. Imagine tying the

ends of an inextensible rope to two pins on a horizontal table (the rope is

longer than the distance between the two pins). Then, the shape traced by

picking up different segments of the rope and pulling it until it becomes taut

is an ellipse. That is, the sum of the distances between every point on the

ellipse and two points — known as the foci of the ellipse — is a constant.

If the origin is defined at the center of the ellipse, the two foci lie on the

longer axis and are symmetric about the shorter axis. The distance between

a focus and the center is denoted as c. Then, we can compare the distances

of a point Q along the y-axis and a point P along the x-axis to the respective

focus to obtain c in terms of a and b.

2
√
b2 + c2 = 2a

c2 = a2 − b2.

In terms of e,

c = ae,

which is a pretty neat expression. Moving on to the main topic, we can show

that Eq. (8.6) illustrates an ellipse about its right focus when 0 < e < 1. If

we define the origin to be at the right focus and (r, θ) to be polar coordinates

about that focus,

x = r cos θ + c,

y = r sin θ,

where x and y are Cartesian coordinates with respect to the center of the

ellipse. Substituting the above into the equation of an ellipse,

1

a2
(r2 cos2 θ + 2rc cos θ + c2) +

1

b2
r2 sin2 θ = 1.

Multiplying the above by b2,

b2

a2
(r2 cos θ2 + 2rc cos θ + c2) + r2 sin2 θ = b2.
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Using b = a
√
1− e2 and c = ae,

(1− e2)(r2 cos2 θ + 2era cos θ + a2e2) + r2 sin2 θ = a2(1− e2).

Rearranging,

r2 = e2r2 cos2 θ − 2(1 − e2)era cos θ + a(1− e2)2 =
[
er cos θ − a(1− e2)

]2
r = ± [er cos θ − a(1− e2)

]
.

Since r should be positive for the entire range of 0 ≤ θ ≤ 2π, we must take

the negative expression (evident by substituting cases where cos θ = 0 or

cos θ = −1).

r = a(1− e2)− er cos θ

r =
a(1− e2)

1 + e cos θ
, (8.8)

which is of the same form as Eq. (8.6).

8.3.3 Parabola

When e = 1, Eq. (8.6) becomes

r =
p

1 + cos θ
.

This is in fact the equation of a parabola with the origin defined at its focus.

Since r can tend towards infinity, the orbit of m is unbounded.

The equation of a parabola whose vertex is at the origin and is branching

towards the left is

y2 = −4ax.

a is in fact the distance between the vertex and the focus of the parabola,

as we shall prove.

Figure 8.2: Parabola
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A parabola is defined to be the set of points whose distances to a point,

known as the focus, are identical to their perpendicular distances to a line

known as the directrix. Let the focus be located at (−a, 0) and the directrix

be x = a (Fig. 8.2). We will show that this results in a parabola illustrated

by the equation above. Consider a point (x, y) on the parabola, x < a. Then,

the above property implies that√
(x+ a)2 + y2 = a− x

(x+ a)2 + y2 = x2 − 2ax+ a2

y2 = −4ax,

which is the equation of a parabola with its vertex at the origin. We have

shown that the distance between the focus and the vertex is a. The equation

of a parabola with the origin defined at the focus is thus

y2 = −4a(x− a).

Substituting x = r cos θ and y = r sin θ in polar coordinates,

r2 sin2 θ = −4a(r cos θ − a)

r2 = r2 cos2 θ − 4ar cos θ + 4a2 = (r cos θ − 2a)2

r = ±(r cos θ − 2a).

Since r should be positive when θ = π
2 , we must take the negative sign in

the above expression.

r = 2a− r cos θ

r =
2a

1 + cos θ
, (8.9)

which takes the form of Eq. (8.6) when e = 1.

8.3.4 Hyperbola

When e > 1, Eq. (8.6) yields

r =
p

1 + e cos θ
.

The radial distance of the particle m can again tend to infinity — implying

that its orbit is, again, unbounded. As you might expect by now, the above

equation describes half a hyperbola with the origin defined at its focus.
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Figure 8.3: Hyperbola

The equation of a hyperbola whose vertex is located at the origin is

x2

a2
− y2

b2
= 1,

where a is the distance between the vertex and the periapsis. A hyperbola can

also be defined in a different manner. The positive difference in the distances

between every point on the hyperbola and its foci is a constant. The foci of

a hyperbola are two points which lie on the line joining the periapsides and

the vertex, and are symmetric about the vertex. Let them be located at (c, 0)

and (−c, 0) respectively (Fig. 8.3). We will show that this property, along

with the parameters c and a, will result in a hyperbola with its vertex at

the origin. Consider a point along the x-axis that is supposed to be on the

hyperbola (a periapsis). Evidently, this constant difference is

(c+ a)− (c− a) = 2a.

Then, for a point (x, y) on the hyperbola in the region x > 0,

√
(x+ c)2 + y2 −

√
(x− c)2 + y2 = 2a.

Moving the second surd to the other side and squaring,

(x+ c)2 + y2 = (x− c)2 + y2 + 4a2 + 4a
√

(x− c)2 + y2

xc− a2 = a
√

(x− c)2 + y2.
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Squaring once again and simplifying yields

x2c2 + a4 − 2a2xc = a2x2 − 2a2xc+ a2c2 + a2y2

(c2 − a2)x2 − a2y2 = a2(c2 − a2).

Dividing the entire equation by a2(c2 − a2),

x2

a2
− y2

c2 − a2
= 1.

Technically, we have only derived this for the region x > 0 but the negated

version of our starting equation will result in the exact same expression for

the region x < 0. We have shown that this definition of a hyperbola is valid.

Comparing the denominators below the y2 terms, it can be seen that

c2 = a2 + b2.

Now if the eccentricity is defined as

e =

√
1 +

b2

a2
.

Then,

c = ae,

b = a
√
e2 − 1.

We are now ready to show that Eq. (8.6) is hyperbolic, with the origin at

its focus, if e > 1.

r =
p

1 + e cos θ
;

r is evidently the minimum when θ = 0. Hence, if the trajectory is really a

hyperbola, it should be the half in the region x < 0. The equation of this

half of the hyperbola about its focus is

(x− c)2

a2
− y2

b2
= 1.

Multiplying the above by b2,

b2

a2
(x2 − 2xc+ c2)− y2 = b2.
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Substituting the polar expressions for x and y, c = ae and b = a
√
e2 − 1,

(e2 − 1)(r2 cos2 θ − 2r cos θae+ a2e2)− r2 sin2 θ = a2(e2 − 1)

r2 = e2r2 cos2 θ − 2(e2 − 1)r cos θae+ a2(e2 − 1)2 =
[
er cos θ − a(e2 − 1)

]2
r = ± [er cos θ − a(e2 − 1)

]
.

As r must be positive when θ = π
2 radians, we take the negative expression

in the above equation.

r = a(e2 − 1)− er cos θ

r =
a(e2 − 1)

1 + e cos θ
. (8.10)

8.3.5 Dynamical Constants and Geometrical Properties

We have shown that the shape of the orbit of a particle under a central gravi-

tational force can only assume one of the four possible conic sections, exclud-

ing the trivial case of a straight line which occurs when h = 0. Now, we can

relate the dynamical constants of motion — the specific mechanical energy ε

and angular momentum h— to the shape of the orbit which is parameterized

by the variables a (r in the case of a circle) and the eccentricity e.

Circular Orbits

Circular orbits occur when e = 0 — which occurs when ε and h satisfy a

rather delicate relationship. Substituting the expression for e in Eq. (8.5),

1 +
2h2ε

μ2
= 0

ε = − μ2

2h2
. (8.11)

Furthermore, by comparing Eqs. (8.4) and (8.7),

r =
h2

μ
,

h =
√
μr. (8.12)

Substituting h =
√
μr into Eq. (8.11),

ε = − μ

2r
, (8.13)
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which is intriguingly half the specific gravitational potential energy of m

(i.e. its kinetic energy is half the negative value of its gravitational potential

energy, T = −1
2U). Finally, note that these equations can be derived through

much easier means by simply equating the gravitational force on m with its

required centripetal force.

Elliptical Orbits

Elliptical orbits occur when 0 < e < 1 which means that ε < 0. ε and h can

be expressed in terms of a and e by comparing the corresponding variables

in Eqs. (8.4) and (8.8), to get

h2

μ
= a(1− e2)

h =
√
μa(1− e2). (8.14)

Applying Eq. (8.5),

1− e2 = −2h2ε

μ2
.

By Eq. (8.14), the left-hand side is h2

μa . Thus,

−2h2ε

μ2
=
h2

μa

ε = − μ

2a
. (8.15)

The specific mechanical energy of an elliptical orbit is so important that a

name has been coined for its equivalent form. Applying the conservation of

energy,

1

2
v2 − μ

r
= − μ

2a

v2 = μ

(
2

r
− 1

a

)
. (8.16)

This is known as the vis-viva equation which relates the speed of particle m

to its radial position in an elliptical orbit.
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Parabolic Orbits

The orbit of a particle is a parabola when e = 1 and thus, occurs when

ε = 0. (8.17)

Intuitively, the particle possesses sufficient total mechanical energy to over-

come the potential energy barrier (the maximum potential energy is zero

and occurs at infinity). Comparing Eqs. (8.4) and (8.9),

h2

μ
= 2a

h =
√

2aμ. (8.18)

Hyperbolic Orbits

A hyperbolic orbit arises when e > 1 and thus when ε > 0. Comparing

Eqs. (8.4) and (8.10),

h2

μ
= a(e2 − 1)

h =
√
μa(e2 − 1). (8.19)

Substituting the expression for e in Eq. (8.5) in the first equation,

h2

μ
= a

2h2ε

μ2

ε =
μ

2a
. (8.20)

8.4 Kepler’s Three Laws

Following from the above derivations, it is easy to prove Kepler’s three empir-

ical laws which describe the motion of planets about the Sun. In this case,

we assume the mass of the Sun M to be much larger than that of a single

planet, such that to a good approximation, the net gravitational force on

each planet is only due to that exerted by the Sun.

First Law: Planets travel in elliptical orbits around the Sun as a focus.

Proof: Since the orbits of planets must be bounded, they must generally

travel in an ellipse around a focus (where M is located) as shown in the

previous section.
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Figure 8.4: Infinitesimal sector

Second Law: The vector pointing from the Sun to a planet sweeps out

areas at a constant rate as the planet orbits around the Sun.

Proof: This is just an embellished statement of the conservation of angular

momentum of the planet about the Sun. Let the instantaneous radial dis-

tance between the planet and the Sun be r. Then, consider an infinitesimal

area dA swept by the radial vector when the planet undergoes an infinites-

imal angular displacement dθ. dA is the area of a sector of radius r and

angle dθ (Fig. 8.4).

dA =
1

2
r2dθ. (8.21)

Dividing both sides by dt,

dA

dt
=

1

2
r2
dθ

dt
=

1

2
r2θ̇.

Since h = r2θ̇,

dA

dt
=
h

2
. (8.22)

Thus, the rate of area swept is a constant.

Third Law: The square of the period of the orbit of a planet, T , is propor-

tional to the cube of the semi-major axis length, a. Concretely,

T 2 =
4π2a3

μ
. (8.23)

Proof: Separating variables in Eq. (8.22) and integrating over the entire

ellipse and one period,

ˆ πab

0
dA =

ˆ T

0

h

2
dt

πab =
h

2
T,
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where we have used the fact that the area of an ellipse with a semi-major

axis length a and semi-minor axis length b is πab. Squaring both sides,

π2a2b2 =
h2

4
T 2.

Substituting b2 = a2(1− e2) and h2

μ = a(1− e2) for an ellipse,

π2a4(1− e2) =
1

4
μa(1− e2)T 2

T 2 =
4π2a3

μ
.

8.5 Two-Body Problem

Having analyzed the central gravitational force problem where m �M , we

return to the more general problem where M also moves under the gravita-

tional influence of m. This is known as the two-body problem. Writing the

equations of motion for both masses while using r1 and r2 to denote the

position vectors of m and M respectively,

mr̈1 = − GMm

|r1 − r2|3 (r1 − r2),

M r̈2 = − GMm

|r1 − r2|3 (r2 − r1).

Adding the two equations together,

mr̈1 +M r̈2 = (m+M)r̈CM = 0.

As expected, the center of mass of the two particles travels at a constant

velocity. Since the center of mass of the particles lies along the line joining

them, the particles must orbit about their common center of mass with the

same angular velocity. Next, consider the center of mass frame which is

an inertial frame. We still use r1 and r2 to represent the position vectors of

m and M in this frame for the sake of convenience. In the center of mass

frame,

mr1 = −Mr2,

where the origin is set at the center of mass, so to solve for the entire system,

we can just determine how r1 − r2 evolves with time. We shall let this
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separation vector be r. Multiplying the first equation of motion by M and

subtracting it by the second, which is multiplied by m,

mM r̈ = −GMm(M +m)

r3
r

mM

m+M
r̈ = −GMm

r3
r. (8.24)

Observe that this differential equation is of the same form as that of a body

with mass m orbiting a fixed mass M (such that μ = GM) given by

mr̈ = −μm
r3

r,

after substituting m = mM
m+M and μ = G(m +M). We essentially have an

effective mass meq = mM
m+M , known as the reduced mass, orbiting a mass

m+M fixed at the origin; r then denotes the position vector of this reduced

mass meq in the center of mass frame. Therefore, the results from the above

section are directly applicable and the trajectory of r in polar coordinates

in the center of mass frame is

r =

h2

μ

1 + e cos θ
,

where h = r×ṙ is the specific angular momentum of the equivalent massmeq

in the center of mass frame. The conservation of h is ensured as the equation

of motion takes a similar form as before — implying that the motion of the

two bodies are again confined to a single plane. In fact, you can prove that

h is the total angular momentum of m and M in the center of mass frame

divided by meq. Next, e is analogously

e =

√
1 +

2εh2

μ2
,

with

ε =
1

2
v2 − μ

r
,

where v = |ṙ| is the instantaneous speed of meq in the center of mass frame.

ε is indeed a constant as a result of the equation of motion. In fact, it can

be proven that ε is the total mechanical energy of the original system of

m and M in the center of mass frame, divided by the reduced mass meq.
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Moving on, since mr1 = −Mr2 such that r1 = M
m+M r and r2 = − m

m+M r,

the trajectories of m and M in the center of mass frame are

r1 =

Mh2

(m+M)μ

1 + e cos θ
,

r2 =

mh2

(m+M)μ

1− e cos θ
,

with the same h and e. The negative sign in front of e in the second expression

stems from the fact that the position vector r2 of M is anti-parallel to

r. Actually, it is a flipped version of the position vector of m about the

common center of mass (after scaling by m
M ). This reflection also implies

that the common center of mass sits on different foci with respect to the

individual elliptical trajectories of m and M (if their orbits are bounded —

a phenomenon that is very likely). That is, the common center of mass will

lie at the right focus of one ellipse and at the left focus of the other.

Finally, the orbits of the two bodies are only unbounded if their total

mechanical energy is at least zero in the center of mass frame

because ε, which dictates whether their orbits are confined (as it determines

the magnitude of e), is directly proportional to the total mechanical energy

of the combined system in the center of mass frame (it was remarked that it

is in fact the total mechanical energy divided by meq).

The Lagrangian Perspective

Actually, the above manipulations become more enlightening in the

Lagrangian formulation (see Chapter 12). For two particles m and M whose

interaction potential energy is of the form U(r1 − r2) where r1 and r2 are

the position vectors of m and M , the Lagrangian of the system comprising

the two particles is

L =
1

2
mṙ21 +

1

2
M ṙ22 − U(r1 − r2).

Now, introduce the new variables r = r1− r2 and R = mr1+Mr2
m+M , where the

latter is the position vector of the center of mass. Then, r1 = R + M
m+M r

and r2 = R− m
m+M r such that

L =
1

2
m

(
Ṙ+

M

m+M
ṙ

)2

+
1

2
M

(
Ṙ− m

m+M
ṙ

)2

− U(r)

L =
1

2
(m+M)Ṙ

2
+

1

2

mM

m+M
ṙ2 − U(r),
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as the cross-terms cancel out. We have effectively decoupled the Lagrangian

into two parts which are solely functions of R and r, respectively. Observ-

ing that the components of R are cyclic coordinates (i.e. there is nothing

in the Lagrangian that is directly a function of the components of R), we

can conclude that Ṙ is a constant (i.e. the center of mass moves with a

constant velocity). Refer to Chapter 12 for more details about this. Mean-

while, the other portion of the Lagrangian that is a function of r sug-

gests that the system can be treated as a single particle with a reduced

mass meq = mM
m+M whose position vector is r relative to the origin, under

the influence of a central potential energy given by U(r). We have thus

reduced a two-body central force problem into a one-body problem! In

the particular case of U(r) = −GMm
r , the above implies that the reduced

mass is effectively interacting with a fixed mass (m +M) at the origin (as

−G· mM
m+M

·(m+M)

r = −GMm
r )!

8.5.1 Modified Kepler’s Laws

Having drawn an analogy between the central force problem and the two-

body problem, it is easy to prove the following modified set of Kepler’s laws

for an isolated system of masses m and M in the frame of their center of

mass.

First Law: m and M travel in elliptical orbits about their common center

of mass as a focus.

Second Law: The vector pointing from the common center of mass of m

and M to either m or M sweeps out area at a constant rate.

Third Law: The square of T , the common period of the orbits of m and

M , is proportional to the cube of the semi-major axis length of m or M

(denoted as a1 or a2). Concretely,

T 2 =
4π2a3eq
μ

=
4π2(m+M)2a31

M3
=

4π2(m+M)2a32
m3

, (8.25)

where aeq =
m+M
M a1 =

m+M
m a2 is the semi-major axis of the ellipse traversed

by the reduced mass and μ = G(m + M) is the equivalent gravitational

parameter.

8.6 Mass Distributions

The previous section only analyzed the gravitational interaction between two

discrete particles. In the more general case, we would like to consider the
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effect of an entire mass distribution. The crucial component in connecting

the effects of individual masses is the principle of superposition. It states

that the gravitational force on a mass due to a mass distribution is the sum

of the gravitational forces due to each individual mass component on that

particular mass. The total gravitational force on a massM due to N discrete

masses ranging from m1 to mN is

F = −
N∑
i=1

GMmi

r2i
r̂i,

where ri is a vector pointing from mi to M . For a continuous distribution,

F = −
ˆ
GM

r2
r̂dm,

where r is the vector pointing from each infinitesimal mass element dm to

M . The integral is performed over the entire mass distribution. In light of the

above expression, a vector field g, known as the gravitational field, can be

defined for all points in space to compute the force per unit mass of a particle

placed at any point in space, due to a predetermined mass distribution.

g = −
N∑
i=1

Gmi

r2i
r̂i = −

ˆ
G

r2
r̂dm, (8.26)

where ri and r point from each mass component to the point of concern.

The force on a mass M placed at a point where the gravitational field is g

due to the other masses, is then

F =Mg.

The infinitesimal gravitational flux through an infinitesimal area dA is the

dot product of g, the gravitational field strength at that point and the

infinitesimal area vector.

dΦ = g · dA.
The direction of an area vector is arbitrary for an open surface. However

for closed surfaces, the area vector is defined to be directed outwards by

convention. The total gravitational flux cutting through a closed surface S

is then

Φ =

‹
S
g · dA,

where the loop around the integral indicates that S is a closed surface. Due

to the inverse-squared nature of g, the total flux emanating through any
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closed surface is in fact directly proportional to the amount of mass enclosed

inside the closed surface, Menc. This is known as Gauss’s law of gravitation

which states that

Φ =

‹
S
g · dA = −4πGMenc. (8.27)

Gauss’s law provides an elegant way of computing g for symmetric mass

distributions. Another way of computing g which is convenient for non-

symmetric distributions is derived from the conservative nature of g. The

gravitational potential at a position r due to a mass distribution is defined as

V (r) = −
ˆ r

∞
g · dr, (8.28)

where infinity has been taken as a reference point at which the potential

is zero. The above provides a way of calculating V , given g. However, V

can be determined directly from the mass distribution by noting that each

individual mass component dm contributes

−
ˆ r

∞
−Gdm

r2
r̂ · dr =

ˆ r

∞

Gdm

r2
dr = −Gdm

r

to the potential at a distance r away from the mass component. Thus, the

total potential at a point due to a mass distribution can also be written as

V =

ˆ
−G
r
dm (8.29)

by the principle of superposition, where r is the distance between an infinites-

imal mass element dm and the point of concern. For discrete distributions

involving N masses, the potential at a particular point is

V =
N∑
i=1

−Gmi

ri
, (8.30)

where ri is the distance between mi and the point of concern. Supposing that

we are able to calculate V for all points in space via the above process, we

can conversely compute g by taking the negative gradient of V , as a result of

Eq. (8.28). In Cartesian, cylindrical and spherical coordinates, the negative
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gradients of V are, respectively,

g = −∂V
∂x

î− ∂V

∂y
ĵ − ∂V

∂z
k̂,

g = −∂V
∂r

r̂ − 1

r

∂V

∂θ
θ̂ − ∂V

∂z
k̂,

g = −∂V
∂r

r̂ − 1

r sin θ

∂V

∂φ
φ̂− 1

r

∂V

∂θ
θ̂.

Next, by observing Eq. (8.28), one can notice that the potential at a point in

space due to a fixed mass distribution is the potential energy per unit mass

of a mass that is placed at that point, due to the fixed mass distribution.

Thus, the potential energy of a mass M due to a fixed mass distribution at

a point with potential V is

U = −
ˆ r

∞
Mg · dr =MV. (8.31)

The force on mass M due to the fixed mass distribution is similarly the neg-

ative gradient of U . Finally, the total potential energy of a mass distribution

is, by definition, the sum of the gravitational potential energy between each

pair of particles (with no double-counting of pairs). In the discrete case of N

charged particles, let Uij be the potential energy associated with the inter-

actions between particle i and j.

Uij = −Gmimj

rij
,

where rij is the distance between the particles. The total potential energy

of the distribution is then

U =
∑
i,j i<j

−Gmimj

rij
, (8.32)

where the i < j below the summation sign prevents double-counting. We

can in fact double-count each pair and include the factor of half such that

U =
1

2

N∑
i=1

mi

∑
j �=i

−Gmj

rij
=

1

2

N∑
i=1

miVi, (8.33)

where Vi is the potential at the position of the ith particle, due to the

other particles. In the case of certain continuous mass distributions, the

contribution due to an infinitesimal mass element to the potential at its

own position is negligible. Then, we can include its own contribution in
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applying the formula above such that the total potential energy due to a

mass distribution is

U =
1

2

ˆ
V dm. (8.34)

That is, we can sum the product of the potential with the infinitesimal mass

at each point in space, over the entire distribution.

The above is a brief overview of the concepts involving a mass

distribution. For a more detailed explanation, refer to the chapter on

electrostatics.
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Problems

Orbits

1. Vis-viva Equation*

Prove the vis-viva equation (Eq. (8.16)), via the conservation of energy and

angular momentum.

2. Planet*

A planet is currently at the perihelion of its orbit around the Sun (the point

at which its distance to the Sun is shortest). The perihelion distance from

the Sun is Rp and the velocity of the planet at this point is vp. Find the

velocity of the planet at the aphelion (the point where its distance to the

Sun is largest) through the vis-viva equation.

3. Impact Parameter*

A body starts off at infinity with an impact parameter b and initial velocity

v0 under the gravitational influence of a massive particle of massM . Its orbit

is evidently a hyperbola as its total mechanical energy is positive. Show that

the impact parameter b is also the b in the hyperbola equation that describes

the orbit of the body. Determine the eccentricity of the orbit and the angle

of deflection of the body (the angle between its initial and final velocities).

4. Circular Orbit*

The trajectory of a particle under the influence of a central force (not neces-

sarily gravitational) is a circle of radius R. The position of the source of the

central force is not known. Given that the maximum and minimum speeds

of the particle are v1 and v2 respectively, determine the period T of the

particle’s orbit.

5. Binary Stars*

Two binary stars are moving in circular orbits around their common center

of mass, with a period T . If the two stars are somehow stopped by an external

agency at a certain juncture and then gently released, determine the time of

collision τ between the two stars after their release.
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6. Hohmann Transfer**

The Earth is currently orbiting around the Sun, which has mass M , at a

radius r1. A Hohmann transfer is used to switch an orbiting body from one

circular orbit to another. It is performed by two instantaneous tangential

boosts (instantaneous changes in tangential velocity) with the first boost

setting the orbiting body into an elliptical path and the second boost, at the

apogee of the ellipse, returning the orbiting body into the required circular

orbit. Supposing that we wish to launch a satellite from the North Pole of the

Earth to a circular orbit of radius r2 > 2r1 around the Sun, determine the

time required for the transfer and the sum of the two instantaneous changes

in speed. Ignore any gravitational effects on the satellite due to the Earth.

Qualitatively propose a way to reduce the sum of these speed boosts.

7. Missile**

Consider the system of a satellite of mass m1 orbiting around the Earth of

mass M � m1 and radius Re. In the frame of the Earth, the satellite is

orbiting in an ellipse with semi-major axis length a and eccentricity e. A

missile of mass m2 � M is launched from the surface of the Earth, travels

along a straight line and sticks to the satellite at the apogee (furthest point

from the Earth in the elliptical orbit). If the satellite then moves off to

infinity, determine the minimum initial velocity of the missile in the frame

of the Earth, u. Neglect any gravitational effects between m1 and m2 and of

the Sun.

8. Tilting Ellipse**

A body is orbiting elliptically about a massive body of mass M , with a

semi-major axis length a0 and eccentricity e0. Suppose that when the body

is at the apoapsis, it is given a sudden boost such that its radial velocity is

instantly increased to u. If the resultant orbit is still an ellipse, determine

its semi-major axis length a1, eccentricity e1 and the acute angle between

the final and initial semi-major axes.

Mass Distributions

9. Extracting a Mass*

A point mass m is currently stationary at an arbitrary position inside a

uniform, spherical shell of mass M and radius r. Determine the minimum
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work performed by an external force in extracting the point mass m through

a small hole on the shell and bringing it to infinity.

10. Ring and Mass*

A stationary point mass m is placed a distance h above the center of a

stationary, uniform ring of mass M and radius r, along the symmetrical

axis. Determine the velocity of m when it reaches the center of the ring.

11. Tunnel Through Earth**

Imagine that you dug a hole from one side of the earth to the opposite side

(not necessarily through the center of mass). The path makes a perpendicular

distance h with the center of the Earth. You then jump into the hole with

a negligible initial velocity. Assuming that you survive the process and that

the Earth is a sphere with a constant mass density ρ and radius R, prove that

you will undergo simple harmonic motion. Determine the angular frequency

of this oscillation.

12. Atmosphere**

Model the Earth’s atmosphere as an isothermal and uniform ideal gas of

temperature T and suppose that its thickness is comparable to the radius

of the Earth. Show that the equilibrium pressure of the atmosphere at an

altitude h above the surface of the Earth obeys

p = p0e
− GM0Mh

RTRe(Re+h) ,

where M0 is the average molar mass of the molecules in the Earth’s atmo-

sphere, R is the ideal gas constant, Re is the radius of the Earth and p0 is

the pressure at the surface of the Earth. Assume that the Earth is a uniform

sphere and neglect any gravitational effects due to the atmosphere and the

rotation of the Earth. Hint: the ideal gas law states that pV = nRT where

p is the pressure, V is the volume of the gas and n is the number of moles.
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Solutions

1. Vis-viva Equation*

Let the distances of the periapsis and apoapsis to the focus at which the

massive body lies be rp and ra respectively. Let the velocity of the orbiting

body at these points be u and v respectively. By the conservation of angular

momentum and energy,

urp = vra,

1

2
u2 − μ

rp
=

1

2
v2 − μ

ra
.

Substituting the expression for v obtained from the first equation into the

second and solving for u,

1

2
u2 =

μra
(ra + rp)rp

=
μra
2arp

,

since ra+rp = 2a. Substituting this into the equation for the specific mechan-

ical energy of the orbiting body at the periapsis,

ε =
1

2
u2 − μ

rp
=
μ(ra − 2a)

2arp
=

−μrp
2arp

= − μ

2a
.

Therefore, for an arbitrary radial distance r, the speed of the orbiting body

is given by

v2 = μ

(
2

r
− 1

a

)
.

2. Planet*

Let the semi-major axis length be a. From the vis-viva equation,

1

2
v2p −

μ

rp
= − μ

2a

a =
μrp

2μ− v2prp
.

The distance between the Sun and the aphelion is

ra = 2a− rp =
v2pr

2
p

2μ − v2prp
.

By the conservation of angular momentum,

rava = rpvp.
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Thus, the velocity at the aphelion is

va =
rpvp
ra

=
2μ

vprp
− vp.

3. Impact Parameter*

Recall that the distance of closest approach is

r =

√
μ2

v40
+ b2 − μ

v20
.

This quantity is c − a where c is the distance between the focus and the

vertex and a is the distance between the vertex and the periapsis.

c− a =

√
μ2

v40
+ b2 − μ

v20
.

Furthermore, we know from the relationship between the geometry of the

hyperbola and the dynamical constants that

ε =
1

2
v20 =

μ

2a

=⇒ μ

v20
= a

=⇒ c− a =
√
a2 + b2 − a

=⇒ c2 = a2 + b2.

Let the value of b in the equation of the hyperbola be b′. From the definition

of c,

c2 = a2 + b′2.

Therefore,

b = b′.

From the geometry of the orbit,

b′2 = a2(e2 − 1)

e =

√
b′2

a2
+ 1 =

√
b2v40
μ2

+ 1.
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Let the x-axis be normal to the hyperbola at its periapsis. Then, the angle

that the initial velocity of the body makes with the x-axis is

tan−1 b

a
= tan−1 bv

2
0

μ
.

Since the hyperbola is symmetrical about the x-axis, the angle of deflection

is π minus twice of the angle above.

θdef = π − 2 tan−1 bv
2
0

μ
.

4. Circular Orbit*

Firstly, observe that the central force source must be positioned within the

circle. Suppose that this is otherwise in search of a contradiction. Then, one

can draw a line through the central force source that intersects the circle at

two distinct points. The velocities of the particle at these points result in

different directions of angular momenta about the source (this must be the

case so that the orbit of the particle is a continuous circle) — contradicting

the fact that the angular momentum of a particle under the sole influence

of a central force is conserved about the central force.

Now that we know that the central force source must be located within

the circle, define the origin at the source and orient the x and y-axes such

that the center of the circle is at coordinates (a, 0) with 0 < a < R. By the

conservation of specific angular momentum h about the source,

v1(R− a) = v2(R+ a) = h.

Solving for h,

h =
2Rv1v2
v1 + v2

.

The rate of area swept by the position vector of the particle is

dA

dt
=
h

2
=

Rv1v2
v1 + v2

by Eq. (8.22). Separating variables and integrating over a single period T ,

ˆ πR2

0
dA =

ˆ T

0

Rv1v2
v1 + v2

dt

T =
πR(v1 + v2)

v1v2
,
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where we have used the fact that the total area swept by the position vector

of the particle in a single period is the area bounded by its circular trajectory,

πR2, since the central force source is within the circle.

5. Binary Stars*

Let the distance between the two binary stars be r and their masses be m

and M . Applying the notion of a reduced mass, the period T of this binary

star system is akin to a reduced mass meq =
mM
m+M orbiting around a fixed

mass m+M , located at the common center of mass, in a circle of radius r.

By Kepler’s third law,

T 2 =
4π2r3

G(m+M)
.

Next, when the two stars are stopped and gently released, they travel in a

straight line towards each other. Introducing a reduced mass again, the time

of collision τ is equivalent to the time that meq takes to collide with the fixed

mass m+M , located at the common center of mass, given that it starts at

zero initial velocity and initial distance r. This can be considered as half

the period of a flattened elliptical orbit of meq with eccentricity e→ 1, such

that a focus is located at the periapsis (where the fixed mass m+M is), and

semi-major axis length r
2 . By Kepler’s third law,

(2τ)2 =
4π2

(
r
2

)3
G(m+M)

.

Dividing this by the previous equation and taking square roots on both sides,

τ =
T

4
√
2
.

6. Hohmann Transfer**

The semi-major axis length of the ellipse is

a =
r1 + r2

2
.

By Kepler’s third law, the period of the elliptical orbit is

T =

√
π2(r1 + r2)3

2μ
.
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The time taken for the mission is half the period

T

2
= π

√
(r1 + r2)3

8μ
.

Let the velocity of the satellite after the first boost be u and the velocity of

the satellite at the apogee be v. By the conservation of angular momentum

and energy,

ur1 = vr2,

1

2
u2 − μ

r1
=

1

2
v2 − μ

r2
,

1

2

(
1− r21

r22

)
u2 =

μ

r1
− μ

r2
.

Thus,

u =

√
2μr2

(r1 + r2)r1
.

The initial velocity u0 of the satellite (before the first boost) in a circular

orbit essentially of radius r1 can be obtained by considering the centripetal

force required for its orbit.

u20
r1

=
μ

r21

u0 =

√
μ

r1
.

Thus the first boost results in an increase in speed of magnitude

u− u0 =

√
2μr2

(r1 + r2)r1
−
√
μ

r1
.

The speed of the satellite at the apogee is

v =
r1
r2
u =

√
2μr1

(r1 + r2)r2
.

The required speed of circular motion at radius r2 is v′ =
√

μ
r2
. Thus, the

second boost is

v′ − v =

√
μ

r2
−
√

2μr1
(r1 + r2)r2

.
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The sum of the increases in speed is thus

(r2 − r1)

√
2μ

(r1 + r2)r1r2
+

√
μ

r1r2
(
√
r1 −√

r2).

To optimize the transfer, one can conduct the launch near the equator at

an opportune time such that the rotation of the Earth increases the initial

velocity of the satellite (u0). To ensure that the satellite’s velocity is purely

tangential with respect to the Sun, one can perform the boost only when

the launch site is at the point on the equator that is closest to or furthest

away from the Sun (in determining these locations and the correct times, it

is essential to note that Earth’s axis of rotation is currently tilted by 23.5◦

with respect to its axis of revolution around the Sun).

7. Missile**

Let vr be the velocity of the missile at the apogee, right before the collision.

Note that this is solely in the radial direction. By the conservation of energy

with μ = GM ,

1

2
u2 − μ

Re
=

1

2
v2r −

μ

a(1 + e)
,

as the apogee distance is a(1 + e) by Eq. (8.8).

v2r = u2 +
2μ

a(1 + e)
− 2μ

Re
.

Now, let the velocity of the satellite at the apogee be vt. By the vis-viva

equation,

v2t = μ

(
2

a(1 + e)
− 1

a

)
.

The radial and tangential velocities of the satellite-cum-missile immediately

after the collision are

v′r =
m2

m1 +m2
vr,

v′t =
m1

m1 +m2
vt
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by the conservation of momentum. Its total post-collision energy is

1

2
(m1 +m2)v

′2
r +

1

2
(m1 +m2)v

′2
t − μ(m1 +m2)

a(1 + e)

=
m2

2

2(m1 +m2)
u2 − μ

2(m1 +m2)

(
m2

1

a
+

2m2
2

Re
+

4m1m2

a(1 + e)

)
.

The total mechanical energy must be larger than zero for the system to travel

to infinity. Hence, the minimum u is

u =

√
μ

m2
2

(
m2

1

a
+

2m2
2

Re
+

4m1m2

a(1 + e)

)
.

8. Tilting Ellipse**

Since the specific angular momentum h remains the same,

h2

μ
= a0(1− e20) = a1(1− e21).

Furthermore, relating the specific mechanical energy to the semi-major axes

length of the orbits,

1

2
v2 − μ

ra
= − μ

2a0

1

2
(u2 + v2)− μ

ra
= − μ

2a1
,

where ra = a0(1 + e0) is the distance between the focus and the apoapsis.

Subtracting the above equations,

μ

2

(
1

a0
− 1

a1

)
=

1

2
u2.

Solving,

a1 =
μa0

μ− a0u2
.

Substituting this expression for a1 into the first equation,

e1 =

√
1− (μ− a0u2)(1− e20)

μ
.

To determine the angle that the semi-major axis has rotated, consider the

new trajectory equation.

r =
a1(1− e21)

1 + e1 cos θ
=

a0(1− e20)

1 + e1 cos θ
.
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Define θ0 to be the angle between the new semi-major axis and the original

apoapsis. Then,

a0(1 + e0) =
a0(1− e20)

1 + e1 cos θ0
,

where a0(1 + e0) is the original apoapsis distance.

cos θ0 = −e0
e1
,

θ0 is the obtuse angle between the semi-major axes. Thus, the acute angle

between them is

θ = cos−1 e0
e1

= cos−1 e0√
1− (μ−a0u2)(1−e20)

μ

.

9. Extracting a Mass*

By drawing a concentric spherical Gaussian surface within the spherical shell,

one can conclude that the gravitational field within the shell, due to the shell

is zero. Thus, the gravitational potential due to the shell is equal for all points

within the shell. Consequently, the gravitational potential energy associated

with the interactions between the shell and mass m can be computed as

that of a mass m at the center of the shell. Since all points on the shell

are equidistant from the center, the potential energy and thus the total

mechanical energy of the combined system is

E = −GMm

r
.

The minimum amount of work is performed when m is stationary at infinity.

At this juncture, the mechanical energy of the combined system is zero.

Hence, the minimum work performed by an external force is

W = 0− E =
GMm

r
.

10. Ring and Mass**

Since the distances between all points on the ring and the point mass are

equal, the initial mechanical energy of the combined system is

E = − GMm√
r2 + h2

.

When m reaches the center of the ring, let the velocities of m and M be v1
and v2 respectively. Since the velocity of the center of mass is constant due
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to the lack of external forces and was originally zero,

mv1 +Mv2 = 0.

Finally, the total mechanical energy of the system must be conserved, hence

1

2
mv21 +

1

2
Mv22 −

GMm

r
= − GMm√

r2 + h2
.

Solving this set of equations,

v1 =

√√√√2GM2
(
1
r − 1√

r2+h2

)
m+M

,

along the direction pointing from its initial position to the center of the ring.

11. Tunnel Through Earth**

Consider a side-view of the situation — the tunnel is a chord in a circle of

radius r. Let x denote the distance along this chord, where x = 0 has been

defined to be at the center of the chord. When you are at a coordinate x, your

distance from the center of the sphere is r =
√
h2 + x2. Drawing a Gaussian

surface corresponding to a spherical shell of this radius, the gravitational

field strength at this point can be computed as

g · 4πr2 = −4πGρ
4

3
πr3

g = −4π

3
Gρr.

The force on you in the direction of the chord is

mg · x
r
= −4πGρm

3
x.

Therefore, your equation of motion is

ẍ = −4πGρ

3
x,

which represents a simple harmonic motion. The angular frequency is

ω =

√
4πGρ

3
.
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12. Atmosphere**

Let ρ(r) be the density of the atmosphere at a distance r from the center

of the Earth. Consider the forces on an infinitesimal volume element at

a distance r from the center of the Earth, in spherical coordinates. The

difference in pressure multiplied by the cross-sectional area of the element

must balance the gravitational force on it. Then,

−GρM
r2

dV = dpdA

dp

dr
= −GρM

r2
.

Note that ρ is also a function of r which can be expressed in terms of p via

the ideal gas law

pV = nRT.

Rearranging,

p =
ρ

M0
RT.

Hence,

dp

dr
= −GM0M

RTr2
p

ˆ p

p0

1

p
dp =

ˆ Re+h

Re

−GM0M

RTr2
dr.

Thus,

p = p0e
− GM0Mh

RTRe(Re+h) .
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Chapter 9

Fluids

This chapter will analyze the statics and dynamics of fluids — a form of

matter that has yet to be considered. Due to the immense complexity of this

field, our analysis in fluid dynamics will only be limited to the special case

of steady, incompressible and energy-conserving flow.

9.1 Properties of a Fluid

The defining feature of a fluid is its vulnerability to deformations. An ideal

fluid with no viscosity deforms under the influence of forces1 parallel to its

surface — known as shear forces — until it takes on a certain form such that

there are no longer any shear forces on it. This occurs both when the fluid is

static and when it is flowing. Therefore, forces on a steady-state fluid must

be perpendicular to its surface.

Since a conservative force is the negative gradient of its associated poten-

tial energy, the surface of a fluid at equilibrium under the sole influence of

conservative forces must be equipotential. Therefore, if we neglect the effects

of viscosity and surface tension of real fluids and model the Earth as a uni-

form sphere (assumed to be non-rotating as well), the surface of a beaker of

water should really be a spherical cap if we zoom in close enough.

9.1.1 Pressure

Instead of forces, it is convenient to define the pressure P due to a fluid on

a surface. The pressure on a surface due to a force is the magnitude of the

1Note that this does not refer to a net force aggregated over all surfaces but the sheer
existence of a net force at a single point on a surface.

469
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normal component of force per unit area on it, i.e.

P =
dF

dA
. (9.1)

We shall now understand why pressure is defined as a scalar, instead of a

vector.

Isotropy of Pressure

The pressure at each point in a fluid is isotropic (i.e. identical in all direc-

tions). Consider an infinitesimal wedge from its side view in the xz-plane

(Fig. 9.1). The cross-section of the wedge is uniform along the y-direction.

Figure 9.1: Side-view of infinitesimal wedge

Let the lengths of the edges of the wedge along the corresponding axes be

dx, dy and dz respectively. Note that even though pressure only tells us about

the normal component of force at each surface, this problem is still completely

determined by the fact that the fluid cannot withstand any shear forces (so

there are no shear forces). Applying Newton’s second law to the z-direction

while considering the forces due to pressure and the weight of the element,

pzdxdy − pn · dx

cos θ
dy cos θ − ρdV g = ρdV a,

where ρ is the density of the fluid and a is the acceleration of the fluid

element in the z direction. dV is the volume of the infinitesimal volume

element, dV = 1
2dxdydz. Taking the limits dx→ 0, dy → 0 and dz → 0,

pz = pn.

Applying a similar process to the x direction would yield

px = pn.

Therefore,

px = pz = pn = p,
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for some constant p. Since we did not define a particular value of θ, we can

vary it while ensuring that the wedge encloses a point of concern, to conclude

that the pressure along a neighbourhood in the xz-plane about that point

is some constant p. Next, to prove that the pressure is p in all planes in

the neighborhood of a particular point, consider another infinitesimal fluid

element as shown below.

Figure 9.2: Infinitesimal wedge

One can easily show that pn1 = pn2 = p. Then, by varying φ while

enclosing a point of concern, we can conclude that the pressure is p along all

planes in the vicinity of that point and is hence isotropic. Due to its isotropy,

pressure is defined to be a scalar as a particular direction does not need to

be assigned to it.

9.2 Fluid Statics

As usual, if a fluid is in static equilibrium, there must be no net external

force on each element of the fluid. In a stationary container where the only

forces on each fluid element are its weight, the normal force due to the

container and the force due to its surrounding pressure, the pressure varies

with depth throughout the fluid. We first show that the pressure at all points

of the same horizontal level must be identical. Consider an infinitesimal cube

element with edge lengths dx, dy and dz (Fig. 9.3).

Balancing the forces on the cube along the x and y directions, we conclude

that the pressure must be constant throughout the entire xy-plane, as long

as the fluid is still continuous. Now, consider the forces on the cube in the

vertical direction.

dp · dA = −ρdAdzg
dp

dz
= −ρg.
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Figure 9.3: Infinitesimal cube

If ρ is uniform,

p = pref − ρgz, (9.2)

for a continuous vertical column of fluid. pref is the pressure at coordinates

z = 0. This equation is also applicable to moving fluids whose elements are

not accelerating vertically. The combination of the previous two properties

implies that the pressure of a continuous fluid in static equilibrium is always

pref − ρgz, regardless of how oddly shaped the container may be.

Figure 9.4: Fluid in container

Consider the container in the figure above. The pressure at the top is

pref and we wish to determine the pressure p at point Q. We know that

p1 = pref + ρgz1,

p = p2 + ρgz2

from the previous result. Furthermore, we know that

p1 = p2

as these points are at the same vertical level. Thus,

p = pref + ρg(z1 + z2) = pref + ρgz.
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9.2.1 Archimedes’ Principle

Due to the variation in pressure, a body partially or fully submerged in a

stationary fluid experiences an upward force called the upthrust or buoy-

ant force. Archimedes’ Principle states that a body experiences an upthrust

equal to the weight of the fluid it displaces. Note that this upthrust acts

at the center of gravity2 of the displaced fluid (also known as the center of

buoyancy) and is directed vertically upwards.

Fupthrust = mdisg = ρfluidVdisg. (9.3)

An intuitive and arguably, most insightful, proof of Archimedes’ Principle is

that the fluid surrounding the object does not “know” whether the fluid, that

was originally present, has been removed or is still there. Thus, the remaining

fluid will exert the same force as before on whatever entity occupies the space

where part of the fluid originally was. For the displaced fluid to remain at rest

previously, the upthrust must have balanced its weight and passed through

its center of gravity (for torque balance). Thus, the submerged object expe-

riences a force upwards whose magnitude is commensurate with the weight

of the displaced fluid, acting on the center of gravity of the displaced fluid.

Note that this argument works for general gravitational fields since we did

not assume the gravitational field to be uniform.

Problem: A stationary cylinder of mass m and base area A is partially

submerged in a fluid of uniform density ρ, with its cylindrical axis aligned

with the vertical. Supposing that the cylinder is given a slight vertical dis-

placement, determine the angular frequency of small oscillations.

Let x be the length of the cylinder that is currently submerged in the

fluid. Then the equation of motion of the cylinder is

mẍ = mg − ρAxg.

Using the substitution u = x− m
ρA ,

ü = −ρAg
m

u.

Thus, the angular frequency is

ω =

√
ρAg

m
.

2The center of gravity of an extended body is the point at which its weight appears to
act at. It is generally different from the center of mass but is equal to the center of mass
when the body is placed in a uniform gravitational field.
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9.2.2 Moving Containers

When a container is undergoing a certain form of motion, there must be no

relative motion between the fluid it contains and itself at equilibrium (and

also between adjacent fluid elements). This is due to the viscosity of the

fluid in realistic situations which acts to oppose the relative motion between

a fluid element and a neighboring surface, in a manner analogous to friction.

In light of this necessity for the fluid to move in tandem with the container,

the variation in fluid pressure must be consistent with the motion of the

fluid. This also affects the shape of the surface of the fluid as pressure is

proportional to the depth of a fluid. Consider the rotating container below

as an example.

Problem: Calculate the height h of the equilibrium liquid level in a cylin-

der of liquid, rotating at a constant angular velocity ω, as a function

of radial distance r from the axis of rotation, which is the cylindrical

axis. The incompressible liquid has a uniform density ρ, and h at r = 0

is h0.

Figure 9.5: Rotating fluid

We consider an infinitesimal element of liquid with mass dm = ρrdrdθdh

at the bottom of the cylinder, in cylindrical coordinates. We note that the net

force due to the differences in pressure must provide the centripetal force in

order for this element to rotate at angular velocity ω. Considering the forces

in the radial direction,

prdhdθ − (p+ dp)rdhdθ = −dmrω2 = −ρr2ω2drdθdh

dp

dr
= ρrω2.
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Since p = ρgh,

dh

dr
=
rω2

g∫ h

h0

dh =

∫ r

0

rω2

g
dr

h = h0 +
r2ω2

2g
,

where h0 is the height of the fluid level along the cylindrical axis. It is inter-

esting to note that this means that the surface of the water is a paraboloid.

Actually, this problem can be easily solved by introducing a notion known as

the centrifugal potential and imposing the condition that the water surface

must be equipotential at equilibrium (see Chapter 11 Problem 8).

9.3 Surface Tension

Surface tension results from the discrepancy in the cohesive interactions

between molecules of a liquid near its interface with another medium and

between those within the liquid. Consider a liquid that is coexisting with

its vapor state3 while assuming that the interactions between the liquid and

vapor phases are negligible.

In a homogeneous liquid, the generally attractive4 interactions between

a particular molecule and all other molecules ascribe a negative potential

energy to that particular molecule — known as the binding energy. The

negative of the binding energy is then the external work needed to remove

a molecule from the liquid to infinity. It happens that the potential energy

associated with a pair of molecules decreases rapidly with their internuclear

distance such that the potential energy of a single molecule is largely due to

its immediate neighbours. With these observations, we can create a simple

microscopic depiction of the origin of a concept known as surface energy.

Referring to Fig. 9.6, a liquid molecule near the interface has roughly half

as many neighboring liquid molecules to interact with, as compared to one

3Note that even if we isolated a liquid in vacuum, part of it will always evaporate to
form a thin vapor film over the liquid surface.

4Note that the interactions are highly repulsive in the regime of short internuclear dis-
tances such that, although two isolated molecules will actually be attracted from far away,
when they get close enough, there will be a certain separation where the net force between
them is zero.
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Figure 9.6: Molecules in a liquid

in the interior of the liquid. Then, if the binding energy of a molecule within

the liquid is E (which is a negative value), the binding energy of a surface

molecule is only E
2 . This “missing” negative energy (E2 per surface molecule)

can then be supplemented to the surface of a liquid as an additional positive

potential energy, known as the surface energy. Moreover, this model also

suggests that the surface energy should be proportional to the area of the

surface, as a larger surface naturally contains more surface molecules.

In light of the above discussion, we can define a quantity known as the

surface tension γ to describe the surface energy U stored per unit area of

the surface of a liquid.

γ =
dU

dA
. (9.4)

At an interface between two homogeneous fluids, the surface tension does

not depend on how much a surface has already been stretched. Since γ is

constant, the surface energy of a liquid can be calculated as

U = γA. (9.5)

As the surface energy is positive, a liquid surface will naturally attempt

to reduce its surface area to minimize its total potential energy (while

taking into account other factors such as gravitational potential energy).

Next, another equivalent perspective is that the surface tension is the

external work required in increasing the area of the liquid surface by a

unit area by moving molecules from the interior (where they have a more

negative binding energy) to the surface (where they have a less negative
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binding energy).

γ =
dWext

dA
. (9.6)

Now, where there is energy, we would expect there to be a force as well. To

this end of developing a force perspective of surface tension, consider the

following instructive set-up.

A liquid film is surrounded by a “U-shaped” frame and one of its ends is

pierced by a thin metal wire of length l that is pulled by a force F , such that

the wire moves at a constant velocity. Notice that since the wire does not

accelerate, F must balance the force due to surface tension on the wire —

implying that we only have to determine F to find the force associated with

surface tension.

Figure 9.7: Liquid film

To solve for F , we can apply the principle of virtual work5 to the wire.

Suppose that the wire is displaced rightwards by a virtual displacement δx.

The work done by the external force on the wire would be Fδx while the

work done by the liquid film would be the negative change in surface energy,

−2γdA = −2γlδx. The factor of two arises from the fact that there are two

liquid-vapor interfaces — one on top of the liquid and one below. Since the

wire is in equilibrium, the principle of virtual work asserts that the sum of

virtual works yields zero so that

Fδx− 2γlδx = 0

=⇒ F = 2γl.

Therefore, the liquid film tugs at the wire with a force 2γl leftwards.

Since there are two liquid-air interfaces, we can ascribe a surface tension

force of γl to each interface. Now, observe that if we scale the length of

the wire by a factor k, the surface tension force due to each interface will

5Alternatively, we can apply Eq. (9.6).
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also be scaled by k. Therefore, a horizontal strip of liquid with vertical

length dl would exert a force γdl on the wire. Since each interface of

the original set-up can be viewed as the composition of myriad horizon-

tal strips of liquid that are identical, and whose total exerted force is γl,

the meaning of γ must be the force per unit length of a line along a liquid

surface!

A paramount observation at this juncture is that γ must not only be

the force per unit length at the end near the wire but it must also be the

force per unit length for all lines along the entire liquid interface. That is,

a form of internal tension must exist on the entire liquid surface to ensure

that all sections remain at equilibrium (similar to how an internal tension

T = F must exist within a rigid rod when its ends are pulled by an external

force F ).

As hinted by the previous set-up, we propose the following alternative

view of surface tension. For an arbitrary liquid-vapor interface S, draw a line

L along it which divides it into two regions (Fig. 9.8).

Figure 9.8: Force due to infinitesimal line segment

The contribution to the force between the regions due to an infinitesimal

line segment dl along the interface is

dF = γdl × n̂,

where n̂ is the normal vector of the interface at that line segment. The

above is the force that the region, corresponding to the direction of dF ,

exerts on the other region along the segment. For example, since dF points

towards the right for the infinitesimal segment depicted above, it is the force

exerted by the right region on the left region along the segment dl. Note that

the direction of n̂ is arbitrary, but it is a good habit to define a consistent

direction (such as outwards). Finally, it is crucial to observe that dF is

parallel to the interface (perpendicular to both dl and n̂) so in a certain
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sense, the surface tension is a “one-dimensional pressure” that acts on any

line along the surface of a liquid.

The total force exerted by the right region on the left is correspondingly

F =

∫
L
γdl × n̂, (9.7)

where the integral is performed over the line L. The proof of this follows

the previous procedure exactly. We can imagine cutting the liquid into two

regions along L and exerting an external force F ext = −F on the left region

to balance the force due to the right region. Applying the principle of vir-

tual work to the left region when its entire boundary line with the right

region stretches by an arbitrary displacement δx (while maintaining the

same shape), the virtual work done by the external force is F ext · δx while

the virtual work done performed by the right region is negative of the change

in surface energy of the right region. Since the change in surface area of

the right region due to the displacement of an infinitesimal line segment dl

by δx is −δx · (dl × n̂), the total increase in surface energy of the right

region is

−
∫
L
γδx · (dl × n̂).

Applying the principle of virtual work,

F ext · δx = −
∫
L
γδx · (dl × n̂) = δx · −

∫
L
γ(dl × n̂).

Since this is valid for all δx, we must have

F ext = −
∫
L
γdl × n̂

=⇒ F =

∫
L
γdl × n̂.

Excess Pressure in a Spherical Droplet

Surface tension causes a pressure discontinuity at a curved interface of a

liquid at equilibrium. To start off, let us consider a spherical liquid droplet

that has equilibrated in weightlessness. We wish to find the difference in

pressure between the interior and the exterior of the drop, p1− p0, given the

surface tension γ and the radius of the drop r.

Method 1: Force We cut the sphere into two hemispheres. Considering

the right hemisphere, we see that the force due to the difference between the
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Figure 9.9: Liquid droplet

internal pressure and external pressure p1 − p0 tends to push it to the right.

On the other hand, the surface tension (represented by arrows in the right of

Fig. 9.9) balances that by pulling it to the left, towards the other hemisphere.

In fact, evaluating the cross-product of the integrand in Eq. (9.7) along the

perimeter of the equatorial circle would show that the surface tension force

on the right hemisphere due to each line segment along the equatorial circle is

exactly leftwards. Since the perimeter of the equatorial circle is 2πr, the net

surface tension force on the right hemisphere is γ2πr. On the other hand,

the force due to the pressure difference is simply6 the pressure difference

multiplied by the area of the equatorial circle πr2. Thus, for the hemisphere

to remain stationary,

(p1 − p0)πr
2 = 2πrγ

Δp = p1 − p0 =
2γ

r
.

Method 2: Virtual Work We shall apply the principle of virtual work

to the molecules near the spherical surface. Suppose the sphere expands by

a radius δr. Then, the virtual work done by the pressure on the surface

molecules would be

δWP = Δp4πr2δr.

6To be completely rigorous, the force on an infinitesimal surface element dA (directed
outwards) on the right hemisphere is pdA where p is the net pressure. Since there should
only be a net force rightwards, we can simply take the rightwards component (defined
to be aligned with the positive x-direction) of this, pdA · î, and integrate over the entire
hemisphere to compute the net force. This becomes

∫∫
hemi

pdA · î = p
∫∫

hemi
dA · î. For an

infinitesimal area dA that subtends an angle θ with î, the integrand evaluates to dA cos θ
which is simply the area of its projection onto the equatorial plane! Therefore,

∫∫
hemi

dA· î
is simply the area of the projection of the hemisphere onto the equatorial plane which is
just the area of the equatorial circle, πr2. The net force is accordingly p · πr2.
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The virtual work performed by surface tension can be computed as the

negative change in surface energy. The increase in the area of the liquid

surface can be calculated as follows. The surface area of a sphere is

A = 4πr2

=⇒ δA = 8πrδr.

Thus, from the definition of surface tension,

δWST = −δUST = −γδA = −8πrγδr.

By the principle of virtual work, if the surface molecules were at equilibrium,

the sum of all forms of virtual work must yield zero.

δWP + δWST = 0 =⇒ Δp4πr2δr = 8πrγδr

Δp = p1 − p0 =
2γ

r
.

We see that the internal pressure of a liquid drop is in fact larger than the

external pressure. As a word of caution, the last technicality in consider-

ing surface tension would be the number of interfaces. For example, if the

liquid droplet in the above problem were to be replaced by a soap bubble,

then

Δp = p1 − p0 =
4γ

r
,

as there are now in fact, two liquid-vapor interfaces — the soap bubble is

a hollow sphere with a liquid surface. Thus, there is a vapor-liquid-vapor

transition from the outside to the inside of the soap bubble.

Problem: Referring to Fig. 9.10, two soap bubbles coalesce to become two

spheres of radii r1 and r2 that are connected by a common soap interface that

takes the form of the surface of a spherical cap with radius r3 at equilibrium.

Determine r3.

Figure 9.10: Coalesced bubbles (the case r2 < r1 is depicted above)
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Let the external pressure be p0. The pressures within the two soap

bubbles at equilibrium are then

p1 = p0 +
4γ

r1
,

p2 = p0 +
4γ

r2
.

Furthermore, the difference in the interior pressures of the soap bubbles must

also be related to the radius of the spherical interface, i.e.

|p1 − p2| = 4γ

r1r2
|r2 − r1| = 4γ

r3

=⇒ r3 =
r1r2

|r2 − r1| .

The interface is concave with respect to the smaller sphere which has a larger

interior pressure.

Young-Laplace Equation

For a general curved surface with a single interface at equilibrium, the

Young-Laplace equation states that the difference in the internal and exter-

nal pressures across the interface at a particular point P is

Δp = γ

(
1

r1
+

1

r2

)
, (9.8)

where r1 and r2 are the radii of curvature, which will be defined in the proof

below, along two curves perpendicular at P, which are both located along

the interface. The concave side of the interface has a larger pressure. One

can easily check that by substituting r1 = r2 = r for a sphere, the above

equation reduces to what we have derived earlier.

Proof: Define two perpendicular directions along the relevant curved

interface at a certain point P on the interface (these directions are per-

pendicular to the normal at P). Next, consider an infinitesimal rectangular

surface element, centered about P, with side lengths dl1 and dl2 along those

perpendicular directions.

Now, switch to the side view of this surface element where the side dl2
is on this page and the side dl1 is into the page (Fig. 9.11). In the first

approximation, a curve in the vicinity of an arbitrary point P is locally

approximated by a tangent line at P. However, this approximation is not
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Figure 9.11: Side view

accurate enough in this context, as approximating dl2 as a straight line

would cause the surface tension forces on the sides of length dl1 to nullify

each other. We need a better approximation that better reflects the curved

nature of this interface. To this end, we can approximate dl2 locally by an

arc of an appropriate circle that passes through P. Such a circle is known as

an osculating circle7 and its radius r is known as the radius of curvature of

the curve at P. If the radius of curvature of dl2 is r2, the angle subtended

by the surface tension forces along the sides with length dl1 and the hori-

zontal is θ ≈ dl2
2r2

. The net force due to these forces is 2 · γdl1 · dl22r2
= γdl1dl2

r2
downwards, thereby contributing to a downwards pressure γ

r2
on the surface

element.

Applying the same argument to the forces along the sides with length dl2,

the total pressure due to surface tension on this infinitesimal surface element

is γ( 1
r1
+ 1
r2
) downwards8 — indicating that the pressure on the bottom must

be larger than that on top by this amount to balance the pressure due to

surface tension. We have hence proven our claim.

As an aside, observe that there are infinitely many pairs of perpendicular

directions along the interface at P — such that r1 and r2 can be the radii

of curvature along an arbitrary pair of curves along the interface that are

perpendicular at P. However, we often choose r1 and r2 as a specific pair

known as the principal radii of curvature which are defined as the maximum

and minimum radii of curvature along all possible curves passing through P.

It can be proven mathematically that these are the only extrema and that the

directions of these curves, known as the principal directions, are mutually

perpendicular at P. One can also derive the principal radii of curvature

from the equation describing the surface, but we shall not delve further into

7Refer to any book on differential geometry to understand how the osculating circle of
a point on a curve can be found.

8Note that even though we have drawn the surface to be concave with respect to the
bottom, one can substitute a negative radius of curvature if the surface is convex with
respect to the bottom.
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the mathematical details as the radii of curvature of the surfaces that we

encounter are usually obvious.

Problem: Determine the pressure discontinuity across a cylindrical interface

of radius r and surface tension γ at equilibrium.

Consider a point P on the interface. Notice that the azimuthal and axial

(parallel to the axis of the cylinder) directions are perpendicular at P with

radii of curvature r and infinity — the latter because the center of a circle

that approximates a straight line must be located at infinity.9 Applying the

Young-Laplace equation,

Δp =
γ

r
.

Solid-Liquid-Air Interface

Similar to the case of a liquid, we can define a surface energy for a solid

surface in a vacuum and associate a surface tension γsv with the solid-vacuum

interface.

When a liquid droplet is placed on a solid plate, there are really three

interfaces — namely, the liquid-vapor, solid-vapor and solid-liquid interfaces.

The former two can be described by the liquid-vacuum and solid-vacuum

surface tensions γlv and γsv as we assume that the vapor does not interact

with the other phases.

Things become more murky when we study the solid-liquid interface.

We still ascribe a surface tension γsl to it but its meaning is subtly differ-

ent. It represents the surface energy per unit area stored in the solid-liquid

interface but it is not the external work required to increase the solid-liquid

interface by a unit area by bringing molecules from the interior of the liquid

to the solid-liquid interface. This becomes clear when we understand the

origin of γsl. To create a solid-liquid interface, we can join a solid-vacuum

interface and a liquid-vacuum interface which have surface energy densities

γsv and γlv respectively. However, in this process, the attractive interac-

tions between the solid and liquid molecules — which are known as adhesive

interactions — are no longer negligible (unlike solid-vapor and liquid-vapor

interactions). These adhesive interactions contribute to a negative poten-

tial energy as the solid-vacuum and liquid-vacuum interfaces are brought

closer together — implying that the surface energy density γsl stored in the

9This is to ensure that an infinitesimal arc around P is straight.
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solid-liquid interface formed is

γsl = γsv + γlv −Asl,

where Asl is the external work per unit area required to separate the solid-

liquid interface and revert to the solid-vacuum and liquid-vacuum interfaces.

On the other hand, the external work needed to increase the solid-liquid

interface by a unit area by bringing molecules within the liquid to the inter-

face is10 γlv − Asl = γsl − γsv. In other words, the discrepancy between the

surface energy density and the external work done per unit area arises from

the adhesive interactions between the liquid and solid molecules, in addition

to the cohesive interactions between molecules of the same kind.

The interplay of these cohesive and adhesive interactions determines how

a liquid droplet responds when it is placed on a solid plate. In describing

the shape of the droplet, the contact angle is defined as the angle sub-

tended between the solid surface and the gradient of the fluid surface at

the contact point on the solid-liquid interface. It is conventionally measured

through the liquid and denotes the direction of the surface tension force (we

mean along the liquid-vapour interface when we refer to just surface ten-

sion) on the liquid molecules near the contact point, due to the rest of the

liquid (Fig. 9.12).

Figure 9.12: Contact angles on hydrophilic (left) and hydrophobic (right) surfaces

We can actually theoretically predict the equilibrium contact angle for a

droplet placed on a plate. Since the droplet should be rotationally symmetric

due to the infinite nature of the plane, a single cross-section is representative

of the entire droplet. Consequently, consider the region in the vicinity of the

contact point in a cross-section of a liquid droplet at equilibrium.

In Fig. 9.13, θ is the equilibrium contact angle. Suppose that we dis-

place the contact point by a virtual distance δx outwards (towards the

10γlv is the external work (per unit area) required to extract the interior liquid molecules
towards the interface if the exterior medium is vacuum. If the neighboring medium is
instead a solid which engenders an attractive force on the molecules as they are brought
in, we must subtract γlv by Asl when computing the potential energy associated with the
molecules, to account for the negative work done by the external force in overcoming these
attractive interactions that tend to pull these molecules towards the solid.



July 10, 2018 12:24 Competitive Physics 9.61in x 6.69in b3146-ch09 page 486

486 Competitive Physics: Mechanics and Waves

Figure 9.13: Displacement of contact point

vapor) while the shape of the liquid-vapor interface is roughly maintained

due to the minuscule value of δx. The solid-vapor interface decreases by δx

in length while the solid-liquid interface increases by δx in length. Mean-

while, the liquid-vapor interface increases by δx cos θ in length. Therefore,

in order for the sum of changes in potential energies to be zero (as the

sum of all virtual works, due only to conservative forces in this case, must

be zero),

γslδx+ γlv cos θδx− γsvδx = 0

=⇒ cos θ =
γsv − γsl
γlv

,

which is known as Young’s equation. Now, we shall present an alternative

derivation of this relationship from the perspective of forces. Firstly, we shall

dismiss a common erroneous proof that is usually stated as follows.

Figure 9.14: Surface tensions at contact point (incorrect argument)

Balancing the three forms of surface tension at the contact point along

the horizontal direction in Fig. 9.14, we obtain

γsv = γsl + γlv cos θ

=⇒ cos θ =
γsv − γsl
γlv

.

Now, there are many fallacies in this argument. Firstly, we cannot balance

the forces at the contact point as it is just a mathematical point that does not

contain any real particles. Secondly, even if we consider the region of particles

close to the contact point, what type of particles are we encompassing in our

system? For instance, γsv refers to the cohesive forces on solid molecules
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while γlv refers to the cohesive forces on liquid molecules! Thirdly, why is

the vertical component of forces unbalanced?

Figure 9.15: Forces on wedge (correct argument)

To rectify these loopholes, it is best to explicitly define the system that

we consider from the start. We choose the liquid molecules near the contact

point, which take the form of the wedge above, as our system. The forces on

this system are the cohesive forces due to the rest of the liquid, described

by the liquid-vacuum/vapor surface tension γlv on the hypotenuse and the

base, and the force due to the solid (the interactions between the liquid and

vapour are negligible). The force on this system in the plane of the plate,

due to the solid, is easy to compute as we have already proven that the

work per unit area due to the solid-liquid adhesion is Asl = γsv + γlv − γsl.

Therefore, the adhesive force per unit length on our system in the horizontal

direction must be Asl outwards (towards increasing interfacial area). Note

that all surface tension forces are due to the infinitesimal segment along the

interface pointing into the page.

Referring to Fig. 9.14, the cohesive surface tension force per unit length

γlv along the liquid-vapor interface on the molecules in the vicinity of the

contact point is drawn correctly. However, the γsv and γsl forces per unit

length should instead be reflected as a Asl = γsv + γlv − γsl force per unit

length rightwards, produced by the solid, and a γlv force per unit length

leftwards by the rest of the fluid due to the surface tension on the solid-

liquid interface.

Finally, to correct the seemingly-unbalanced vertical component of γsv,

we note that we have only computed the force on our system due to the

solid in the plane of the plate. There are still11 forces of adhesion between

the liquid and solid molecules near the interface which balance the upwards

component of γlv. The correct diagram is thus Fig. 9.15. Having clarified

11By considering infinitesimal elements in the interior of the fluid, one can easily show
that this normal component of adhesive forces γlv sin θ is strictly localized to the three-
phase line.
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these facts, we can now safely write

γsv − γsl = γlv cos θ

=⇒ cos θ =
γsv − γsl
γlv

.

Furthermore, we can see that the force per unit length exerted by the solid

on the liquid, in the plane of the solid-liquid interface, is in fact

Asl = γsv + γlv − γsl = γlv(1 + cos θ).

There is a moral to be told here. It is often advised to adopt a thermodynamic

approach (finding changes in energy and applying the principle of virtual

work) instead of a mechanical one when dealing with surface tension. The

latter is much more subtle and is thus error-prone, especially when we are

confused about the system that we are referring to.

Now, there are a few regimes of interest that determine the response of

the liquid droplet (refer back to Fig. 9.12). Firstly, if 0 < γsv−γsl ≤ γlv, then

0 ≤ θ < π
2 . The surface is said to be mostly wetting (hydrophilic) and the

liquid droplet equilibrates with an acute contact angle. On the other hand,

if 0 < γsl− γsv < γlv, we find that π
2 < θ < π and the surface is described as

mostly non-wetting (hydrophobic). The droplet equilibrates with an obtuse

contact angle. If 0 < γlv < γsv − γsl, there are no solutions for θ. Instead, an

equilibrium does not exist as the outwards force due to the solid is so strong

that the liquid is dragged further into the vapor region — spreading the liquid

over the entire solid surface. In an apt manner, the surface is said to be com-

pletely wetting. Similarly, if 0 < γlv < γsl− γsv, the inwards force due to the

solid is so strong that the droplet is dragged into the liquid-region and is thus

contracted. In fact, it is more energetically favorable to introduce vapor films

between portions of the liquid such that the liquid is actually collected into

copious spherical pearls. Such a surface is said to be completely non-wetting.

Capillary Action

The most vivid manifestation of the various surface tensions is the phe-

nomenon of capillary action. When a tube with a small cross-section is placed

in a container of liquid, the liquid is “sucked” into the tube and rises above

the liquid level in the container.

Suppose that the tube is a cylinder of small radius r and that the equilib-

rium height of the liquid in the vertical column is h above the liquid level in

the container (we neglect the volume of the meniscus). The liquid has density

ρ. We shall present three arguments to determine h in terms of the liquid-

vacuum surface tension, that we will just write as γ, and the contact angle θ.
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Figure 9.16: Capillary action

Firstly, suppose that the height of the liquid within the tube increases

by δh. Since the height of the solid-liquid interface is increased by δh while

that of the solid-vapor interface is decreased by δh, the change in surface

energy is (γsl − γsv)2πrδh where 2πr is the perimeter of the cross-sectional

circle of the tube. There is no change in surface energy associated with the

liquid-vapor interface since its shape does not change. Meanwhile, there is

also a change in gravitational potential energy as δh height of liquid (which

corresponds to ρπr2δh of mass) is effectively transferred from the bottom of

the tube to an altitude h — indicating an increase in gravitational potential

energy by ρπr2ghδh. Equating the sum of the changes in potential energies

to zero, by the principle of virtual work,

(γsl − γsv)2πrδh + ρπr2ghδh = 0

h =
2(γsv − γsl)

ρrg
=

2γ cos θ

ρrg
,

where we have applied Young’s equation in the last step. Note that Young’s

equation is still valid even if gravity is now parallel to the surface of the

plate, as the weight of the liquid molecules in the vicinity of a contact point

is negligible compared to the other forces they experience.

Moving on to the second method, we can impose the condition that the

liquid pressure must be uniform throughout a vertical level at hydrostatic

equilibrium. Let p0 be the atmospheric pressure. As r is small, the meniscus

can be treated as a spherical cap with radius R = r
cos θ (see Fig. 9.16).

Therefore, the pressure in the liquid directly below the meniscus is p0− 2γ cos θ
r

by the Young-Laplace relationship. Since the pressure at the water level

inside the open container must be p0, we have

p0 − 2γ cos θ

r
+ ρgh = p0

h =
2γ cos θ

ρrg
.
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Finally, we can also solve this problem by analyzing the forces on the portion

of water in the tube above the water level in the container. Firstly, we know

from the previous section that the force per unit length that the tube exerts

on the liquid at the three-phase interface, along the surface of the tube

(towards the vapor), is Asl = γ(1 + cos θ). Therefore, the upwards force

exerted by the tube on the liquid is 2πrγ(1 + cos θ). Next, there is also a

downwards force due to surface tension on the bottom boundary circle of

this system, 2πrγ, that is exerted by the water beneath it. Observing that

there is no pressure difference between the top and bottom ends of this water

column, the net effect of these forces must balance the weight of the water

in our system.

2γπr cos θ = ρπr2gh

h =
2γ cos θ

ρrg
.

Evidently, the height of the liquid column increases with a smaller tube,

ceteris paribus. Finally, also note that this result is valid for both acute and

obtuse contact angles even though we drew the acute case in the diagram.

The liquid level in the tube will be lower than the liquid level in the container

if the contact angle is obtuse.

Problem: Determine the depth H of a meniscus (i.e. the height of the

highest level minus the height of the lowest level) in a cylindrical tube with

an arbitrary radius that contains a liquid of density ρ, surface tension γ and

contact angle θ. You can no longer assume that the shape of the meniscus

is a spherical cap in this case, but you may assume that the slope of the

meniscus is small everywhere. With your result, justify why we could ignore

the volume of the meniscus for small tube radii previously.

Figure 9.17: Half of meniscus in cross-section

Again, since the tube is axially-symmetric, we can consider a single

cross-section with half of the meniscus. Assuming that the contact angle is

acute, the highest liquid level should occur at the interface with the tube

while the lowest liquid level should occur at the center of the meniscus.
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In fact, the center of the meniscus must be completely flat — else there is

no chance for the surface tension on the molecules near the center to be

balanced in the vertical direction. This flatness implies that the pressure in

the liquid, directly below the meniscus, is the atmospheric pressure p0 by

the Young-Laplace equation (with infinite radii of curvature). Therefore, the

hydrostatic pressure at a point on the wall of the tube must be p0 − ρgz,

where z is the point’s height above the center of the meniscus.

Now, we can determine the depth H of the meniscus by balancing the

horizontal forces on the half of the meniscus depicted on the previous page.

Firstly, the liquid experiences a uniform atmospheric pressure p0 from its

right — resulting in a net leftwards force per unit length p0H in this cross-

section (we can take the force to be purely horizontal because the slope is

small). Next, since the liquid exerts a hydrostatic pressure on the wall, it

must also experience a pressure due to the wall. As the hydrostatic pressure

varies linearly with depth, we can simply take the average of the hydrostatic

pressure multiplied by the depth of the liquid to compute the net force per

unit length on the liquid. This amounts to (p0− ρgH
2 ) ·H = p0H− ρgH2

2 force

per unit length on the liquid rightwards. Besides the two pressures on the

liquid, there are also the surface tension at the center of the meniscus which

delivers a rightwards force per unit length γ, and the horizontal (normal)

attractive force per unit length exerted by the tube on the liquid at the

three-phase interface, γ sin θ, as discussed previously (to balance the normal

component of surface tension due to the rest of the fluid). Balancing the

forces in the horizontal direction while taking rightwards to be positive,

p0H − ρgH2

2
− p0H + γ − γ sin θ = 0

H =

√
2γ(1− sin θ)

ρg
,

which is surprisingly, independent of the tube radius. One can use a similar

procedure to show that the above is also valid for obtuse contact angles (the

center of the meniscus is now higher than the liquid level near the tube).

Comparing H with the expression for h derived previously, we observe that

H � h if r �
√

γ
ρg (we are now able to quantify what we mean by a small

tube radius)! In fact, the expression
√

γ
ρg is defined as the capillary length

Lc, which is a characteristic length scale for the interface between two media,

so we can say that our answer for h is valid when r � Lc.
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Floating Objects

In the previous section, we studied the forces on a liquid due to a solid —

we will focus on the reverse in this section. There are three main effects that

the presence of a liquid induces on the solid. Firstly, there is an upthrust

on a submerged or partially submerged body that is generated due to the

varying pressure in water with height. Secondly, the liquid molecules along

the three-phase interface also exert the reaction pair to the adhesive forces

due to the solid. This results in forces per unit length γ(1 + cos θ) tangen-

tial to the solid surface (pointing towards the liquid) and γ sin θ normal to

the solid surface (also pointing towards the liquid) on the solid, where θ is

the contact angle. Finally, there is generally an additional “curvature pres-

sure”, superimposed on the normal pressure variation with height, due to

the local curvature of the solid-liquid interface. The origin of this is sim-

ple — as we have accounted for the adhesive interactions, the remaining

effect of the solid is akin to vacuum. If the solid-liquid interface is concave

with respect to the solid, the solid has to exert an additional Laplace pressure

to keep the liquid molecules near the interface in equilibrium (via a normal

force). The liquid molecules then exert the reaction pair to this normal force

which effectively constitutes an additional curvature pressure.12 Therefore,

the curvature pressure on the solid is positive (acting towards the solid) if

the solid-liquid interface is convex with respect to the liquid. The converse

statement holds for the opposite shape of the interface.

The combination of the two latter factors can actually help non-wetting

solid objects, such as water beetles, to float on a less-dense liquid! Let us

consider the simplest example of a sphere floating on water.

Figure 9.18: Floating sphere

In the figure above, a sphere of radius r is floating with an angle of con-

tact θ. φ is the angular coordinate of the three-phase (solid, liquid, vapor)

12Another perspective is that the Laplace pressure enhances the pressure in the liquid,
beyond the usual linear variation with depth which is associated with the upthrust.
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intersection in a cross-section and corresponds to the location where the

reaction to the adhesive forces act (γ(1 + cos θ) tangentially and γ sin θ nor-

mally with respect to the sphere as shown above). Now, the curvature of the

sphere leads to a uniform curvature pressure 2γ
r along the entire solid-liquid

interface (depicted by the dashed arrows). This amounts to an upwards force

of magnitude 2γ
r ·πr2 sin2 φ = 2γπr sin2 φ (pressure multiplied by the area of

the three-phase boundary circle which has radius r sinφ). Observe that this

is equivalent to saying that the net effect of the curvature pressure is to intro-

duce a tangential (relative to the sphere) surface tension force γ on the circle

at the three-phase interface (pointing upwards) as it will act on a perime-

ter 2πr sinφ for a total upwards force of γ · 2πr sinφ · sinφ = 2γπr sin2 φ

(multiply by sinφ to extract the vertical component).

Now, let’s combine the effects of the curvature pressure and the adhesive

forces to obtain forces per unit length γ cos θ tangential to the sphere and

γ sin θ normal to the sphere, both pointing towards the liquid, along the

three-phase interface. This implies that the net effect is simply a force per

unit length γ along the three-phase intersection, tangential to the liquid

surface (white arrow)! With this remarkable result, we can compute the

force due to this net effect as

F = γ · 2πr sin θ · sin
(
3π

4
− θ − φ

)
= 2γπr sin θ sin

(
3π

4
− θ − φ

)
,

where we multiply by sin(3π4 − θ − φ) to retrieve the upwards component.

The total force balance for the sphere is thus

mg = Fupthrust + 2γπr sin θ sin

(
3π

4
− θ − φ

)
,

where m is the mass of the sphere and Fupthrust is the upthrust that it expe-

riences. The combination of the effects associated with surface tension and

upthrust helps the sphere to stay afloat. Now, you may wonder if the pres-

ence of adhesive interactions and curvature pressure invalidates the previous

proof of Archimedes’ Principle which relied on the fluid’s inability to dis-

tinguish the entity that it exerts a force on. To ease your worries, observe

that no such forces exist on a line of molecules when the entity is in fact an

identical portion of fluid — implying that the previous proof is still valid.

Thus, the expression for the upthrust still remains the same but one has to

account for the additional effects due to the other factors.

Finally, the above result is in fact completely general. For an object of

an arbitrary shape, the net vertical force due to adhesive interactions and

curvature pressure is akin to introducing a force per unit length γ at the

three-phase interface, along the surface of the fluid! Therefore, if we place
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a thin cylinder of mass m, length l and negligible radius in a liquid with

surface tension γ and contact angle of π radians, the force balance equation

is 2γl = mg (the upthrust is negligible). However, be wary that no such

short-cut exists for the components of force along the plane perpendicular

to the vertical — one has to account for the adhesive forces and curvature

pressure manually.

9.4 Fluid Dynamics

The flow of a fluid can be divided into several categories. A uniform flow is

one where the flow characteristics — such as pressure and flow velocity —

are identical at all points. A steady flow is one whose flow characteristics do

not vary over time but is not necessarily uniform. Lastly, an incompressible

flow occurs when the density of the fluid is identical everywhere.

This section will analyze steady and incompressible one-dimensional flows

of fluids. In our set-ups, cross-sections are assumed to be small such that the

flow characteristics — such as velocity — are uniform about a cross-section.

We shall start with a few definitions. A streamline is a line that is tangential

to the instantaneous flow velocity at all points along the streamline (akin to

an electric field line) and reflects the trajectory of a fluid particle lying on

that streamline if the flow is steady. Now, consider the set of all streamlines

that pass through a closed loop (such as the left loop in the figure below).

Such a collection of streamlines is known as a streamtube (e.g. the tube that

looks like a pipe in the figure below). Since streamlines cannot cross (as that

would imply two directions of flow velocity at the points of intersection), fluid

particles can only flow along the cross-section of a streamtube and cannot

escape by cutting across the surface of a streamtube.

The Mass Continuity Equation

Figure 9.19: Narrow streamtube (the above is not a physical pipe)



July 10, 2018 12:24 Competitive Physics 9.61in x 6.69in b3146-ch09 page 495

Fluids 495

In a steady-state system, the total mass within a section of fluid must be

invariant over time. Therefore, if we define ρ1, A1, v1 to be the mass density,

cross-sectional area and flow velocity at one section of a narrow streamtube

(narrow such that these properties are uniform over a cross-section) and ρ2,

A2, v2 to be those at another section (Fig. 9.19), we have

ρ1A1v1 = ρ2A2v2. (9.9)

The expression ρAv is the mass flux, which is the rate of mass flow through

a cross-section. This must be equal at all sections of the streamtube as

whatever goes in must come out at the same rate. If this were not the case,

mass would be accumulated along the flow and the flow would no longer be

steady. Furthermore, in the case of incompressible flow, ρ1 = ρ2. Then,

Av = Q (9.10)

for a constant Q which is known as the volume flow rate.

Bernoulli’s Equation

For an incompressible, steady and energy-conserving one-dimensional fluid

flow, Bernoulli’s principle states that for two points along a streamline or a

narrow streamtube,

P1 +
1

2
ρv21 + ρgh1 = P2 +

1

2
ρv22 + ρgh2, (9.11)

where P is the pressure at a point along the fluid flow, v is the flow velocity

at that point and h is its height with respect to a certain reference point. The

dimensions of the cross-sections of the streamtube of concern are assumed to

be negligible compared to their heights, such that the gravitational potential

energies of all mass elements on a particular cross-section are assumed to be

identical.

Proof: Consider the evolution of the portion of fluid enclosed between the

two cross-sections in Fig. 9.19 after a time interval dt. ρQdt mass of fluid

would have advanced a distance v1dt from the left cross-section and v2dt

from the right cross-section. Thus, the work done by the pressure at the two

ends is

W = (P1 − P2)Qdt.

Furthermore, the velocity of ρQdt mass of fluid effectively changes from v1
to v2. Therefore, the change in kinetic energy is

ΔT =
1

2
ρQv22dt−

1

2
ρQv21dt.
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Finally, the change in gravitational potential energy is evidently

ΔU = ρgQdt(h2 − h1).

By the work-energy theorem,

Wnoncon = Δ(T + U),

where Wnoncon = (P1 − P2)Qdt in this case. Canceling the Qdt terms,

P1 − P2 =
1

2
ρv22 −

1

2
ρv21 + ρgh2 − ρgh1

P1 +
1

2
ρv21 + ρgh1 = P2 +

1

2
ρv22 + ρgh2.

Problem: An open cylindrical container of height h0 and cross-sectional

area A1 is initially filled with water. There is a tap at the bottom of the con-

tainer with cross-sectional area A2 and negligible height. Assuming energy-

conserving flow, find the height of the water level h(t) as a function of time.

Figure 9.20: Water tap

Let u be the velocity of the water level and let v be the velocity of the

water flushing through the tap, both defined to be positive downwards. By

Bernoulli’s equation,

1

2
u2 + gh =

1

2
v2,

where we have canceled the atmospheric pressure terms on both sides. Fur-

thermore, the rate of volume flow outwards is A2v. Thus,

dV

dt
= −A2v.

Since V = A1h and u = −dh
dt ,

A1u = A2v =⇒ v =
A1

A2
u
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which is effectively the mass continuity equation. Substituting this expression

for v into the first equation,

1

2
u2 + gh =

1

2

A2
1u

2

A2
2(

A2
1

A2
2

− 1

)
u2 = 2gh.

Substituting u = −dh
dt ,

dh

dt
= −

√
2gA2

2h

A2
1 −A2

2

.

Separating variables and integrating,

∫ h

h0

1√
h
dh =

∫ t

0
−
√

2gA2
2

A2
1 −A2

2

dt

2
√
h− 2

√
h0 = −

√
2gA2

2

A2
1 −A2

2

t

h =

(√
h0 −

√
gA2

2

2
(
A2

1 −A2
2

)t
)2

,

which is only valid for t ≤
√

2(A2
1−A2

2)h0
gA2

2
. Note that this result is definitely

inaccurate in the regime where h is small as the water surface may begin to

shrink in radius (in addition to a decreasing fluid level) — introducing new

complications.

Systems with a Small Aperture

In the case of containers with small apertures, the fluid inside the container

can be taken to be approximately static, such that its squared speed in the

application of Bernoulli’s principle can be neglected (as it is second-order).

However, the velocity of the ejected fluid and the velocity of the fluid inside

the container when applying the continuity equation (which is first-order)

are non-negligible.

Problem: A hollow cylinder of base area A and length l is initially filled

with a fluid of mass density ρ. It lies with its cylindrical axis along the plane

of a horizontal table. Then, a massless piston is pushed with a constant force
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F at one of the ends of the fluid. If a small aperture of area A0 � A is made

at the other end of the cylinder, determine the time required to empty the

cylinder. Neglect atmospheric pressure.

Applying Bernoulli’s principle to the end of the fluid that is touching the

piston and the point directly outside the aperture,

P =
1

2
ρv2,

where P = F
A is the pressure of the fluid at the end with the piston and v

is the velocity of the ejected fluid (the velocity of the fluid in the cylinder is

negligible). Thus, the volume flow rate is

Q = A0v = A0

√
2F

ρA
.

The time required to empty the container is then

t =
Al

Q
=
Al

√
ρA

A0

√
2F

.



July 10, 2018 12:24 Competitive Physics 9.61in x 6.69in b3146-ch09 page 499

Fluids 499

Problems

Pressure and Surface Tension

1. Accelerating Tube*

Consider the tube below with a constant horizontal cross-section — the

length of the bends can be neglected. The ends are initially uncapped and

the water level is even as the tube is stationary. The tube is capped and

accelerated. If the lengths of the left and right air columns are h and 2h

initially and 3
2h and 3

2h afterwards, determine the acceleration of the tube.

Assume that the ideal gases undergo an isothermal process. Denote ρ as the

density of water and p0 as atmospheric pressure.

2. Falling Drop*

Assume that raindrops are spherical with a constant density ρ. Suppose that

a raindrop of radius 3
√
7R falls from a height h and coalesces instantaneously

with a raindrop of radius R. If the surface tension of a raindrop is γ and its

specific heat capacity is c, determine the temperature rise immediately after

the collision.

3. Colliding Soap Bubbles**

The surface tension of soap bubbles in vacuum is γ. Now, two spherical soap

bubbles are in equilibrium with respective radii ra and rb in an environment

where the external pressure is zero. The two soap bubbles then coalesce

to form a spherical soap bubble of equilibrium radius rc, without any heat

transfer between it and the environment. If the initial temperatures of the

soap bubbles are both some unknown temperature T , show that the final

equilibrium temperature of the combined soap bubble is also T . Determine

rc.

4. Balloon**

A spherical balloon of total mass m, radius R and surface tension γ is

tossed at a wall. The balloon then undergoes a small deformation of the
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form shown in the figure below (a portion is flattened). However, the part

that has yet to collide with the wall is still rigid. If the balloon remains

mostly spherical such that the pressure inside is uniform and unchanged,

show that the motion of the balloon is simple-harmonic. Thus, determine

the time between the initial collision and the rebound. (Estonian-Finnish

Olympiad)

5. Capillary Forces between Parallel Plates**

A thin film of water with surface tension γ and contact angle θ rests between

two large parallel plates. The diameter of the circular liquid-solid interface

on a disk is D while the distance between the plates is d � D. Neglecting

gravity, determine the force experienced by each of the plates.

6. Accelerating Cylinder**

A stationary cylinder of radius R contains a fluid of uniform density

of height l. Now, the cylinder is given a constant leftwards acceleration

a. If the resultant equilibrium shape of the fluid is the cylindrical seg-

ment shown below, determine the height l′ of the cylinder, obtained by

truncating the excess portion of the cylindrical segment. What is the

maximum value of a for which the fluid covers the entire base of the

cylinder?
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7. Ball in Hole**

A circular hole of radius r at the bottom of a tank of water with density

ρ (the lid is open) is sealed by a sphere of radius R > r and mass m. The

water level in the tank is reduced to a certain height h, at which point the

ball starts to rise out of the hole. Determine h while assuming that the water

level in the tank is still above the top of the ball at the juncture where it

just begins to rise.

Buoyancy

8. Melting Ice*

An ice cube floats on water. Describe qualitatively the changes in the height

of the fluid level when the ice melts in the 3 following cases: (1) A metal

bead is embedded inside the ice cube. (2) A solid, whose density is less than

that of water, is embedded. (3) The ice cube traps oil which is immiscible

with water.

9. Rock in Bowl*

A rock of mass mr and density ρr is placed into a bowl of mass mb. This

system is then floated in a beaker of water with density ρw and cross-sectional

area A— causing the water level to rise by height h1. Subsequently, the rock

is removed from the bowl and dropped into the beaker such that the final

water level is still higher than the original water level by h2. Determine

h1 − h2.

10. Moving Ants*

A group of ants are now trapped in an inverted, massless equilateral triangle

of side length l and width w. The equilateral triangle is completely sub-

merged in a fluid of density ρ. Determine the largest mass of ants that can

rest at the top of the equilateral triangle such that the system is in stable

equilibrium.

11. Oscillation Between Two Fluids**

Suppose that a cylinder of mass m, cross-sectional area A and length l is in a

state of equilibrium at the interface of two immiscible fluids. The cylindrical

axis is along the vertical. If the densities of the top and bottom fluids are

ρ1 and ρ2 respectively, show that the system can undergo simple-harmonic
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motion under certain conditions. Determine the angular frequency in such

situations.

Fluid Dynamics

In the following questions, assume steady, incompressible and energy-

conserving flow unless stated otherwise. Also assume that the flow char-

acteristics are uniform about a cross-section by default.

12. Spraying Water*

An uncapped container with a large cross-sectional area currently holds

water of height H above the ground. Determine the height h at which a

small hole should be made such that the ejected water attains the greatest

horizontal range on the ground.

Next, suppose that we poke many small holes on the container along the

same vertical line, at various heights. The envelope of the water trajectories

is defined as follows. For every vertical height level, we can find the point on a

trajectory which is the furthest horizontal distance away from the container,

at that height level. The envelope is then formed by the locus of such points.

Determine the shape of the envelope while assuming that the water level in

the container does not vary by much.

13. Venturi-meter*

Consider the set-up below. Water flows from the left to right. If the heights of

the water levels of the two tubes are h1 and h2 respectively and if the cross-

sectional areas immediately below these pipes are A1 and A2, determine the

volume flow rate in the pipe.

14. Pitot Tube*

A vessel is currently carrying some air of constant density ρa. The air is

traveling towards the right at a velocity v. Now, a pitot tube is inserted

as shown in the figure on the next page such that the gas in the tube is

stationary. If the fluid in the pitot tube has density ρl � ρa and the difference

in fluid levels is Δh, determine v.
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15. Filling a Tank**

After a tap above an empty rectangular tank has been opened, the tank is

filled with water at a constant rate in time T1. After the tap has been closed,

poking a small hole at the bottom of the tank empties it in another duration

of time T2. If the tap above the tank is now opened again, for what ratios of
T1
T2

will the tank overflow?

16. Sucking Water**

A tube of height h and length l is spinning in a beaker of water of density

ρ at a constant angular velocity ω. If a small aperture of area A is punctured

at the top-right end of the tube, determine the velocity of the emitted fluid

at the aperture in the rotating frame of the tube and lab frame. Determine

the external power required to maintain such a system.

17. Transmitting Water**

Two uncapped containers are placed on a level ground, right next to each

other. The cross-sectional areas of the containers are A1 and A2 respectively

which are both large. Initially, the containers carry water of constant density

ρ. The water level of the first container is x0 higher than that of the second.

Now, a hole of area A (A � A1 and A � A2) is poked at the bottoms of

both containers such that water flows from one container to another through

the hole. Determine the time required for this system to equilibrate.
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18. Curving Water**

A massive pipe rests on a horizontal table. In the pipe, a fluid of constant

density ρ flows from left to right with an angle of deflection θ, as shown in

the figure below. Suppose that the areas of the left and right ends are A1

and A2 respectively with corresponding pressures of P1 and P2. Determine

the force exerted on this portion of fluid by the pipe.

19. Hydraulic Jump**

A fluid of density ρ undergoes steady, incompressible flow with an average

flow velocity v1 at the left end of the figure, towards the right end. It under-

goes a hydraulic jump from an initial height h1 to a final height h2. If the

system has a width w directed into the page and is uniform about this width,

determine h2 by the impulse-momentum theorem. Note that energy is not

conserved and the flow characteristics are not uniform about a cross-section.

Neglect atmospheric pressure.
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Solutions

1. Accelerating Tube*

The initial pressures of the gases, immediately after the ends are capped, are

p0, the atmospheric pressure. As the volumes of the left and right columns

increased by a factor of 3
2 and decreased by a factor of 3

4 respectively, the

final pressure in the left and right columns are 2
3p0 and 4

3p0. Now, con-

sider the horizontal portion of the tube which has a constant cross-sectional

area A. The net force on this portion is the difference in pressure at its ends,

multiplied by A.

F =

(
4

3
p0 + ρgh− 2

3
p0

)
A =

(
2

3
p0 + ρgh

)
A

leftwards, where ρgh is the pressure difference due to the difference in liquid

levels (12h as compared to 3
2h). This must be equal to the mass of the middle

portion, multiplied by the acceleration a, so that

F = ρAla.

Then,

a =
2p0 + 3ρgh

3ρl

leftwards.

2. Falling Drop*

Let the masses of the raindrops be 7m and m respectively. The velocity of

the first drop before the collision is v =
√
2gh. The velocity after the collision

is given by the conservation of momentum to be

v′ =
7

8
v.

The loss in kinetic energy is

ΔT =
1

2
(7m+m)v′2 − 1

2
· 7mv2 = − 7

16
mv2.

There is also a change in surface energy due to the change in the total surface

area of the bubbles when they coalesce. The final radius of the drop is, by
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the conservation of mass,

R′ = 3
√

7R3 +R3 = 2R.

Therefore, the change in surface energy is

ΔU = 4πγ(R′2 − 3
√
49R2 −R2) = 4πγ(3 − 3

√
49)R2.

The heat evolved is

ΔQ = −ΔT −ΔU.

The change is temperature is then

Δt =
ΔQ

8mc
=

7gh

64c
+

3γ( 3
√
49− 3)

8ρcR
.

3. Colliding Soap Bubbles**

Referring to the section regarding the pressure discontinuity across a spher-

ical interface, the initial pressures inside the soap bubbles are, respectively,

pa =
4γ

ra
,

pb =
4γ

rb

where we remember that there are two interfaces for a soap bubble. There-

fore, by the ideal gas law, the number of moles of gas in the soap bubbles is

na =
paVa
RT

=

4γ
ra

· 4πr3a
3

RT
=

16γπr2a
3RT

,

nb =
16γπr2b
3RT

.

Let the final equilibrium temperature of the combined soap bubble be T ′.
Then, for the total number of moles to be constant,

16γπr2a
3RT

+
16γπr2b
3RT

=
16γπr2c
3RT ′

r2a + r2b
T

=
r2c
T ′ .

Furthermore, by the conservation of energy, the sum of the internal energy

of the gases and the surface energy must be a constant.

3

2
(na + nb)RT + γ4π(r2a + r2b ) =

3

2
(na + nb)RT

′ + γ4πr2c .



July 10, 2018 12:24 Competitive Physics 9.61in x 6.69in b3146-ch09 page 507

Fluids 507

Substituting the expressions for na and nb and rearranging,

γ8π

T
(r2a + r2b )(T

′ − T ) = γ4π(r2a + r2b − r2c ).

Substituting r2c = (r2a + r2b )
T ′
T yields

(r2a + r2b )(T
′ − T ) = 0

=⇒ T ′ = T.

Substituting T ′ = T into the equation
r2a+r

2
b

T = r2c
T ′ ,

rc =
√
r2a + r2b .

4. Balloon**

Let the horizontal length of the deformation be h. Then, the radius r of the

circular cross-section which is in contact with the wall is

r =
√
h(2R − h)

by the intersecting chords theorem. The excess pressure in the balloon,

relative to the atmosphere, is

Δp =
2γ

R
.

The force by the balloon on the wall is Δpπr2. The force by the wall on

the balloon is of the same magnitude but is opposite in direction. Thus, the

equation of motion of the balloon is

mḧ = −Δpπr2 = −2γ

R
πh(2R − h).

Discarding the second-order term in h as h is small,

ḧ = −4πγ

m
h,

which is simple-harmonic. The time between the collision and rebound is

half the period, and

T

2
=
π

ω
=

π√
4πγ
m

=

√
πm

4γ
.
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5. Capillary Forces between Parallel Plates**

When d � D, the shape of the liquid-air interface in a cross-section is

a spherical cap of radius R = d
2 cos θ . Therefore, the pressure within the

water is

p = p0 +
2γ cos θ

d
,

by the Young-Laplace equation (the inverse of the other radius of curvature

is negligible as compared to 1
d since d � D). The excess pressure hence

exerts a force

F = (p− p0) · πD
2

4
=
γπD2 cos θ

2d
,

on each of the plates, tending to bring them together. Note that the curvature

pressure on a plate is zero due to its flatness. Actually, we should also include

the adhesive forces which are associated with a force per unit length γ sin θ

along the three-phase interface, normal to each plate. This amounts to a

total force γ sin θ · πD = γπD sin θ on each plate in the normal direction —

negligible when compared to F as d� D.

6. Accelerating Cylinder**

Define the positive x-axis to be directed leftwards and the origin to be at the

right end of the cylindrical container. Consider an infinitesimal box element

at coordinates (x, y, z). Considering the forces in the x-direction,

[p(x)− p(x+ dx)]dA = ρdAdxa

=⇒ dp

dx
= −ρa.

We have written p as a function of x only, as the pressure must be indepen-

dent of y and z for the forces on a fluid element to be balanced along those

directions. Next, we also know that at the base of the cylinder, p = p0+ ρgh

where h is the height of the vertical fluid column above the point of concern.

Thus,

dp

dx
= ρg

dh

dx

dh

dx
= −a

g
.
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This is the slope of the surface of the cylindrical segment.13 The length of

segment AB is thus 2Ra
g . To calculate CD = l′, we first compute the volume

of the top of the cylindrical segment (which is shaped like a wedge). Notice

that two of these form a cylinder of height 2Ra
g and radius R. Thus, its

volume is

πR3a

g
.

The remaining volume is

πR2l − πR3a

g
.

Therefore,

l′ = l − Ra

g
.

If a > lg
R , the fluid can no longer cover the entire base of the cylinder.

7. Ball in Hole**

Generally, the ball experiences an upthrust, a normal force due to the bottom

of the tank and its weight. When the upthrust alone is enough to balance

its weight, the ball rises out of the hole.

In order to compute the upthrust due to the immersed portion of the

sphere, first remove the portion of the sphere that is not immersed as that

is irrelevant. If the bottom circle, produced by this truncation, were to be

covered with a continuous section of water, the upthrust on the sphere would

be ρgV where V is the volume of the sphere immersed in water. However,

instead of water of pressure p0+ρgh (where p0 is the atmospheric pressure),

the truncated sphere only experiences a force on its bottom circle due to

the atmosphere which only has pressure p0. Therefore, the total upthrust

experienced by the original sphere must be

F = ρgV − ρgh · πr2,

as we have to deduct the contribution from the missing pressure. V can be

computed via simple integration. Consider a circle of radius R centered at

13Alternatively, we could have derived this from the fact that the liquid surface must be
perpendicular to the effective gravity.



July 10, 2018 12:24 Competitive Physics 9.61in x 6.69in b3146-ch09 page 510

510 Competitive Physics: Mechanics and Waves

the origin of the xy-plane.

x2 + y2 = R2

=⇒ y = ±
√
R2 − x2.

Observe that we can obtain the volume of the immersed portion of the sphere

(a truncated sphere) by rotating the parts of this circle from x = −√
R2 − r2

to x = R about the x-axis for π radians. Therefore,

V = π

∫ R

−√
R2−r2

y2dx

= π

∫ R

−√
R2−r2

(R2 − x2)dx

=

[
π

(
R2x− x3

3

)]R
−√

R2−r2

=
π

3

[
2R3 + (2R2 + r2)

√
R2 − r2

]
.

We require

mg = ρgV − ρgh · πr2

=⇒ h =
V

πr2
− m

ρπr2
=

2R3

3r2
+

2R2 + r2

3r2

√
R2 − r2 − m

ρπr2
.

8. Melting Ice*

Let mi and mo denote the mass of the ice and the object inside the ice,

respectively. Then,

mi +mo = ρwVdis,

where ρw is the density of water and Vdis is the volume of fluid displaced.

Rearranging,

Vdis =
mi

ρw
+
mo

ρw
.

In all cases, let the density of the object be ρo.
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In the first case, the bead is denser and will thus fall to the bottom after

the ice melts. Then, the volume “released” from the melting of the ice cube is

mi

ρw
+
mo

ρo
,

which is evidently smaller than Vdis as ρo > ρw. The first term is the volume

of the water due to the ice melting and the second term is the volume of

the bead. Therefore, the additional volume is unable to fill up the displaced

volume — implying that the fluid level drops.

In the second case, ρo < ρw. Then, the object will float while displacing

a new volume of water

V ′
dis =

mo

ρw

after the ice has melted.

The volume released is that of water due to the ice, mi
ρi
. Since this exactly

compensates for the change in the volume of water displaced, the fluid level

remains the same.

In the last case, the oil will not displace any water, as it will float on top

of it. Therefore, the volume released is

mi

ρw
+
mo

ρo
> Vdis,

as ρo < ρw. Therefore, the fluid level (which includes the oil) rises.

9. Rock in Bowl*

h1 comes from the volume displaced by the bowl-cum-rock system.

h1 =
mr +mb

ρwA
.

Meanwhile, h2 originates from the volume of the rock and the volume dis-

placed by the bowl.

h2 =
mr

ρrA
+

mb

ρwA

h1 − h2 =
mr

A

(
1

ρw
− 1

ρr

)
.
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10. Moving Ants*

The total mass of the ants can be calculated from Archimedes’ Principle.

m =

√
3

4
ρl2w.

For the wedge to be in stable equilibrium, the center of mass of the system

must be lower than the center of buoyancy so that the torque due to the

upthrust after a slight rotation of the wedge can help to correct the deviation

of the wedge from the vertical. The center of buoyancy is located at the center

of mass of the displaced fluid which is two-thirds of the vertical height, away

from the bottom vertex. In the optimal configuration, suppose that mass m1

is at the top edge. Then, m − m1 mass must be at the bottom vertex for

the configuration to be optimal. In the boundary case where the center of

buoyancy and the center of mass of the system coincide,

m1 =
2

3
m.

Thus, the maximum is

m1 =

√
3

6
ρl2w.

11. Oscillation between Two Fluids**

Define the y-axis to be the vertical axis and define the origin to be at the

interface between the two fluids. Now, define y as the coordinate of the

bottom of the cylinder (immersed in the bottom fluid), positive below

the origin. Then, the length of the cylinder immersed in the top fluid is

l − y. The equation of motion of the cylinder is

mÿ = mg − ρ1(l − y)Ag − ρ2yAg

ÿ =

(
1− ρ1Al

m

)
g − (ρ2 − ρ1)Ag

m
y.

Using the substitution u = y − m−ρ1Al
A(ρ2−ρ1) ,

ü = −(ρ2 − ρ1)Ag

m
u.

Thus if ρ2 > ρ1, the cylinder undergoes simple harmonic motion with angular

frequency

ω =

√
(ρ2 − ρ1)Ag

m
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about an equilibrium y = m−ρ1Al
A(ρ2−ρ1) . Else, if ρ1 = ρ2, the cylinder is in a

neutral equilibrium. Finally, if ρ2 < ρ1, the cylinder is in an unstable equi-

librium.

12. Spraying Water*

Since the container is large, the velocity of the water in the container is

essentially zero. Applying Bernoulli’s equation to the points adjacent to the

hole inside and outside of the container,

[p0 + ρg(H − h)] + ρgh = p0 + ρgh+
1

2
ρv2.

The term in brackets on the left-hand side is the pressure inside the container

that is adjacent to the hole while the second term is its gravitational potential

energy term. Solving, the fluid velocity immediately outside the hole is

v =
√

2g(H − h).

The ejected fluid then undergoes projectile motion. The time required for

the water to reach the ground can be computed via the equation

h =
1

2
gt2

t =

√
2h

g
.

The range is then

R = vt = 2
√
h(H − h) = 2

√
H2

4
−
(
h− H

2

)2

.

Evidently, the range attains its maximum value of H2 when

h =
H

2
.

For the second part, the trajectory of a section of water that is released from

the hole at height h is described by the equations

y = h− 1

2
gt2,

x = vt =
√

2g(h − h)t,

where y is the height above the base of the container, x is the horizontal

distance from the container and t is the time elapsed from the release of the



July 10, 2018 12:24 Competitive Physics 9.61in x 6.69in b3146-ch09 page 514

514 Competitive Physics: Mechanics and Waves

water from the hole. We can rewrite the above as

y = h− x2

4(H − h)

4h2 − 4(y +H)h+ 4Hy + x2 = 0.

Suppose that we want to solve for h for a given point (x, y) along a trajectory.

A solution exists for h only if the discriminant of the above is greater or equal

to zero, hence

16(y +H)2 − 64Hy − 16x2 ≥ 0

=⇒ (H − y)2 ≥ x2.

Since H > y, the above requires

H − y ≥ x.

Therefore, for a given value of y, the maximum horizontal distance of a point

on a trajectory from the container is

x = H − y.

Thus, the envelope takes the form of a straight line delineated by the equation

y = H − x.

13. Venturi-meter*

Applying Bernoulli’s equation to the bottoms of the first and second tubes,

p0 + ρgh1 +
1

2
ρv21 = p0 + ρgh2 +

1

2
ρv22.

For steady flow,

A1v1 = A2v2 = Q,

where Q is the volume flow rate.

ρg(h2 − h1) =
1

2
ρQ2

(
1

A2
1

− 1

A2
2

)
.

Then,

Q =
A1A2

√
2g(h2 − h1)√
A2

2 −A2
1

.
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14. Pitot Tube*

Let the pressure of the incoming gas inside the vessel be P . At the tip of the

pitot tube, the air is stationary. Thus, the pressure at this tip (inside the

pitot tube) is

P ′ = P +
1

2
ρav

2

by Bernoulli’s principle. Furthermore, we can calculate P ′ by considering the

difference in the heights of the fluid levels.

P ′ = P + ρlgΔh,

where the pressure difference due to the different heights of air columns in

the tubes have been neglected. Comparing these expressions,

v =

√
2ρlgΔh

ρa
.

15. Filling a Tank**

Let h0 and At be the maximum height and cross-sectional area of the tank

respectively. The volume rate of water flowing out of the tap is

W =
h0At
T1

.

Now, let us analyze the second scenario where a hole of area Ah is made

on the bottom of the tank. When the water level in the tank is at height

h(t), the flow speed of water gushing out of the hole is
√
2gh by Bernoulli’s

principle. Therefore,

At
dh

dt
= −Ah

√
2gh.

Separating variables, ∫ 0

h0

1√
h
dh =

∫ T2

0
−Ah
At

√
2gdt

2
√
h0 =

Ah
At

√
2gT2

T 2
2 =

2h0A
2
t

gA2
h

.
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Proceeding with the final set-up, the differential equation describing the

instantaneous height in the tank is

At
dh

dt
=W −Ah

√
2gh.

Observe that the height in the tank will only stop increasing at

h =
W 2

2gA2
h

=
A2
th

2
0

2gA2
hT

2
1

.

This must be larger than h0 for the tank to overflow, so

A2
th

2
0

2gA2
hT

2
1

> h0

T 2
2

4T 2
1

> 1

T1
T2

<
1

2
.

16. Sucking Water**

The water inside the tube is essentially stationary relative to the tube, as

the aperture is small. Let the pressure at the top end of the tube be p2 (this

is near the hole but still inside the tube). Consider an infinitesimal volume

element that is between radial distances r and r+dr from the central portion

of the tube. Then, it experiences pressures p and p+ dp on its faces, both of

area dA. The net force due to pressure must produce the required centripetal

force. Thus,

dpdA = ρdrdArω2∫ p2

p1

dp =

∫ l

0
ρrω2dr

p2 = p1 +
ρl2ω2

2
,

where p1 is the pressure in the bend of the tube. Furthermore,

p1 = p0 − ρgh,

where p0 is the atmospheric pressure. Thus,

p2 = p0 − ρgh+
ρl2ω2

2
.
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Now, consider the situation in the rotating frame. By applying Bernoulli’s

principle to the inside of the top end of the tube and immediately outside

the hole,

p2 = p0 +
1

2
ρl2v2,

where v is the emitted velocity in the rotating frame.

v =
√
l2ω2 − 2gh.

The velocity in the lab frame is thus

vlab =
√
v2 + l2ω2 =

√
2l2ω2 − 2gh,

as there is an additional tangential velocity lω due to the rotation of the

tube. To compute the power required, we first calculate the volume flow rate

which is

Q = Av = A
√
l2ω2 − 2gh.

Note that this is not Avlab. In a time interval dt, Qdt amount of fluid moves

through the entire tube. The external power is only responsible for the addi-

tional kinetic energy of the water associated with its tangential velocity

due to the rotation. This additional kinetic energy is essentially that of the

ejected fluid.

P =
1

2
ρQl2ω2 =

1

2
ρA
√
l2ω2 − 2ghl2ω2.

17. Transmitting Water**

Apply Bernoulli’s equation to the fluid level of the first container and the

immediate vicinity of the hole in the second container. Since the cross-

sectional area of the first container is large as compared to the hole, the

flow velocity in the first container can be neglected.

p0 + ρgh1 = p0 + ρgh2 +
1

2
ρv2,

where h1 and h2 are the heights of the water level in the respective containers

and v is the flow velocity into the second container through the hole.

v =
√

2g(h1 − h2).

The volume flux is

Av = A
√

2g(h1 − h2) = −A1
dh1
dt

= A2
dh2
dt

,
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as the total volume must be conserved. Then,

A1A2
d(h2 − h1)

dt
= (A1 +A2)Av = (A1 +A2)A

√
2g(h1 − h2).

Using the substitution x = h1 − h2,

ẋ = −(A1 +A2)A

A1A2

√
2gx.

Separating variables and integrating,∫ 0

x0

1√
x
dx = −

∫ t

0

(A1 +A2)A

A1A2

√
2gdt

t =

√
2x0
g

A1A2

(A1 +A2)A
.

18. Curving Water**

Let the velocities of the fluid at the left and right ends be u and v respec-

tively. The net force on the portion of fluid is the rate of change of momen-

tum. Let Q be the volume flow rate. In time dt, the net change in momentum

of the entire portion of water is ρQdt(v−u). Essentially, the velocity of ρQdt

mass of water changes from u to v. If the x and y-axes are defined to be pos-

itive rightwards and upwards respectively, the components of the net force

in the corresponding directions are

Ftot,x = ρQ(v cos θ − u),

Ftot,y = ρQv sin θ.

Since Q = A1u = A2v,

Ftot,x = ρQ2

(
1

A2
cos θ − 1

A1

)
,

Ftot,y =
ρQ2 sin θ

A2
.

Furthermore, from Bernoulli’s equation,

p1 +
1

2
ρu2 = p2 +

1

2
ρv2,

where the terms regarding the heights of the fluid levels have been canceled

since the pipe lies on a horizontal table.

ρQ2 =
2(p1 − p2)A

2
1A

2
2

A2
1 −A2

2

.
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Substituting this into the equations for the net force components,

Ftot,x =
2(p1 − p2)A1A2(A1 cos θ −A2)

A2
1 −A2

2

,

Ftot,y =
2(p1 − p2)A

2
1A2 sin θ

A2
1 −A2

2

.

The force on the fluid due to the walls is the net force subtracted by the

force due to the pressure at the two ends.

Fwall,x = Ftot,x − p1A1 + p2A2 cos θ =
p1(2A

2
1A2 cos θ −A1A

2
2 −A3

1)

A2
1 −A2

2

− p2(A
2
1A2 cos θ − 2A1A

2
2 +A3

2 cos θ)

A2
1 −A2

2

,

Fwall,y = Ftot,y + p2A2 sin θ =
A2 sin θ(2p1A

2
1 − p2A

2
1 − p2A

2
2)

A2
1 −A2

2

.

19. Hydraulic Jump**

We first calculate the force due to pressure at both ends of the flow. We first

consider the left end. The pressure at a height h below the surface level is

ρgh. Thus, the total force on the left end is

Fleft =

∫ h1

0
ρghwdh =

1

2
ρgwh21.

Similarly, the force on the right end is

Fright = −1

2
ρgwh22.

Next, we compute the change in momentum of the section of fluid between

the two ends after a time interval dt. Let the volume flow rate be

Q = h1wv1 = h2wv2,

where v2 is the average flow velocity at the right end. In time dt, the velocity

of ρQdt mass of fluid effectively changes from v1 to v2, on average. Thus, the
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change in momentum in time dt is

dp = ρQdt(v2 − v1) =
ρQ2

w

(
1

h2
− 1

h1

)
dt =

ρQ2(h1 − h2)

wh1h2
dt.

By the impulse-momentum theorem,

(Fleft + Fright)dt = dp

=⇒ 1

2
ρgw(h21 − h22) =

ρQ2(h1 − h2)

wh1h2

(h1 − h2)

(
h1 + h2 − 2Q2

gw2h1h2

)
= 0.

Discarding the trivial solution h2 = h1 and rearranging the expression in the

brackets on the right,

h22 + h1h2 − 2Q2

gw2h1
= 0.

Solving this quadratic equation and substituting Q = h1wv1 yields

h2 = −h1
2

+

√
h21
4

+
2h1v

2
1

g
,

where we have rejected the negative solution which is physically incorrect.
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Oscillations

10.1 Simple Harmonic Motion

Simple harmonic motion is the periodic motion of an object whose

acceleration along a certain direction, ẍ, is proportional to its displacement

from an equilibrium position in magnitude and opposite in direction to its

displacement, x. We write the constant of proportionality as −ω2 for the

sake of convenience and get

ẍ = −ω2x.

The general solution to this differential equation is

x = A sin(ωt+ φ), (10.1)

where A ≥ 0 is the amplitude of oscillation and φ is the initial phase angle or

offset. Both constants are determined by the initial conditions on displace-

ment and velocity. ω is termed the angular frequency of oscillation, which

is a characteristic of the oscillating system and is independent of the initial

conditions.

Proof: Using the common trick that

ẍ =
dẋ

dt
=
dẋ

dx
· dx
dt

= ẋ
dẋ

dx
,

we get ∫
ẋdẋ =

∫
−ω2xdx

ẋ2

2
= −ω

2x2

2
+
c2

2

521
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dx

dt
= ±

√
c2 − ω2x2∫

1√
c2 − ω2x2

dx = ±
∫
dt.

Using the substitution x = c
ω sin θ, dx = c

ω cos θdθ,∫
1

c cos θ
· c
ω
cos θdθ = ±

∫
dt

θ

ω
= ±t+ k

for some constant k. Substituting θ = sin−1 ωx
c ,

sin−1 ωx

c
= ±ωt+ ωk

x =
c

ω
sin(±ωt+ ωk) =⇒ x = A sin(ωt+ φ),

where the ± sign in front of the variable t has been absorbed into the initial

phase angle φ as sin(−ωt + ωk) = sin(π + ωt − ωk) = sin(ωt + φ) where

φ = π − ωk. Let us examine some of the terms in the above equation.

• A is the amplitude of the oscillation. It is the maximum magnitude of the

displacement of an oscillating particle from an equilibrium position.

• ω is the angular frequency of oscillation which is the rate of change of the

phase angle of oscillation. The period of an oscillation, T , refers to the

time needed for one complete cycle while the frequency of an oscillation,

f , refers to the number of complete cycles of oscillations per unit time.

The angular frequency ω is related to these quantities in the following

manner:

ω = 2πf =
2π

T
. (10.2)

• φ is the initial phase angle or phase offset. It is determined by the initial

displacement and velocity. It gives a sense of where the oscillating particle

is when t = 0 or when an observer starts his or her timer.

• The equilibrium point is the position where the object experiences no net

acceleration or force. This occurs when x = 0.

10.1.1 Relationships between Kinematic Quantities

In certain situations, we may be interested in other quantities describing sim-

ple harmonic motion, such as the instantaneous velocity v and acceleration
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a of the object. We can solve for them by taking the time derivatives of its

displacement.

v = ωA cos(ωt+ φ), (10.3)

a = −ω2A sin(ωt+ φ). (10.4)

We see that there is a π
2 phase difference between the instantaneous velocity

and the displacement of the object and a π phase difference between the

instantaneous acceleration and the displacement of the object. If we let the

initial phase angle be zero and plot the corresponding displacement, velocity

and acceleration of the oscillating object against time, we obtain the follow-

ing graphs (Fig. 10.1).

Figure 10.1: x, v and a against t graphs

Next, we might be interested in expressing the instantaneous velocity

and acceleration of the object as functions of displacement instead. This is

often more edifying as we can only physically observe the displacement of

an object in a set-up most of the time.

v = ωA cos(ωt+ φ) = ±ωA
√
1− sin2(ωt+ φ) = ±ω

√
A2 − x2, (10.5)

a = −ω2x.

If we plot the instantaneous velocity and acceleration of the oscillating body

against its displacement, we see that we obtain an ellipse and a straight line,

respectively (Fig. 10.2).

Figure 10.2: v and a against x graphs
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To show that v(x) is an ellipse, we can square Eq. (10.5) to obtain

v2 + ω2x2 = ω2A2

=⇒
( v

ωA

)2
+
( x
A

)2
= 12,

which delineates an ellipse with axes length ωA and A along the v and x

directions respectively.

Problem: Determine the possible displacements of the oscillating particle

from the equilibrium position when its instantaneous speed is half of its

maximum speed.

Since the maximum speed of the particle is Aω, its instantaneous veloc-

ity is

v = ±1

2
Aω

±1

2
Aω = ±ω

√
A2 − x2.

Evidently, we can only match the expressions of the same signs together.

Then,

x2 =
3

4
A2

x = ±
√
3

2
A.

10.1.2 Conservation of Energy

With regard to the dynamics of simple harmonic motion, the total mechan-

ical energy of a body undergoing simple harmonic motion is conserved. This

is because the simple harmonic differential equation implies that the force,

which acts on the oscillating body, is conservative. Recall that in our deriva-

tion of the general solution to the simple harmonic differential equation,

ẋ2

2
+
ω2x2

2
=
c2

2
,

which is a constant. Observe that the left-hand side is akin to the total

mechanical energy of the particle divided by an inertial term: ẋ
2

2 is akin to

a specific kinetic energy while ω2x2

2 is akin to a specific potential energy.

10.1.3 Examples of Simple Harmonic Set-ups

Now that we have studied the kinematics of simple harmonic motion, let us

look at some realistic situations where this ubiquitous periodic motion arises.
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A standard procedure in deriving the simple harmonic differential equation

would be to first write down the equation of motion of the system with

respect to a particular coordinate, which we shall denote as x for now. Then,

an x-coordinate x0 that corresponds to a state of stable equilibrium is identi-

fied. For systems whose regime of simple harmonic motion is the immediate

vicinity of the equilibrium position, a small deviation of the system from x0
is considered, such that the x-coordinate of the system can be represented as

x = x0 + ε, where ε is a small deviation. Such systems are known to exhibit

small oscillations. Maclaurin expansions are then performed while discarding

second-order terms in ε to generate the required simple harmonic differential

equation. In certain systems where simple harmonic motion is exact, we can

consider a general displacement of the particle from its equilibrium position

to reach the simple harmonic differential equation.

Figure 10.3: Simple pendulum

Consider the classic pendulum — a ball of negligible size and mass m

is attached to a massless string of length l that is attached to the ceiling.

We can show that at small angular displacements from the vertical (which

is a stable equilibrium position), this pendulum exhibits simple harmonic

motion.

Analyzing forces in the tangential direction,

m(rθ̈ + 2ṙθ̇) = −mg sin θ.
Since the length of the string remains constant, r = l.

mlθ̈ = −mg sin θ.
For small angles, we can use the Maclaurin series to approximate sin θ ≈ θ

such that

mlθ̈ = −mgθ =⇒ θ̈ = −g
l
θ.
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This is the simple harmonic differential equation. Solving it gives

θ = A sin

(√
g

l
t+ φ

)
.

Thus, we see that the angular frequency of a simple pendulum is

ω =

√
g

l
,

which is in fact independent of the mass of the point mass attached to the

string.

In the general case of an object attached to a pivot, the equation τ = Iθ̈

is more useful in determining the angular frequency of oscillations and other

related quantities. Both the moment of inertia I and the torque τ on the

system should be computed with respect to the fixed pivot.

Problem: A uniform rod of mass m and length l is attached to a pivot at

one of its ends. Determine the angular frequency of small oscillations of the

rod about the vertical orientation.

Figure 10.4: Rod pendulum

Recall that the moment of inertia of a uniform rod about its center is
1
12ml

2. Therefore, the moment of inertia of the rod about one of its ends is

I =
1

12
ml2 +m

l2

4
=

1

3
ml2

by the parallel axis theorem. The net torque on the system about the fixed

pivot is due to that of the weight of the rod, acting at its center of mass.

Therefore, the net torque on the rod is

τ = −1

2
mgl sin θ.

Applying the equation τ = Iθ̈ (as the pivot is an ICoR) and the small angle

approximation sin θ ≈ θ,

θ̈ = −3g

2l
θ.
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The angular frequency is then

ω =

√
3g

2l
.

Such systems involving extended dangling objects are known as physical

pendulums. It is not difficult to generalize the above result to show that the

angular frequency of a physical pendulum is

ω =

√
MrCMg

Ipivot
, (10.6)

where M is the total mass of the object, rCM is the distance between the

pivot and the center of mass of the object and Ipivot is the moment of inertia

of the object about the fixed pivot.

Two-Dimensional Systems

The small oscillations of inherently two-dimensional systems whose equa-

tions of motion consist of two variables are usually considered in the context

of perturbing a single coordinate. Then, variables in terms of the other coor-

dinate should be eliminated to obtain a differential equation in terms of the

single, relevant coordinate. This elimination is usually performed via the

conservation of angular momentum in a certain direction.

Problem: A planet of massm is currently undergoing circular motion about

the Sun of mass M at a radius r0. If the planet is somehow given a slight

radial displacement, determine its angular frequency of small oscillations in

the radial direction. What is the resultant trajectory of the planet?

The radial equation of motion of the planet in polar coordinates is

−GMm

r2
= m(r̈ − rθ̇2).

Since the push is only radial and because the gravitational force is central,

the angular momentum of the planet relative to the Sun remains constant.

L = mr2θ̇.

The radial equation of motion becomes

−GM
r2

= r̈ − L2

m2r3
.

Furthermore, we know that when r = r0, r̈ = 0. Then,

GM

r20
=

L2

m2r30
.



July 10, 2018 12:24 Competitive Physics 9.61in x 6.69in b3146-ch10 page 528

528 Competitive Physics: Mechanics and Waves

This will be useful in canceling some terms later — a common denominator

in all small oscillation problems. Suppose that the radius now becomes1

r0 + ε. The equation of motion becomes

− GM

r20

(
1 + ε

r0

)2 = ε̈− L2

m2r30

(
1 + ε

r0

)3 .
Performing a Maclaurin expansion and discarding second-order terms in ε

r0
,

−GM
r20

+
2GM

r30
ε = ε̈− L2

m2r30
+

3L2ε

m2r40
.

Observe that the first term on the left-hand side cancels the second term on

the right-hand side by our previous equation for r0. Then,

ε̈ =

(
2GM

r30
− 3L2

m2r40

)
ε

=

(
2GM

r30
− 3GM

r30

)
ε

= −GM
r30

ε.

Thus, the angular frequency of small oscillations in the radial direction is

ω =

√
GM

r30
.

At first glance, one might expect the resultant trajectory of the planet to

take the form of a “flower pattern” as the planet oscillates radially along

an originally circular orbit. However, observe that the period of the original

circular orbit is exactly ω! Therefore, the planet only attains the maximum

and minimum radial distance from the Sun once per complete revolution —

indicating that the new orbit is an ellipse with semi-major and semi-minor

axes r0 + |ε| and r0 − |ε|! When |ε| � r0, the eccentricity of the ellipse is

virtually zero such that the new orbit is akin to a circle, with the Sun slightly

displaced from the center of the circle.

This is intuitive from the perspective of Kepler’s first law as the orbit

of a planet is in general an ellipse, with the Sun as a focus. Note that the

resultant orbit of the planet must still be bounded as a slight deviation

1Note that in the previous set-ups, we did not have to explicitly state this, as the
equilibrium angles were θ = 0.



July 10, 2018 12:24 Competitive Physics 9.61in x 6.69in b3146-ch10 page 529

Oscillations 529

imparts negligible mechanical energy to it. In retrospect, we could have also

imposed the condition that the trajectory can only be an ellipse, to conclude

that the angular frequency of radial oscillations must match the angular

frequency of the planet’s original orbit!

10.2 Deriving Angular Frequency from Potential

Energy

When a particle is solely under the influence of conservative forces, we can

associate it with a potential energy function that is strictly only a function

of its position. Let us consider an arbitrary potential energy function U(x)

for a one-dimensional system while keeping in mind that the net force on the

particle is F = −dU
dx . The equilibrium positions correspond to the stationary

points of the U(x) graph as F = −dU
dx = 0 there.

Figure 10.5: One-dimensional potential energy

In light of our goal of analyzing oscillations, let us observe the motion of

the particle at positions in the vicinity of a minimum as the particle strives

towards attaining a lower potential energy — implying that the minimum

corresponds to a stable equilibrium state as any deviation from the minimum

tends to be minimized. Assuming that the potential energy function has a

minimum at x0, we can expand U(x) as a Taylor series about x0.

U(x) = U(x0) + U ′(x0)(x− x0) +
U ′′(x0)

2
(x− x0)

2 + · · ·
where we will neglect third-order terms as we assume that the particle is

near x0. Now let us consider the force on the particle in the x-direction.

F = −dU
dx

= −U ′(x0)− U ′′(x0)(x− x0).

Since x0 is a minimum, U ′(x0) = 0. Furthermore, if we use a change of

variables ε = x− x0 such that F = mẍ = mε̈, we can simplify the equation
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above to

mε̈ = −U ′′(x0)ε.

Evidently, this describes a simple harmonic motion with an angular

frequency given by

ω =

√
U ′′(x0)
m

. (10.7)

Perhaps an intuitive and lucid explanation of why this should be the case

is that if you zoom closer to the minimum, the regions around it will

look like a parabola. Thus, the potential energy curve is approximately

U = A(x− x0)
2 + c which gives F = −2A(x − x0) — a simple harmonic

force (like a spring).

Problem: As its name implies, a spring-mass system consists of a mass m

connected by a massless spring of spring constant k to a fixed pivot. Deter-

mine the angular frequency of oscillations if the system lies on a horizontal

table and if it hangs vertically.

In both cases, define the origin at the equilibrium position such that x

denotes the displacement of m in the relevant direction, from the equilibrium

position. In the horizontal case, the potential energy at a displacement x is

U =
1

2
kx2

U ′′(0) = k.

Therefore,

ω =

√
k

m
.

In the vertical case, the equilibrium position of the mass is mg
k below the

relaxed length of the spring. At a displacement x below this equilibrium

position, the potential energy associated with the particle is

U =
1

2
k
(mg
k

+ x
)2 −mgx

U ′′(0) = k,

ω =

√
k

m
.
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Effective Potential for Central Force Systems

In the case of central force systems which are two-dimensional, the

one-dimensional method above can be applied to radial oscillations through

the introduction of an effective potential. In a central force system, the total

mechanical energy is

1

2
mṙ2 +

1

2
mr2θ̇2 + U(r) = E,

where U(r) is the potential energy associated with the central force field and

r is the radial position of the particle relative to the source of the central

force field. Next, the angular momentum of the particle relative to the source

is conserved.

mr2θ̇ = L.

Therefore, the first equation can be expressed as

1

2
mṙ2 +

L2

2mr2
+ U(r) = E,

which is akin to a one-dimensional conservation of energy equation in r with

an effective potential

Ueff (r) =
L2

2mr2
+ U(r).

Then, the above results can be directly applied to conclude that the angular

frequency of radial oscillations (if the particle actually oscillates) is

ω =

√
U ′′
eff (r0)

m
,

where r0 is the equilibrium radial coordinate.

Problem: Redo the previous problem on a planet orbiting the Sun using

the effective potential method.

The effective potential is

Ueff =
L2

2m2r2
− GMm

r
.

Then,

U ′
eff = − L2

m2r3
+
GMm

r2
.
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We know that at the equilibrium radial coordinate r0, U
′
eff = 0. Therefore,

L2

m2r30
=
GMm

r20
.

Moving on, we calculate the second derivative of Ueff .

U ′′
eff =

3L2

m2r4
− 2GMm

r3

U ′′
eff (r0) =

1

r0

(
3L2

m2r30
− 2GMm

r20

)
=
GMm

r30
.

Therefore, the angular frequency of radial oscillations is

ω =

√
U ′′
eff (r0)

m
=

√
GM

r30
.

10.3 Damped Oscillations

In an ideal oscillatory system, there are no dissipative forces and the total

mechanical energy of the system is conserved. The system then oscillates

indefinitely with a constant amplitude. However, in real-world systems, there

are often dissipative forces which cause the amplitude of oscillation to gradu-

ally decrease over time. The resultant oscillatory motion is known as damped

oscillations.

10.3.1 Linear Differential Equations

Before we solve the equation for damped oscillations, it might be helpful to

know some properties of linear differential equations. A nth degree linear

differential equation (with respect to time) takes the form:

cn
dnx

dtn
+ cn−1

dn−1x

dtn−1
+ · · · + c1

dx

dt
+ c0x = g(t),

where g(t) may be a constant or a function of t. If g = 0, the equation is

called a homogeneous equation. We shall first consider a homogeneous linear

differential equation

cn
dnx

dtn
+ cn−1

dn−1x

dtn−1
+ · · ·+ c1

dx

dt
+ c0x = 0.

It turns out that the previous method in solving the simple harmonic dif-

ferential equation is not applicable to the general case of linear differential

equations. However, we can invoke a general theorem of linear differential
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equations which states that a nth degree homogeneous linear differential

equation has exactly n linearly independent solutions. The next step is to

determine these n solutions, by hook or by crook. The most general method

is in fact guessing solutions of the form x = eat. Then,

cna
neat + cn−1a

n−1eat + · · ·+ c1ae
at + c0e

at = 0.

Dividing the equation by eat throughout and invoking the fundamental the-

orem of algebra, this nth degree polynomial equation can be factorized into

(a− b1)(a− b2) . . . (a− bn) = 0,

which is also known as the characteristic equation. Thus, we have n roots

for a which may be real, complex or even repeated. We can substitute any

of these roots into the trial solution for x (x = eat) and it would satisfy the

differential equation. For example, x = eb1t and x = eb2t are solutions to

the linear differential equation. Due to the linear nature of the differential

equation, any linear combination of these solutions is also a solution. Thus,

a general solution would take the form

x = z1e
b1t + z2e

b2t + · · · + zne
bnt,

where the zi’s are possibly complex constants. Since a nth degree homoge-

neous linear differential equation has n linearly independent solutions, we

are done if there are no repeated roots and the expression for x above is

the most general solution to the homogeneous linear differential equation.

However, when there are repeated roots, we have to search for other linearly

independent solutions. Usually, if a root bj is repeated k times, we guess the

following k solutions: ebjt, tebj t, t2ebjt, . . . , tk−1ebjt.

Let us apply this guessing technique to the simple harmonic differential

equation

ẍ+ ω2x = 0.

Substituting eat into x,

a2eat + ω2eat = 0

a = ±iω,
where i =

√−1. Therefore, the general solution for x is

x = z1e
iωt + z2e

−iωt,

where z1 and z2 are arbitrary constants which may be complex. Since x

represents the displacement which is a physical quantity, it must be real at
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all times. Therefore, z1 and z2 must be complex conjugates.

z1 = z∗2 .

Then, we can represent z1 and z2 as

z1 =
A

2
eiφ,

z2 =
A

2
e−iφ,

where A and φ are arbitrary real constants. Correspondingly,

x =
A

2
(ei(ωt+φ) + e−i(ωt+φ)) = A cos(ωt+ φ)

by Euler’s identity, eiθ = i sin θ + cos θ. Observe that since z1 and z2 are

complex conjugates and because x must be real, we have effectively taken

the real component of either of them (up to a constant factor). Therefore,

whenever we have a solution for a real x in terms of pairs of the form z1e
iωt+

z2e
−iωt, x can be simply expressed in terms of the real component of one

term from each pair, such as Re(z1e
iωt).

This, in combination with the following final remark, can prove to be

extremely useful. If all constants ci in a homogeneous linear differential equa-

tion are real2 and if y is a solution, y∗ must also be a solution to the equation.

This can be easily proven by taking the complex conjugate of the entire dif-

ferential equation.(
cn
dny

dtn

)∗
+

(
cn−1

dn−1y

dtn−1

)∗
+ · · · +

(
c1
dy

dt

)∗
+ (c0y)

∗ = 0∗.

Since (z1z2)
∗ = z∗1 · z∗2 for two arbitrary complex numbers z1 and z2 and the

constants ci are real,

cn

(
dny

dtn

)∗
+ cn−1

(
dn−1y

dtn−1

)∗
+ · · ·+ c1

(
dy

dt

)∗
+ c0y

∗ = 0.

The order of differentiation and complex conjugation does not matter.

Therefore,

cn
dny∗

dtn
+ cn−1

dn−1y∗

dtn−1
+ · · ·+ c1

dy∗

dt
+ c0y

∗ = 0,

which proves that y∗ is also a solution. In such cases, we can simply take

the real component of y in writing the general solution for x — neglecting

its complex conjugate y∗.

2This is usually the case in physical scenarios.
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Lastly, we consider the non-homogeneous linear differential equation

cn
dnx

dtn
+ cn−1

dn−1x

dtn−1
+ · · · + c1

dx

dt
+ c0x = g(t).

The general solution to this differential equation involves a particular solu-

tion and a homogenous solution. Firstly, we find a solution, xp, which satisfies

this equation. This is known as the particular solution. Then, we can add to

the particular solution the homogeneous solution, obtained by letting g = 0

in the equation above, to obtain the general solution to the non-homogeneous

linear differential equation. This is due to the fact that adding the homoge-

neous solution results in an additional value of zero on the right-hand side

of the above equation — leaving it unchanged. Lastly, note that the partic-

ular solution does not depend on the initial conditions. Instead, the initial

conditions are still encoded in the homogeneous solution.

10.3.2 Equation of Motion

In most cases, the damping force on an oscillating body is proportional to

its velocity and acts in the opposite direction. Thus, the differential equation

for the displacement of the body takes the form

ẍ+ 2γẋ+ ω2x = 0.

Guessing a solution of the form x = eat, we obtain the characteristic equation

a2 + 2γa+ ω2 = 0.

Solving, we obtain two possibly repeated roots:

a =
−2γ ±

√
4γ2 − 4ω2

2
= −γ ±

√
γ2 − ω2.

Now we have to consider three cases — namely when the term inside the

square root is negative, positive and zero.

10.3.3 Light Damping

When γ < ω, the system experiences light damping or is underdamped.

Thus, we can rewrite the two solutions for a as

a = −γ ± i
√
ω2 − γ2.
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Then, our general solution for the equation of motion is

x = c1e
−γt+i

√
ω2−γ2t + c2e

−γt−i
√
ω2−γ2t

= e−γt
(
c1e

i
√
ω2−γ2t + c2e

−i
√
ω2−γ2t

)
.

For our displacement to be strictly real at all instances, c1 and c2 have to be

complex conjugates. Letting c1 =
c0
2 e

iφ and c2 =
c0
2 e

−iφ,

x = e−γt
c0
2

(
ei(

√
ω2−γ2t+φ) + e−i(

√
ω2−γ2t+φ)

)
,

x = e−γtc0 cos
(√

ω2 − γ2t+ φ
)
, (10.8)

where we have invoked the elegant Euler’s identity. Again, we have effectively

taken the real part of one of the solutions. We see that the amplitude of

oscillation decreases exponentially over time and that the angular frequency

of oscillation is smaller than that of an undamped system. The angular

frequency of the underdamped system ωd is given by

ωd =
√
ω2 − γ2.

The displacement of the object as a function of time is illustrated below.

Figure 10.6: Light damping

The graph represents an oscillation bounded by an exponentially decreas-

ing envelope which governs the amplitude of oscillation at every instant

in time.

10.3.4 Heavy Damping

When γ > ω, the system experiences heavy damping or is overdamped.

There are two real solutions for a:

a = −γ ±
√
γ2 − ω2.
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Thus, our general solution to the equation of motion is

x = c1e
−
(
γ−

√
γ2−ω2

)
t
+ c2e

−
(
γ+

√
γ2−ω2

)
t
, (10.9)

where c1 and c2 are real constants. The system does not undergo oscillatory

motion as the exponents are real. As time passes by, the displacement grad-

ually tends to 0. This decay is indeed extremely gradual as the significant

term in the long run is e
−
(
γ−

√
γ2−ω2

)
t
. A vivid example of an overdamped

system would be a door that takes an incredibly long time to close. On

another note, it is intriguing to show that the oscillating particle can cross

the origin at most once. Substituting x = 0 and simplifying,

c1e
√
γ2−ω2t = −c2e−

√
γ2−ω2t

e2
√
γ2−ω2t = −c2

c1
,

which has one solution only if c2c1 < 0 (i.e. they are of opposite signs). In fact,

the condition is much stricter — if the initial displacement is positive, c1 < 0

and c2 > 0 for the oscillating body to cross the origin. This is because, if the

body really crossed the origin, the amplitude of its displacement must tend

to 0− after a long time (i.e. approach 0 from below the t-axis) as it cannot

cross the origin again. In the long term, e−(γ−
√
γ2−ω2)t is more significant

than the other exponential term. Therefore, c1 must be negative — implying

that c2 is positive. If the initial displacement is negative, the converse occurs.

Plotting the graph of displacement against time for an overdamped system,

we get the following possible curves.

Figure 10.7: Heavy damping

10.3.5 Critical Damping

When γ = ω, we say that the system is critically damped. a has only one

solution a = −γ. Thus, we have only found one independent solution from
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the characteristic equation:

x = e−γt.

The other independent solution is x = te−γt (you should verify this for

yourself). Thus, the general solution for the equation of motion is

x = e−γt(c1 + c2t), (10.10)

where c1 and c2 are real constants. The exponential decay term in c2te
−γt

dominates the c2t term in the long run such that x → 0 for very large t.

The system does not oscillate at all and instead, returns to the equilibrium

position in the shortest time possible, as compared to the other forms of

damping. This can be proven by comparing the exponential decay constants.

In the case of light damping, the exponential decay constant is γ in the regime

γ < ω which is evidently smaller than γ = ω in the critical damping case.

Furthermore, the dominant decay constant (the smaller one) in the case of

overdamping is γ −
√
γ2 − ω2 which can be shown to be smaller than ω.

γ − ω < γ + ω.

Since γ > ω in the regime of overdamping, we can multiply both sides by

γ − ω > 0 to obtain

(γ − ω)2 < γ2 − ω2

=⇒ γ − ω <
√
γ2 − ω2

γ −
√
γ2 − ω2 < ω.

Thus, the particle returns to a state of equilibrium in the shortest time (still

indefinitely long though) when the system is critically damped. Critical damp-

ing is paramount in many real systems, such as shock absorbers, in ensuring

that a system stops immediately without oscillating about. On another note,

the particle can, again, cross the origin at most once. When x = 0,

t = −c1
c2
,

which is only valid if c1
c2
< 0. By a similar argument as above, if the initial

displacement is positive, c1 > 0 and c2 < 0 for the oscillating particle to

cross the origin, as the e−γtc2t term is dominant over e−γtc1 for large t. The

possible displacement-against-time graphs of a critically damped system are

depicted on the next page. They look roughly the same as those in the heavy

damping case with the exception that the graph for small t is essentially

linear. This is because, for small t, the exponential term in x is approximately

unity such that x ≈ c1 + c2t.
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Figure 10.8: Critical damping

10.3.6 Driven and Damped Oscillations

Considering the fact that most real-world systems experience dissipative

forces, an external periodic driving force is often applied to sustain their

motion. Before solving the equation of motion for real driven oscillations, we

shall first tackle a differential equation that takes the following form:

ẍ+ 2γẋ+ ω2
0x = c0e

iωet.

We have added subscripts to the ω’s to avoid confusion. Recapitulating, to

solve a non-homogeneous linear differential equation, we need to determine a

particular solution, before adding it to the homogeneous solution to procure

the general solution. As there is a eiωet term on the right-hand side, it is

wise to guess a particular solution xp = Aeiωet. In this case, we are solving

for the constant A instead of the angular frequency. Substituting this trial

solution into the expression, we get

−ω2
eA+ 2iγωeA+ ω2

0A = c0 =⇒ A =
c0

−ω2
e + 2iγωe + ω2

0

,

xp =
c0

−ω2
e + 2iγωe + ω2

0

eiωet.

Lastly, we can obtain the general solution to this differential equation by

adding the appropriate homogeneous solution, derived previously, to the

particular solution.

Now, we can consider providing a driving force to our oscillatory system

of the form F = f cosωet where ωe is known as the angular frequency of the

external driving force. Then, the equation of motion of the oscillating body

takes the form

ẍ+ 2γẋ+ ω2
0x = c0 cosωet,

where c0 is a real constant. ω0 is known as the natural frequency of the sys-

tem and is the angular frequency of oscillations when there are no damping
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and external driving forces. To solve this differential equation, consider the

following auxiliary differential equation

ÿ + 2γẏ + ω2
0y = c0e

iωet.

Suppose that we have found a solution for y in the equation above. Then,

we can take the real component of both sides.

Re(ÿ) + Re(2γẏ) + Re(ω2
0y) = Re

(
c0e

iωet
)
.

Since the constants γ, ω0 and c0 are real and because the order of differen-

tiating y and taking the real part of it does not matter,

z̈ + 2γż + ω2
0z = c0 cosωet,

where z = Re(y) is the real component of y. Therefore, the solution for x

that we desire is simply the real component of y! The particular solution for

y was previously derived to be

yp =
c0

−ω2
e + 2iγωe + ω2

0

eiωet.

This can be expressed in a more suggestive form by applying Euler’s formula

to the denominator.

yp =
c0√

(ω2
0 − ω2

e)
2 + 4γ2ω2eiφ

eiωet,

=
c0√

(ω2
0 − ω2

e)
2 + 4γ2ω2

ei(ωet−φ),

where

φ = tan−1 2γωe
ω2
0 − ω2

e

. (10.11)

Therefore, the particular solution xp can be obtained by taking the real

component of the above.

xp =
c0√

(ω2
0 − ω2

e)
2 + 4γ2ω2

e

cos(ωet− φ). (10.12)

In the long run, the damping terms will cause the homogeneous solution

to tend to zero. Therefore given different initial conditions, the system will

eventually reach the same steady state, which is described by its particular

solution. Furthermore, in light of the decaying amplitude of the homoge-

neous solution, the particular solution is often valued over the homogeneous

solution as it is a more enlightening description of the behaviour of driven

oscillations — we shall therefore not concern ourselves too much with the

general solution, which will tend to the particular solution in the long run.
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Resonance

Consider a realistic oscillatory system. Because of damping, the amplitude

of the system eventually diminishes to zero. Thus, we would like to sustain

the motion of the system by applying a periodic force. However, what should

the driving frequency ωe (angular frequency of the periodic force) be, such

that the resultant amplitude of oscillation is the greatest? This frequency

is known as the resonant frequency. Resonance is a phenomenon in which

an oscillatory system responds with a maximum amplitude to an external

periodic force. The condition for resonance can be derived from Eq. (10.12).

The amplitude of the particular solution of a driven damped oscillation, A, is

A =
c0√

(ω2
0 − ω2

e)
2 + 4γ2ω2

e

=
c0√[

ω2
e − (ω2

0 − 2γ2)
]2

+ 4ω2
0γ

2 − 4γ4
,

which attains the maximum value c0
2γ
√
ω2
0−γ2

when

ωe =
√
ω2
0 − 2γ2.

Thus,
√
ω2
0 − 2γ2 is the resonant frequency, ωr. Observe that when γ � ω

(no damping or light damping), ωr ≈ ω0 is the condition for resonance. Thus,

resonance occurs for underdamped and simple oscillations when the driving

frequency is approximately equal to the natural frequency of the system.

When the system is underdamped and ωe = ωr ≈ ω0, φ→ π
2 as a result3

of Eq. (10.11). The displacement of the oscillating body lags behind that of

the driving force by a quarter of a cycle while the velocity of the body and the

driving force are perfectly in phase. When the force is at its maximum, the

displacement of the object is zero and it thus possesses the greatest velocity

(in the same direction as the external driving force). This is intuitive from

the standpoint of energy as the force should act with the greatest magnitude

on the object when it is traveling the fastest, to maximize the work done by

the driving force.

Lastly, we can plot the amplitude of driven oscillations, A, against the

driving frequency ω0 for different damping constants γ (Fig. 10.9).

As the system experiences greater damping, the amplitude decreases,

the resonance peak becomes broader and the resonant frequency slightly

3tanφ tends to +∞ as ωe → ω−
0 . Note that φ must be in the first quadrant (π

2
) and not

the third ( 3π
2
) as both the real and complex components of eiφ are positive. Refer to the

specific juncture at which we substituted eiφ for further clarifications.
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Figure 10.9: Maximum amplitude against driving frequency

decreases. In the case of undamped oscillations, the amplitude tends to infin-

ity when ωe → ω0 from both sides.

Summary

• A lightly damped system oscillates with an amplitude that is exponen-

tially decaying. Its angular frequency is slightly smaller than the natural

frequency of oscillation.

• An overdamped or heavily damped system gradually returns to the

equilibrium position.

• A critically damped system returns to the equilibrium position in the least

possible time.

• Resonance is a phenomenon where an oscillatory system responds with the

greatest amplitude to an external driving force. The angular frequency of

the driving force is known as the driving frequency. The angular frequency

at which resonance occurs is known as the resonant frequency.

• The angular frequency of a damped oscillation ωd and the resonant

frequency ωr of a damped system are

ωd =
√
ω2
0 − γ2,

ωr =
√
ω2
0 − 2γ2,

where ω0 is the natural frequency of the system refering to the angular

frequency of the oscillation if there were no damping or driving forces.

10.4 Coupled Oscillations

In certain cases, we may have periodic systems which consist of many interde-

pendent objects (we shall only deal with linear systems). Then, there may be

multiple pure frequencies, known as its normal frequencies, that the system

can oscillate at.
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10.4.1 Decoupling

Consider the common example below. Two equal masses m are connected

by three springs with equal spring constants k to each other and to the walls

adjacent to them. Solve for the displacements of the masses as a function

of time and the normal frequencies of oscillation if the masses were given a

slight initial displacement.

Figure 10.10: Coupled masses

Let x1 and x2 be the displacements of the two masses from their respec-

tive equilibrium positions, with the rightwards direction taken to be positive.

Writing the equation of motion for each individual mass,

mẍ1 = −kx1 + k(x2 − x1),

mẍ2 = −kx2 − k(x2 − x1).

Be careful with the signs here. A reliable way to determine the signs would

be to envision the physical scenario. Supposing that x2 > x1, this would

physically mean that the middle spring has been stretched. Thus, the middle

spring will pull the first mass towards the right (+k(x2 − x1) in the first

equation) and pull the second mass towards the left (−k(x2 − x1) in the

second equation).

Observing the equations of motion, we realise that they are “coupled”

in the sense that the way in which the state of one object evolves depends

on the state of the other object. To solve this pair of equations, we have to

decouple them. Adding the two equations,

(ẍ1 + ẍ2) = − k

m
(x1 + x2)

=⇒ x1 + x2 = A sin

(√
k

m
t+ φ1

)
.

Subtracting the second equation from the first,

(ẍ1 − ẍ2) = −3k

m
(x1 − x2)

=⇒ x1 − x2 = B sin

(√
3k

m
t+ φ2

)
.
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Thus,

x1 =
A

2
sin

(√
k

m
t+ φ1

)
+
B

2
sin

(√
3k

m
t+ φ2

)
,

x2 =
A

2
sin

(√
k

m
t+ φ1

)
− B

2
sin

(√
3k

m
t+ φ2

)
.

We see that the two normal frequencies are
√

k
m and

√
3k
m . The normal modes

represent the possible forms of pure-frequency motions and are represented

in terms of vectors. The above solution can be represented in matrices as(
x1

x2

)
=

(
1

1

)
A

2
sin

(√
k

m
t+ φ1

)
+

(
1

−1

)
B

2
sin

(√
3k

m
t+ φ2

)
.

Then, (1, 1) and (1,−1) are the normal modes of this motion. Let us exam-

ine the physical meaning of these modes. With regard to the first normal

mode (1, 1), the displacements of the two masses from their equilibrium posi-

tions are identical. Then, the middle spring is not stretched or compressed

during the entire motion and can be effectively removed — leading to the

normal frequency
√

k
m . Next, the normal mode (1,−1) corresponds to dis-

placements of equal magnitude and opposite direction. Then, the middle

spring is stretched or compressed twice as much as the displacements of the

masses. This, in combination with the springs attached to the walls, causes

each mass to be effectively attached to a spring of spring constant 3k —

implying that its corresponding normal frequency is
√

3k
m .

10.4.2 General Solution

In the general case of linear, second-order, coupled simple-harmonic differ-

ential equations, the specific way of multiplying equations by constants and

adding them in order to successfully decouple them is difficult to spot. There-

fore, a general solution would be ideal. With n variables (x1, x2, . . . , xn), we

generally have the following set of equations:

ẍ1 = c11x1 + c12x2 + · · ·+ c1nxn

ẍ2 = c21x1 + c22x2 + · · ·+ c2nxn

...

ẍn = cn1x1 + cn2x2 + · · ·+ cnnxn,
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where cij is the constant in the ith row and jth column. We let X be the

n× 1 matrix

X =

⎛
⎜⎜⎜⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎟⎟⎟⎠,

and define A as the n× n matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

c11 c12 . . . c1n

c21 c22 . . . c2n

...

cn1 cn2 . . . cnn

⎞
⎟⎟⎟⎟⎟⎟⎠
.

We can then represent the set of equations compactly by

Ẍ = AX.

Since they are coupled equations, we can try to guess that the solutions

for the various xi’s all have the same angular frequency. As long as we can

determine a general solution with 2n constants to accommodate the 2n initial

conditions, we are done. Concretely, we guess

X =

⎛
⎜⎜⎜⎜⎜⎝

u1

u2
...

un

⎞
⎟⎟⎟⎟⎟⎠ eiωt = ueiωt

=⇒ Ẍ = −uω2eiωt.

Substituting these back into the matrix equation, we get

−uω2eiωt = Aueiωt

Au = −ω2u. (10.13)

Again, any linear combination of the solutions obtained by guessing is also

a solution; the general solution is a linear combination of all the linearly

independent solutions. Now, notice that if ueiωt is a solution, ue−iωt is also
a solution (as they both result in the same Eq. (10.13). Therefore, instead

of including the complex conjugates such as ue−iωt in the general solution,
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we can simply write the general solution as the real component of the linear

combination of solutions with positive, imaginary exponents (i.e. ueiωt) as

X must be real at all times. At this juncture, we proceed with a short linear

algebra interlude.

Eigenvectors

Let A be a n× n matrix. A non-null vector u is known as an eigenvector of

A if

Au = λu

for some scalar λ. λ is termed an eigenvalue of A and u is known as an eigen-

vector associated with the eigenvalue λ. The eigenvalues can be determined

as follows.

Au− λu = 0

(A− λI)u = 0,

where 0 is a vector of zeroes with n rows and I is the identity matrix of

order n. The identity matrix of order n is a n × n square4 matrix whose

top-left to bottom-right diagonal entries are one — all other entries are

zero. As its nomenclature implies, multiplying a square matrix X by the

identity matrix of the same dimensions simply returns X (XI = X and

IX = X). Therefore, we have simply expressed u = Iu in writing the second

equation.

Now, consider the following definition: an inverse X−1 of a square matrix

X is defined as a matrix such that the matrix multiplications XX−1 = I

and X−1X = I (i.e. they yield the identity matrix of the same dimensions

as X). Suppose that an inverse of (A − λI) exists. Then by multiplying

this inverse to both sides of the previous equation, we obtain the trivial

solution

u = 0,

which is contrary to what we want, as an eigenvector is not a null vector

by definition, and the null case is not physically meaningful in the case of

coupled oscillations. Thus, in order for non-trivial solutions of u to exist,

(A− λI) must be non-invertible or singular. In linear algebra, this is equiv-

alent to saying that the determinant of this term is zero.

4A square matrix is simply one with an identical number of rows and columns.
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Determinants

The determinant of a n × n square matrix, X, is a quantity that can be

computed recursively as follows. Given that

X =

⎛
⎜⎜⎜⎜⎜⎝

x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

...
...

xn1 xn2 . . . xnn

⎞
⎟⎟⎟⎟⎟⎠,

det(X) =

{
x11 if n = 1

xi1Yi1 + xi2Yi2 + · · ·+ xinYin for n ≥ 2,

where i refers to that particular row. Yij is defined as

Yij = (−1)i+jdet(Zij).

Zij is the matrix obtained by removing the ith row and jth column from

X, i.e.

Zij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11 x12 . . . x1(j−1) x1(j+1) . . . x1n

x21 x22 . . . x2(j−1) x2(j+1) . . . x2n

...
...

...
...

...
...

...

x(i−1)1 x(i−1)2 . . . x(i−1)(j−1) x(i−1)(j+1) . . . x(i−1)n

x(i+1)1 x(i+1)2 . . . x(i+1)(j−1) x(i+1)(j+1) . . . x(i+1)n

...
...

...
...

...
...

...

xn1 xn2 . . . xn(j−1) xn(j+1) . . . xnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The recursive definition of det(X) for n ≥ 2 above is known as the co-factor

expansion along row i, where i is an arbitrary integer 1 ≤ i ≤ n. In fact,

the determinant can also be calculated via a co-factor expansion along any

column j.

det(X) =
N∑
i=1

xijYij for n ≥ 2.

Let us now evaluate the determinants of two concrete examples to clarify

this esoteric definition. The most common form of matrices would be the
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2× 2 matrix. If we let X be

X =

(
a b

c d

)
,

then by performing a co-factor expansion along the first row,

det(X) = aY11 + bY12 = a · (−1)1+1|d| + b(−1)1+2|c| = ad− bc,

where the vertical lines denote taking the determinant of the matrix they

enclose.

Problem: Determine the determinant of the following matrix

X =

⎛
⎝1 2 0

1 3 0

0 1 2

⎞
⎠ .

Performing a co-factor expansion along the first row,

det(X) = 1 ·
∣∣∣∣ 3 0

1 2

∣∣∣∣− 2 ·
∣∣∣∣ 1 0

0 2

∣∣∣∣
= (3 · 2− 1 · 0)− 2 · (1 · 2− 0 · 0)
= 2.

Incidentally, there is an efficient memorization scheme for the determinant

of a 3× 3 matrix known as Sarrus’ rule.∣∣∣∣∣∣
x11 x12 x13
x21 x22 x23
x31 x32 x33

∣∣∣∣∣∣ = x11x22x33 + x12x23x31 + x13x21x32
−x31x22x13 − x32x23x11 − x33x21x12

This sum can be visualized by replicating the first two columns on the right

of the original block of numbers and taking the sum of the products along the

bolded diagonals, minus the sum of the products along the dashed diagonals

in Fig 10.11.

Figure 10.11: Sarrus’ rule
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Evaluating Eigenvalues and Normal Frequencies

Returning to our main topic of eigenvectors, the eigenvalues associated

with a matrix A can be computed by setting the determinant of A − λI

to be zero, so

det (A− λI) = 0.

This will generate a nth order polynomial for λ which has n roots by the fun-

damental theorem of algebra. In the case of coupled oscillators, by observing

Eq. (10.13), we have (
A+ ω2I

)
u = 0, (10.14)

which has non-trivial solutions only if

det
(
A+ ω2I

)
= 0.

That is, the squared negative of the normal frequencies are the eigenvalues

of the matrix A. Let us consider the specific spring-mass oscillators in the

previous section. The equations of motion produced are

ẍ1 = −2k

m
x1 +

k

m
x2,

ẍ2 =
k

m
x1 − 2k

m
x2.

Therefore, the matrix A is

A =

(
−2k
m

k
m

k
m −2k

m

)
.

Then, we require∣∣∣∣∣−
2k
m + ω2 k

m
k
m −2k

m + ω2

∣∣∣∣∣ = 0

(
−2k

m
+ ω2

)2

−
(
k

m

)2

=

(
ω2 − 3k

m

)(
ω2 − k

m

)
= 0

ω2 =
k

m
or

3k

m
.

Thus, the eigenvalues of A are − k
m and −3k

m while the normal frequencies

are
√

k
m and

√
3k
m .
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Evaluating Eigenvectors and Normal Modes

Now that we have computed the eigenvalues of A, we can now determine

the eigenvectors associated with an eigenvalue λi by substituting λ = λi
back into the equation (A − λI)u = 0. Then, we can solve the resultant

matrix equation (some variables will still be expressed in terms of the others)

to obtain a general solution for u that satisfies the equation. This general

solution, which is expressed in terms of a linear combination of independent

vectors, is known as the eigenspace associated with the eigenvalue λi. The

eigenspace is usually denoted as Eλi but we shall denote it as E−λi (as λi =
−ω2

i where ωi is the ith normal frequency) for our purposes. The independent

vectors which appear in the linear combination are the basis eigenvectors

associated with the eigenvalue λi, as substituting any linear combination of

them for u inAu would result in λiu. Furthermore, in the context of coupled

oscillators, the basis eigenvectors associated with eigenvalue λi = −ω2
i turn

out to be the normal modes associated with the normal frequency ωi. Do

not worry too much about what these terms mean for now and consider the

following specific example. In the case of the coupled spring-mass oscillators,

we substitute the various values for ω2 that we have found, into Eq. (10.14).

When λ1 = −ω2
1 = − k

m , we obtain(
− k
m

k
m

k
m − k

m

) (
u1

u2

)
= 0.

Solving gives

u1 = u2.

Therefore, the eigenspace for u associated with λ1 is the collection of vectors

E k
m

= C1

(
1

1

)
,

where C1 is a scalar. That is, any vector u of this form would be an

eigenvector associated with the eigenvalue λ1. Evidently, the only basis

eigenvector associated with the eigenvalue λ1 is (1, 1). Similarly, when

λ2 = −ω2
2 = −3k

m , (
k
m

k
m

k
m

k
m

) (
u1

u2

)
= 0

u2 = −u1.
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The eigenspace associated with λ2 is the collection of vectors

E 3k
m

= C2

(
1

−1

)

for some scalar C2. The only basis eigenvector associated with the eigen-

value λ2 is (1,−1). Finally, the general solution for the displacements of the

masses, X, is obtained by concatenating the various Eω2
i
eiωit’s. We will not

includeEω2
i
e−iωit as we will take the real component of the combination later

to obtain the physical solution for X (see paragraph below Eq. (10.13)). The

expression obtained from patching is

E k
m
e
i
√

k
m
t
+E 3k

m
e
i
√

3k
m
t
= C1

(
1

1

)
e
i
√

k
m
t
+ C2

(
1

−1

)
e
i
√

3k
m
t
.

If we let C1 = D1e
iφ1 and C2 = D2e

iφ2 where D1, D2, φ1 and φ2 are real

constants, taking the real component of the above expression yields

X =

(
x1

x2

)
=

(
1

1

)
D1 cos

(√
k

m
t+ φ1

)
+

(
1

−1

)
D2 cos

(√
3k

m
t+ φ2

)
.

As seen from above, the basis eigenvectors associated with eigenvalue λi now

function as the normal modes of the normal frequency ωi. The above expres-

sion is the most general solution for X as we have 4 constants to accommo-

date the 4 initial conditions (positions and velocities of both masses). As a

last remark, this method of finding the eigenvalues is not foolproof. If there

are repeated eigenvalues, we may not be able to find sufficient linearly inde-

pendent solutions. Then, we would need to guess other forms of solutions. In

the specific case where ω2 = 0 is a possibility, we should guess polynomials

of degree one (i.e. X = u(c0 + c1t)) as ω2 = 0 insinuates that the second

derivative of X is zero.
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Problems

Simple Harmonic Motion

1. Pendulum Clock*

A pendulum clock, which has a period of one second when connected to a

fixed pivot, is attached to the ceiling of a lift at rest. The lift then undergoes

an upwards acceleration a for t seconds. Immediately afterwards, it is slowed

down with deceleration a until it stops. Would the clock still be accurate at

this juncture? For instance, if the time taken for the whole journey is 10s

but the pendulum only oscillates 9 times, the clock would be slower by 1s

and is no longer accurate.

2. Dropping a Mass*

Consider a spring-mass system of mass m and spring constant k on a fric-

tionless, horizontal table. If the initial amplitude is A and another mass m

is dropped vertically onto the oscillating mass and sticks with it when its

displacement is A
2 , determine the final amplitude of oscillation A′.

3. Kinematic Quantities*

Given that the speeds of an oscillating particle at displacements x1 and x2
are v1 and v2 respectively, determine the amplitude and angular frequency

of the oscillation.

4. Physical Pendulum*

A Physics student measures the period of an arbitrary physical pendulum

about a certain pivot to be T . Then, he identifies another pivot on the

opposite side of the center of mass that gives the same period. If the two

points are separated by a distance l, can he determine the gravitational

field strength g of the Earth, assuming that it is uniform throughout the

pendulum?

5. Cavendish Experiment*

The Cavendish experiment was performed to determine the universal gravi-

tational constant G. Two identical small balls of mass m are connected by a

light rod with length L and lie on a frictionless table. The center of the rod

is connected to the ceiling via a vertical torsion wire. The torsion constant
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of the wire, κ, is defined as the restoring torque per unit angular twist of

the wire.

(1) Find the period T of this torsion pendulum in terms of the above param-

eters (besides G) when the rod is rotated.

(2) Now, place two identical large balls of mass M at two diametrically

opposite points on the perimeter of a circle of diameter L about the

center of the rod (i.e. the small balls lie on the same circle). When the

system is at equilibrium, the rod has rotated an angle θ and the distance

between the center of a small ball and its adjacent large ball is r � L.

Determine G in terms of L, r, M , T and θ.

(3) Suppose that the small balls are perturbed by a small angle from the

equilibrium position. Will they oscillate about the equilibrium position?

If so, determine the angular frequency of such oscillations in terms of κ,

θ, m, L and r.

6. Particle in Potential*

A particle of mass m is acted on by a one-dimensional potential energy

given by

U(x) = U0(−ax2 + bx4),

where U0, a and b are positive constants. Determine the equilibrium

x-coordinates of the particle and classify them as stable or unstable. If an

equilibrium position is stable, determine the angular frequency of small

oscillations about it.

7. V-Shape Rails*

Two particles of common mass m are constrained to move along two rails,

which subtend an angle 2θ, that form a V-shape. The particles are con-

nected by a spring with spring constant k. What is the angular frequency

of oscillations for the motion where the spring remains perpendicular to the

symmetrical axis of the rails?

8. Floating Cylinder*

A cylinder of density d, radius r and length l is floating on water of density ρ

as shown in the diagram on the next page. Write an expression for the equi-

librium value of the angle θ, subtended by the wetted portion of the cylinder,

as labeled in the diagram on the next page. If the cylinder is now pressed
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slightly downwards, determine the angular frequency of small oscillations.

Feel free to express your answer in terms of the equilibrium angle θ.

9. Two Circles*

A small circle of radius r is attached to the circumference of a large circle

of radius R. If the surface mass density of the circles is σ, determine the

angular frequency of small oscillations about the equilibrium position if the

center of the large circle is pivoted.

10. Two Spheres**

A spherical ball of radius r, mass m and uniform mass density rolls without

slipping in the interior of a sphere with mass M , radius R and uniform mass

density near the bottom of the sphere, solely in the θ direction. The large

sphere cannot translate but it may rotate. What is the angular frequency of

small oscillations of the ball about the bottom of the large sphere?

11. Masses and String**

A massm is undergoing circular motion about a hole on a horizontal table at

radius r0. A string, passing through the hole, is attached to m and another

mass M which hangs vertically. If mass m is given a slight radial push,

determine the angular frequency of small oscillations in the radial direction.

12. Non-slip Oscillation**

Referring to the figure on the next page, a cylinder of mass m and radius r

lies with its cylindrical axis in the plane of the horizontal ground. A spring

of spring constant k and relaxed length l is attached to the center of the
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cylinder at one end and a fixed wall at the other end. If the cylinder does

not slip with the ground, determine the angular frequency of oscillations.

13. Particle in a Sphere***

A particle of mass m is currently undergoing circular motion at angular

frequency ω0 >
√

g
R in the interior of a massive sphere of radius R. Let θ

be the angle between the vertical axis, passing through the center of the

sphere and pointing downwards, and the position of the particle in spherical

coordinates, taking a positive value in the anti-clockwise direction. Suppose

that the particle is given a slight push in the θ direction, determine the

angular frequency of small oscillations in the θ direction.

Damped and Coupled Oscillators

14. Colliding Couples**

Two point masses of mass m are connected by a spring of spring constant

k and relaxed length l. The two masses both have an initial velocity v and

the spring between them stays at its relaxed length. These masses then

travel towards an identical set-up (consisting of two masses connected by a

spring) on a frictionless, horizontal table. If these four masses are aligned

and undergo perfectly elastic, head-on collisions, determine the equations of

motion of the masses after the first collision and before the second collision.

Determine the elapsed time between the first and second collisions and show

that there will only be a total of two collisions.

15. Colliding Masses**

A particle of massM approaches two initially stationary particles of common

mass m = 2kg that are connected by a spring of spring constant k = 1N/m,

at an initial velocity v0. The collision is one-dimensional, elastic and instan-

taneous. Determine the minimum value of M for which M will again collide
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with the system comprising the other particles. As you will obtain a tran-

scendental equation, an approximate value is fine. How much time will elapse

between the two collisions for this particular value of M?

16. Spring-Mass with Friction**

A horizontal spring-mass system is placed on a rough table, with one end of

the spring attached to a vertical wall. The massless spring has spring constant

k and rest length l0 while the load has mass m and static and kinetic friction

coefficients μ relative to the table. Initially, the massm is placed right next to

the wall such that the length of the spring is virtually zero. Subsequently,m is

released such that it begins to undergo a one-dimensional oscillatory motion.

If we define the origin to be at the fixed end of the spring and the x-axis to

be along the direction of motion of m, sketch the graph of the x-coordinate

x of the mass against the elapsed time t. Thus, determine the total number

of oscillation cycles that m completes before coming to a stop.

17. Stabilizer**

A heavy bob is often used to stabilize buildings in the event of earthquakes.

Let us consider a related problem. Two masses m1 and m2 are stationary

on a horizontal, frictionless plane and are connected by a spring of spring

constant k. Suppose a force F (t) = f cosωt is exerted on m1, in the direction

of the line joining the two masses. Determine the value of k for which the

particular solution to the equation of motion of m1 yields an oscillation of

zero amplitude. There is no damping.

18. Masses on Hoop***

Three masses, one with mass m, and two with mass 2m are constrained

to move along a massive circular hoop of radius R. Three springs that are

wrapped around the hoop connect adjacent masses. The springs between

mass m and the two masses 2m have spring constant 2k while the spring

between the two masses of mass 2m has spring constant k. Find the nor-

mal modes of oscillation and the displacements of the masses from their

equilibrium positions as functions of time under arbitrary initial conditions.
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Solutions

1. Pendulum Clock*

The frequency of a pendulum, under an effective gravity geff , is f =

1
2π

√
geff
l . When the lift is accelerating upwards, the pendulum experiences

an inertial force ma downwards where m is its mass and hence lives in a

world with effective gravity g + a. Similarly, when the lift is decelerating,

the effective gravity is g − a. Since f ∝ √
geff , the elapsed time that the

pendulum clock would have recorded during this experiment is

t ·
√
g + a

g
+ t ·

√
g − a

g

= 2t,

where 2t is the actual time elapsed. Therefore, the clock is no longer accurate.

2. Dropping a Mass*

The total mechanical energy is initially

E =
1

2
kA2.

When the mass m is at a state with displacement A
2 , its potential and kinetic

energies are respectively

U =
1

8
kA2,

T = E − U =
3

8
kA2.

Thus, its speed at this instant is

v =

√
3kA2

4m
.

The final speed of the two masses after the collision is given by the conser-

vation of momentum to be

v′ =

√
3kA2

16m
.

Thus, the final kinetic energy is

T ′ =
1

2
· 2mv′2 = 3kA2

16
.
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The total mechanical energy afterwards is

E = U + T ′ =
5kA2

16
.

At the amplitude A′, the kinetic energy of the mass is zero. Thus,

1

2
kA′2 = E

A′ =
√

5

8
A.

3. Kinematic Quantities*

|v1| = ω
√
A2 − x21,

|v2| = ω
√
A2 − x22.

Dividing the first equation by the second and squaring, we get

v21
v22

=
A2 − x21
A2 − x22

.

Solving,

A =

√
v22x

2
1 − v21x

2
2

v22 − v21
.

Substituting this expression for A into either of the first two equations,

ω =

√
v22 − v21
x21 − x22

.

4. Physical Pendulum*

Applying Eq. (10.6), the period of a physical pendulum is

T = 2π

√
Ipivot

MrCMg
,

where Ipivot is the moment of inertia of the pendulum about the pivot, M

is the total mass of the physical pendulum and rCM is the distance between
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the pivot and the center of mass of the pendulum. Let the distances between

the two pivots and the center of mass be r and l − r respectively. Then,

2π

√
ICM +Mr2

Mrg
= T,

2π

√
ICM +M(l − r)2

M(l − r)g
= T,

where ICM is the moment of inertia of the pendulum about its center of

mass. Eliminating ICM ,

T 2Mrg

4π2
−Mr2 =

T 2M(l − r)g

4π2
−M(l − r)2

=⇒ g =
4π2l

T 2
.

5. Cavendish Experiment*

Due to symmetry, the center of the rod is the instantaneous center of rota-

tion. The moment of inertia of the rod and the small balls about the center

is I = 2 ·mL2

4 = mL2

2 . When the rod has rotated for an angle θ, the restoring

torque is −κθ. Therefore, the equation of motion of the rod is

Iθ̈ = −κθ
θ̈ = − 2κ

mL2
θ,

which indicates a simple harmonic motion of period

T = 2π

√
mL2

2κ
.

For the second part, the torque produced by the gravitational force of the

large balls balances the torsion torque at equilibrium. Note that we only con-

sider the gravitational force on a small ball due to the nearer large ball. The

other gravitational force is comparatively negligible, since r � L. Balancing

torques,

GMm

r2
· L = κθ

G =
κθr2

MmL
=

2π2r2Lθ

MT 2
.

Let θM = θ0 + 2r
L denote the angular position of the large balls, relative

to the original position of the rod. θ0 is the angle θ in the previous section
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(we reserve the variable θ for the following definition). When the rod has

experienced an angular displacement θ (θM − θ � θM ), the separation

between the centers of neighboring small and large balls is approximately
L
2 (θM − θ). Therefore, the equation of motion of the rod is

Iθ̈ = 2 · GMm
L2

4 (θM − θ)2
· L
2
− κθ

θ̈ =
8GM

L3(θM − θ)2
− 2κ

mL2
θ.

When θ = θ0, the system is in equilibrium such that

8GM

L3 · 4r2

L2

− 2κ

mL2
θ0 = 0.

Now, suppose θ = θ0 + ε. The equation of motion becomes

ε̈ =
8GM

L3
(
2r
L − ε

)2 − 2κ

mL2
(θ0 + ε)

ε̈ =
2GM

r2L
(
1− Lε

2r

)2 − 2κ

mL2
(θ0 + ε).

Performing a first-order binomial expansion,

ε̈ =
2GM

r2L

(
1 +

Lε

r

)
− 2κ

mL2
(θ0 + ε)

= −
(

2κ

mL2
− 2GM

r3

)
ε = −

(
2κ

mL2
− 2κθ0
mLr

)
ε,

where we have performed the cancellation of some terms based on the pre-

vious equilibrium equation and substituted GM
r2

= κθ0
mL . The above indicates

a simple harmonic motion of angular frequency

ω =

√
2κ(r − θ0L)

mL2r

if r > θ0L. Otherwise, the rod will not exhibit simple harmonic motion.
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6. Particle in Potential*

Since a conservative force is the negative potential energy gradient, the equi-

librium positions correspond to the locations where U ′(x) = 0.

U ′(x) = U0(−2ax+ 4bx3) = U0x(4bx
2 − 2a).

The equilibrium positions are thus x = 0, x = −√ a
2b and x =

√
a
2b .

Computing the second derivative,

U ′′(x) = U0(12bx
2 − 2a).

Since U ′′(0) = −2aU0 < 0, the equilibrium position x = 0 corresponds to

a potential energy maximum which indicates that a slight deviation tends

to be amplified by the conservative force (which is directed towards lower

values of potential energy). Hence, x = 0 is unstable but on the other hand,

U ′′(±√ a
2b) = 4aU0 > 0 which indicates that x = −√ a

2b and x =
√

a
2b

are stable equilibria. The angular frequency of oscillations about these posi-

tions is

ω =

√
U ′′ (±√ a

2b

)
m

=

√
4aU0

m
.

7. V-Shape Rails*

Suppose that both masses are shifted along the rails by a displacement x from

their equilibrium positions. The spring would have stretched or contracted

by an additional 2x sin θ, beyond its length when the two masses are at

equilibrium. Therefore, the equation of motion of one mass at this juncture is

mẍ = −2k sin θx · sin θ,
where we multiply by sin θ to obtain the component of force along the rail

that it lies along. Since

ẍ = −2k sin2 θ

m
x,

the angular frequency of small oscillations is

ω =

√
2k sin2 θ

m
.

An alternative method for this question would start with the potential energy

of the system when each mass is at a distance x from the point of connection
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of the rails.

U(x) =
1

2
k(2x sin θ − l0)

2,

where l0 is the rest length of the spring. The first derivative is

U ′(x) = k(2x sin θ − l0) · 2 sin θ,

which shows that the equilibrium x-coordinate is l0
2 sin θ . The second derivative

of this is

U ′′(x) = 4k sin2 θ.

Therefore, the angular frequency of small oscillations about the equilibrium

position is

ω =

√√√√U ′′
(

l0
2 sin θ

)
2m

=

√
2k sin2 θ

m
.

Note that we have to use 2m instead of m here as U(x) is the potential

energy of the entire system.

8. Floating Cylinder*

The volume of the cylinder submerged in water is the area of the sector

(multiplied by l) minus the area of the isosceles triangle, with sides r that

subtend angle θ (multiplied by l).

V =
θ

2
r2l − 1

2
r2l sin θ.

The cylinder is in equilibrium when the upthrust balances its weight.

ρ

(
θ

2
r2l − 1

2
r2l sin θ

)
g = πr2ldg

θ − sin θ =
2πd

ρ
.

When the cylinder is displaced by a vertical small distance ε from its equilib-

rium position, the net force that it experiences (which opposes its deviation)

is equal to ρg multiplied by the change in the submerged volume of the

cylinder. The latter is equal to the length of the horizontal chord on the

cross-section of the cylinder along the water level, 2r sin θ
2 , multiplied by ε
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(the vertical displacement) and l. Therefore, the equation of motion of the

cylinder is

πr2ldε̈ = −2r sin
θ

2
· l · ρgε

ε̈ = −2ρg sin θ
2

πrd
ε,

which indicates a simple harmonic motion of angular frequency

ω =

√
2ρg sin θ

2

πrd
.

9. Two Circles*

The moment of inertia of the smaller circle about the center of the larger

circle is 1
2σπr

4+σπr2R2 by the parallel axis theorem. Thus, the total moment

of inertia of the system about the pivot is

I =
1

2
σπR4 +

1

2
σπr4 + σπr2R2 =

1

2
σπ(r2 +R2)2.

The net external torque on this system is that due to the weight of the

smaller circle.

τ = −σπr2gR sin θ

=⇒ Iθ̈ = −σπr2gR sin θ.

Using the small angle approximation sin θ ≈ θ,

θ̈ = − 2gr2R

(r2 +R2)2
θ.

The angular frequency of small oscillations about θ = 0 is

ω =

√
2gr2R

r2 +R2
.

10. Two Spheres**

Let θ be the angle that the line joining the center of the spheres makes with

the vertical, and let it be positive in the anti-clockwise direction. Let φ and ψ

be the angles that the ball and large sphere have rotated about their centers

respectively, also positive anti-clockwise. Since (R− r)θ̇ is the velocity of the
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center of the ball, (R− r)θ̇+ rφ̇ is the velocity of the point on the ball that

is in contact with the large sphere. Therefore, the non-slip condition is

(R− r)θ̇ + rφ̇ = Rψ̇

=⇒ (R− r)θ̈ + rφ̈ = Rψ̈.

Let f be the friction force on the ball in the anti-clockwise direction due to

the large sphere. Applying Newton’s second law to the ball,

f −mg sin θ = m(R− r)θ̈.

Applying τ = Iα to the spheres about their respective centers,

f =
2

5
mrφ̈,

−f =
2

5
MRψ̈.

Then,

rφ̈ = −M
m
Rψ̈.

Substituting this into the non-slip condition,

Rψ̈ =
m(R− r)

m+M
θ̈,

f = −2mM(R− r)

5(m+M)
θ̈.

Substituting this into the equation obtained from Newton’s second law,

m(R− r)(5m+ 7M)

5(m+M)
θ̈ = −mg sin θ.

Using the small angle approximation sin θ ≈ θ,

θ̈ = − 5(m+M)g

(R− r)(5m+ 7M)
θ.

The angular frequency of small oscillations about θ = 0 is thus

ω =

√
5(m+M)g

(R− r)(5m+ 7M)
.
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11. Masses and String**

Let T be the tension in the string and let r be the radial coordinate of m

with respect to the hole. Then, the equations of motion of m and M are

−T = m(r̈ − rθ̇2),

T −Mg =Mr̈,

by the conservation of string.

=⇒ −Mg = (m+M)r̈ −mrθ̇2.

Observe that the angular momentum of mass m about the hole is conserved

as it only experiences a radial force. Then,

L = mr2θ̇

for some constant L.

−Mg = (m+M)r̈ − L2

mr3
.

When r = r0, r̈ = 0, hence

Mg =
L2

mr30
.

This will be useful in canceling terms later. Next, express the radial coor-

dinate r as r0 + ε where ε is a slight displacement from the equilibrium

position. Then,

−Mg = (m+M)ε̈− L2

mr30

(
1− ε

r0

)3 .
Performing a binomial expansion,

−Mg = (m+M)ε̈− L2

mr30

(
1− 3ε

r0

)
.

Substituting L2

mr30
=Mg,

ε̈ = − 3Mg

(m+M)r0
ε.

The angular frequency of small oscillations is thus

ω =

√
3Mg

(m+M)r0
.
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An alternative method derives the effective potential of the combined system

which is

Ueff (r) =
L2

2mr2
+Mg(r − l),

where the first term is associated with the azimuthal motion of m and the

second term is the gravitational potential energy of M .

U ′
eff (r) = − L2

mr3
+Mg,

U ′′
eff (r) =

3L2

mr4
,

U ′′
eff (r0) =

3L2

mr40
=

3Mg

r0
.

The angular frequency of small oscillations about r = r0 is then

ω =

√
U ′′
eff (r0)

m+M
=

√
3Mg

(m+M)r0
.

Be wary that the mass of the combined system is m+M and not m.

12. Non-slip Oscillation**

It is easier to derive the equation of motion by differentiating the conserva-

tion of energy equation. Let the x-coordinate of the center of the cylinder

be x with respect to the wall. Then, the total mechanical energy of the

cylinder is

E =
1

4
mr2ω2 +

1

2
mẋ2 +

1

2
k(x− l)2.

By the non-slip condition, rω = ẋ. Thus,

E =
3

4
mẋ2 +

1

2
k(x− l)2.

Differentiating the above by x and using the fact that d(ẋ2)
dx = 2ẍ,

ẍ = − 2k

3m
(x− l).

Therefore, the angular frequency of oscillations about x = l is

ω =

√
2k

3m
.
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13. Particle in a Sphere***

We first determine the initial θ coordinate, θ0, at which the particle can

undergo circular motion. Let N be the normal force on the particle by the

sphere. The vertical component of the normal force must balance the weight

of the particle, so

N cos θ0 = mg.

The horizontal component must provide the required centripetal force, and

N sin θ0 = mR sin θ0ω
2
0,

cos θ0 =
g

Rω2
0

,

sin2 θ0 =
R2ω4

0 − g2

R2ω4
0

.

Now, let φ be the azimuthal angle of the particle. Then, the total mechanical

energy of the particle is

E =
1

2
mR2θ̇2 +

1

2
mR2 sin2 θφ̇2 −mgR cos θ.

The component of angular momentum of the particle along the vertical direc-

tion is conserved.

L = mR2 sin2 θφ̇.

Therefore,

E =
1

2
mR2θ̇2 +

L2

2mR2 sin2 θ
−mgR cos θ.

This is equivalent to a one-dimensional motion with respect to coordinate

Rθ under the effective potential

Ueff =
L2

2mR2 sin2 θ
−mgR cos θ.

Differentiating twice with respect to Rθ,

U ′′
eff =

d2Ueff
d(Rθ)2

=
mg cos θ

R
+

L2

mR4 sin2 θ
+

3L2 cos θ

mR4 sin4 θ
,

with

L = mR2 sin2 θ0ω0 =
m(R2ω4

0 − g2)

ω3
0

.
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The angular frequency of small oscillations about θ = θ0 is

Ω =

√
U ′′
eff (θ0)

m
=

√
Rω2

0 + 3g

R
.

14. Colliding Couples**

We have proven in the chapter on collisions that when two identical masses

collide elastically, they simply swap velocities. Let the rightwards direction

be the positive x-direction. Label the masses from 1 to 4 rightwards. Then,

the velocities of mass 2 and 3 after the first collision are 0 and v respectively.

Therefore, we obtain two identical set-ups, displaced by a distance l. We first

solve for a system of two identical masses, connected by a spring of spring

constant k and relaxed length l, and separated by an initial distance l. The

initial velocities of the masses, from left to right, are v and 0 respectively. If

we let y1 and y2 represent the coordinates of the masses and consider their

equations of motion,

mÿ1 = k(y2 − y1 − l),

mÿ2 = −k(y2 − y1 − l),

ÿ1 − ÿ2 =
2k

m
(y2 − y1 − l).

Substituting u = y2 − y1 − l,

ü = −2k

m
u,

y2 − y1 = l +A sin

(√
2k

m
t+ φ

)
,

ẏ2 − ẏ1 = A

√
2k

m
cos

(√
2k

m
t+ φ

)
.

Substituting the initial conditions y2 − y1 = l and ẏ2 − ẏ1 = −v when t = 0,

A sinφ = 0,

A

√
2k

m
cosφ = −v.
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Out of the possible solutions to the above equations, we choose

φ = 0,

A = −v
√
m

2k
,

as any set of possible solutions would yield the same result for y1 and y2.

Then,

y2 − y1 = l − v

√
m

2k
sin

(√
2k

m
t

)
.

Next, we know from the conservation of momentum (or by adding the two

equations of motion together) that

ẏ1 + ẏ2 = v

y1 + y2 = vt+ c,

where c is a constant that depends on the choice of origin. Then,

y1 =
c

2
+
vt

2
− l

2
+
v

2

√
m

2k
sin

(√
2k

m
t

)
,

y2 =
c

2
+
vt

2
+
l

2
− v

2

√
m

2k
sin

(√
2k

m
t

)
.

Now, apply these results to our system at hand. Let the first collision between

the second and third masses occur at t = 0 and let the coordinates of the

masses be x1, x2, x3 and x4. Observe that the pairs x1, x2 and x3, x4
are analogous to y1, y2. If the origin is defined at the point of collision,

substituting the initial conditions x1 = −l, x2 = 0, x3 = 0 and x4 = l at

t = 0 yields

x1 = −l+ vt

2
+
v

2

√
m

2k
sin

(√
2k

m
t

)
,

x2 =
vt

2
− v

2

√
m

2k
sin

(√
2k

m
t

)
,

x3 =
vt

2
+
v

2

√
m

2k
sin

(√
2k

m
t

)
,

x4 = l +
vt

2
+
v

2

√
m

2k
sin

(√
2k

m
t

)
.
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For the second and third masses to collide again, x2 = x3. This implies that

the time elapsed between the first and second collisions is

t = π

√
m

2k
.

At this instant (immediately before the second collision), one can easily show

that

ẋ1 = 0,

ẋ2 = v,

ẋ3 = 0,

ẋ4 = v.

After the second collision, the third and fourth masses will have both

acquired velocity v while the first and second masses will be stationary.

Effectively, the initial velocities of the first and second masses have been

transferred to the third and fourth masses, which then move off. Thus, only

two collisions occur.

15. Colliding Masses**

Let A denote the particle of mass m that M collides with. Define the x-axis

to be along the direction of motion of this one-dimensional system and the

origin at the point of collision. Referring to the results of the previous prob-

lem, the x-coordinate of A after the collision is

xA =
ut

2
+
u

2

√
m

2k
sin

(√
2k

m
t

)
,

where u is its initial velocity directly after the collision. This can be com-

puted as follows. During the collision, the only impulsive force on M and

particle A are the normal forces due to each other (the spring does not

exert any impulse in the short collision period). Therefore, this is just a one-

dimensional collision between two masses M and m. Defining v and u as the

final velocities of M and A, we have

Mv0 =Mv +mu.

Since the relative velocity reverses during a one-dimensional elastic collision,

u− v = v0.
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Solving,

v =
M −m

M +m
v0 =

1− r

1 + r
v0,

u =
2M

M +m
=

2

1 + r
v0,

where r = m
M . The x-coordinate of M after the first collision and before the

second collision obeys the equation

xM = vt =
1− r

1 + r
v0t.

After substituting the values of k and m, the condition for M and particle

A to collide again is

1− r

1 + r
v0t =

v0
1 + r

t+
v0

1 + r
sin t

sin t = −rt.
To visualize the maximization of r, we can plot the graph of y(t) = sin t.

For there to be a solution to the above equation for a particular value of r,

the line y(t) = −rt must intersect y = sin t at least once. The largest value

of r (and hence the steepest linear graph) occurs when y = −rt roughly

intersects y = sin t at its first negative peak (t = 3π
2 ). In this case, the value

of r is

r =
1
3π
2

=
2

3π
=⇒ M = 3πkg,

and the time elapsed between the two collisions is 3π
2 s.

16. Spring-Mass with Friction**

At x-coordinate x, the mass experiences the spring force −k(x − l0) and

friction μmg, whose direction depends on the velocity of the mass. In the

outbound regime where the velocity of m is positive (i.e. ẋ > 0), its equation

of motion reads

mẍ = −k(x− l0)− μmg

=⇒ ẍ = − k

m

(
x− l0 +

μmg

k

)
.

This equation describes a simple harmonic motion about an equilibrium

position at x = l0 − μmg
k with angular frequency

√
k
m . To see this more
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explicitly, introduce a new variable u = x− l0 +
μmg
k . Then,

ü = − k

m
u,

which describes a simple harmonic motion about u = 0 — implying that the

equilibrium position is x = l0 − μmg
k . In the other case where the motion is

inbound (i.e. ẋ < 0), the equation of motion of m is

mẍ = −k(x− l0) + μmg

=⇒ ẍ = − k

m

(
x− l0 − μmg

k

)
,

which indicates a simple harmonic motion about an equilibrium position at

x = l0+
μmg
k with angular frequency

√
k
m . Let us now examine the (n+1)th

oscillation cycle where m begins at zero initial velocity at x-coordinate xn
but tends to gain a positive velocity (we assume that it moves for now). m

will first oscillate about the equilibrium position x = l0− μmg
k until it reaches

x-coordinate x′n = 2l0 − 2μmg
k − xn where it attains zero velocity again (we

use a prime to denote the positions of zero velocity that tend to result in a

subsequent negative velocity). Ifm still starts to move at this juncture, it will

tend to gain a negative velocity and oscillate about the equilibrium position

x = l0 + μmg
k until it reaches x-coordinate xn+1 = 2

(
l0 +

μmg
k

) − x′n =

xn+
4μmg
k where it possesses zero velocity again — completing an oscillation

cycle. m can only possibly stop at the junctures where it attains zero velocity

and will do so if the maximum magnitude of static friction exceeds the spring

force then. Therefore, the motion of mass m will terminate at the (n+ 1)th

cycle (without completing it) if

k|xn − l0|
mg cos θ

≤ μ,

or

k|x′n − l0|
mg cos θ

≤ μ.

Otherwise,m will complete the (n+1)th cycle and proceed with the (n+2)th

cycle with

xn+1 = xn +
4μmg

k
,

x′n+1 = x′n −
4μmg

k
.

Plotting the graph of x(t) with x = 0 at t = 0, we obtain the following

(Fig. 10.12) if kl0 > μmg (such that m actually moves initially).
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Figure 10.12: Graph of x(t)

As the x-coordinate of the particle is increasing (during the ascending

portion), it oscillates about the line x = l0 − μmg
k . Otherwise when its

x-coordinate is decreasing (during the descending portion), it oscillates about

x = l0 +
μmg
k . The t-coordinates of successive peaks and troughs are both

separated by the period T = 2π
√

m
k . Furthermore, the x-coordinate of a

peak is 4μmg
k lower than its predecessor while the x-coordinate of a trough

is 4μmg
k higher than its predecessor. The motion of m will stop at the first

peak or trough that falls into the region between the two horizontal lines.

The (n+ 1)th peak and trough occur with x-coordinates

x′n = 2l0 − (4n + 2)μmg

k
,

xn =
4nμmg

k
.

Observe that x-coordinates of the peaks will always be larger than

l0 +
μmg
k before the terminating peak (which may be the first peak) while

x-coordinates of the troughs will always be smaller than l0 − μmg
k before

the terminating trough. This implies that the conditions for stopping at

the (n+ 1)th peak and trough are x′n ≤ l0 +
μmg
k and xn ≥ l0 − μmg

k . Thus,

the minimum n’s for the motion to stop at the (n + 1)th peak and trough

are respectively

npeak =

⌈
l0k

4μmg
− 3

4

⌉
,

ntrough =

⌈
l0k

4μmg
− 1

4

⌉
.

The total number of cycles completed bym is the minimum of the two values,

min(npeak, ntrough).
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17. Stabilizer**

Since this problem is purely one-dimensional, define the x-axis to be along

the direction of concern. Let the x-coordinates of m1 and m2 be x1 and

x2 respectively. Since the relaxed length of the spring does not affect the

oscillation, we can simply take it to be zero. Equivalently, we could have

defined x1 and x2 to be the displacements of the respective masses from their

equilibrium position in the absence of the external driving force. Writing

their equations of motion,

m1ẍ1 = f cosωt+ k(x2 − x1),

m2ẍ2 = −k(x2 − x1).

Multiplying the second equation by m1 and subtracting it by the first equa-

tion multiplied by m2,

m1m2(ẍ2 − ẍ1) = −k(m1 +m2)(x2 − x1)−m2f cosωt.

Using the substitution u = x2 − x1,

ü+
k(m1 +m2)

m1m2
u = − f

m1
cosωt.

To obtain the particular solution to the above equation, we can solve the

following differential equation and take the real component of its particular

solution.

ü+
k(m1 +m2)

m1m2
u = − f

m1
eiωt.

Substituting the trial solution u = Aeiωt,

−Aω2 +
k(m1 +m2)

m1m2
A = − f

m1

A =
m2f

m1m2ω2 − k(m1 +m2)
.

The particular solution to our original equation is obtained by taking the

real component of u = Aeiωt, that is

u = A cosωt.

Substituting this expression of u into m1ẍ1 = f cosωt+ ku yields

ẍ1 =
f

m1
cosωt+

km2f

m1[m1m2ω2 − k(m1 +m2)]
cosωt.
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These terms cancel when

k = ω2m2.

18. Masses on Hoop***

Label the masses m, 2m and 2m from one to three, in a clockwise fashion

around the hoop. Then, let θ1, θ2 and θ3 represent the angular displacements

from their equilibrium positions. Let xi = Rθi for the sake of convenience.

Then, the equation of motions of the three masses can be shown to be⎛
⎜⎝
ẍ1

ẍ2

ẍ3

⎞
⎟⎠ =

⎛
⎜⎝
−4k
m

2k
m

2k
m

k
m − 3k

2m
k
2m

k
m

k
2m − 3k

2m

⎞
⎟⎠
⎛
⎜⎝
x1

x2

x3

⎞
⎟⎠ .

Guessing solutions of the form X = ueiωt,⎛
⎜⎝
−4k
m + ω2 2k

m
2k
m

k
m − 3k

2m + ω2 k
2m

k
m

k
2m − 3k

2m + ω2

⎞
⎟⎠
⎛
⎜⎝
u1

u2

u3

⎞
⎟⎠ = 0.

For non-trivial solutions to exist, the determinant of the first matrix must

be zero. One can show after some simplification that this is equivalent to

ω2

(
ω2 − 2k

m

)(
ω2 − 5k

m

)
= 0.

Therefore, the normal frequencies are ω1 =
√

2k
m and ω2 =

√
5k
m . Now, we

shall determine the corresponding normal modes. Substituting ω2
1 = 2k

m into

the matrix equation, ⎛
⎜⎝
−2k
m

2k
m

2k
m

k
m

k
2m

k
2m

k
m

k
2m

k
2m

⎞
⎟⎠
⎛
⎜⎝
u1

u2

u3

⎞
⎟⎠ = 0.

Solving for u, the eigenspace associated with the eigenvalue λ1 = −ω2
1 = −2k

m

is the collection of vectors

E 2k
m

= C1

⎛
⎜⎝

0

−1

1

⎞
⎟⎠
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for some scalar C1. Therefore, the normal mode associated with ω1 =
√

2k
m

is (0,−1, 1). Substituting ω2
2 = 5k

m into the matrix equation,⎛
⎜⎝

k
m

2k
m

2k
m

k
m

7k
2m

k
2m

k
m

k
2m

7k
2m

⎞
⎟⎠
⎛
⎜⎝
u1

u2

u3

⎞
⎟⎠ = 0.

The eigenspace associated with the eigenvalue λ2 = −ω2
2 = −5k

m is

E 5k
m

= C2

⎛
⎝−4

1

1

⎞
⎠

for some scalar C2. Therefore, the only normal mode associated with

ω2 =
√

5k
m is (−4, 1, 1). Lastly, notice that we only have four parameters

from these two solutions. Therefore, another independent solution is needed

for the general solution. Notice that ω2 = 0 also causes the determinant to

be zero — suggesting that the second derivatives of the displacements are

zero. Then, it is wise to guess a solution of the form u(C3t+ C4) where C3

and C4 are real. Substituting this into the original matrix equation would

yield vectors of the form

E0 = C5

⎛
⎝1

1

1

⎞
⎠

as solutions for u in such cases. This makes sense as it just means that

the masses are displaced by the same amount — causing the lengths of the

springs to remain constant. The general linear combination of the solutions is

E 2k
m
e
i
√

2k
m
t
+E 5k

m
e
i
√

5k
m
t
+E0(C3t+ C4).

The displacements of the masses are obtained by taking the real component

of the above.⎛
⎝x1x2
x3

⎞
⎠ = D1

⎛
⎝ 0

−1

1

⎞
⎠ cos

(√
2k

m
t+ φ1

)

+D2

⎛
⎝−4

1

1

⎞
⎠ cos

(√
5k

m
t+ φ2

)
+

⎛
⎝1

1

1

⎞
⎠ (D3t+D4),

where D1, D2, D3 and D4 are real scalars.
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Non-Inertial Frames

Even though Newton’s laws are only valid in inertial frames, certain

modifications can be made to extend them to accelerating and rotating

frames as well. This enables us to furnish a more accurate portrayal of sys-

tems on Earth — an inherently non-inertial frame that is rotating about its

axis and revolving around the Sun.

11.1 Purely Accelerating Frame

Consider a train undergoing a possibly time-varying acceleration R̈ with

respect to the ground, which is presumed to be an inertial frame. How should

the equations of motion of an experiment conducted in the train look like in

the train’s frame? Intuitively, one would expect that particles will experience

an additional −R̈ acceleration superimposed on the acceleration they would

have experienced in the ground frame — this is tantamount to each particle

experiencing an additional fictitious −mR̈ force in the train’s frame, where

m is its mass.

Let us take a more formal approach to this. The core idea behind deriving

the equations of motion in non-inertial frames is to apply Newton’s laws in

an inertial frame and then express the coordinates of the inertial frame in

terms of the coordinates of the non-inertial frame.

Let r0 be the position vector of a particular particle of interest with

respect to the ground frame and r be that with respect to the train’s frame.

Let R denote the origin of the train’s frame with respect to the ground frame

such that

r0 = R+ r (11.1)

=⇒ r̈0 = R̈+ r̈. (11.2)

577
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From Newton’s second law, we know that the net external force
∑

F on a

particle induces a proportional acceleration in an inertial frame.∑
F = mr̈0, (11.3)

where m is the mass of the particle. Multiplying Eq. (11.2) by m and sub-

stituting Eq. (11.3), ∑
F = mR̈+mr̈.

Rearranging,

mr̈ =
∑

F −mR̈. (11.4)

It can be seen that the equation of motion of a particle in the train’s frame

is akin to Newton’s law, provided that we introduce a fictitious −mR̈ force

known as the inertial force.

F inertial = −mR̈. (11.5)

As a word of caution,
∑

F is the sum of the real forces which are invari-

ant across different frames. However, F inertial is not a physical force and

varies across different frames as it originates from the changing origin of the

accelerating frame rather than interactions with concrete entities.

The inertial force is ubiquitous in real life. When the bus you take sud-

denly accelerates forward at R̈, an external ground observer would remark

that the friction force on your feet must bemR̈ wherem is your mass for you

to remain stationary with respect to the train. In the train’s frame (which is

also your frame in this case, as you remain relatively still), you would explain

that the friction force mR̈ balances the inertial force −mR̈ such that you

do not accelerate in this frame. On the other hand, if there were no friction,

the inertial force would simply fling you towards the back of the train until

you are cushioned by a barricade.

Problem: When a train with a frictionless floor accelerates forwards uni-

formly, a ball on the floor is flung towards the back. Now, consider a light

balloon filled with helium that is suspended from the ceiling of the train. At

equilibrium, in what direction does the balloon tilt towards?

In the train’s frame, there is an inertial force on the enclosed particles,

directed towards the back. When air in the train eventually attains equi-

librium, the pressure must decrease from the back to the front of the train

to counteract the inertial force on each air section. This pressure gradient

then results in a force on the balloon whose horizontal component is directed
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towards the front of the train. Since the inertial force on the balloon is negli-

gible due to its minuscule mass, the balloon must tilt towards the front of the

train so that the horizontal component of the constraint force of the ceiling

on the balloon can be directed towards the back of the train to balance the

forward force due to the tapering pressure.

Rigid Bodies

It is not hard to see that the total inertial force on a rigid body with mass

m should be −mR̈ as each mass element dm experiences an inertial force

−dmR̈ which symbolizes that the total force is − ∫ R̈dm = −mR̈. However,

where should the effective inertial force −mR̈ act at? The intuitive approach

is to notice the analogy between the inertial force and a region of uniform

gravitational field −R̈. The object cannot tell if it is under the influence

of the former or latter — implying that the effective inertial force −mR̈

should act at the center of mass of the object, in a manner similar to the

effective gravitational force. More rigorously, we can show that the torque

produced by the inertial force on a rigid body about an arbitrary origin

is equivalent to that due to an effective inertial force −mR̈ on the center

of mass of the object, about the same origin. Incidentally, this is also the

formal proof behind the fact that the effective gravitational force due to a

uniform field acts at the center of mass. Let r denote the position vector of

an infinitesimal mass element dm with respect to an arbitrary origin. Since

the torque on this element is −r × R̈dm, the total torque on the extended

body of interest is∫
−r × R̈dm =

(∫
rdm

)
×−R̈ = mrCM ×−R̈ = rCM × (−mR̈),

as
∫
rdm = mrCM where rCM is the position vector of the center of mass

by definition. The above shows that the effective inertial force −mR̈ resides

at the center of mass, rCM .

Problem: A uniform equilateral triangle of length l rests on the rough base

of a truck. The truck then undergoes a uniform acceleration a rightwards (in

the plane of the triangle). Assuming that the coefficient of static friction μ is

large enough, determine the largest acceleration amax for which the triangle

will remain static. What is the minimum μ for which the triangle remains

static for all accelerations smaller than amax? Finally, show that if a > amax
and if the triangle subsequently rotates about its left vertex (which remains

stationary relative to the ground), the triangle inevitably topples over.
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Figure 11.1: Forces on triangle

Switch to the accelerating frame of the truck and assume that the triangle

is static. The forces on the triangle are the inertial force, its weight, the

normal force due to the ground and friction. Balancing torques about the left

vertex, the anti-clockwise torques due to the inertial force (which acts at the

center of mass) and the normal force must nullify the clockwise torque due

to the triangle’s weight. Generally, the normal force will be distributed along

the base of the triangle and act in the upwards direction — producing an anti-

clockwise torque that is non-trivial to calculate. However, in the boundary

case where a is maximum, the anti-clockwise torque due to the normal force

must be minimum — implying that it should reside exactly at the left vertex

and contribute zero torque. Then, the torques due to the inertial force and

the weight of the triangle must cancel each other — implying that the net

force vector due to both forces, emanating from the center of mass, must

pass through the left vertex. In such a situation,

g

amax
= tan 30◦ =

1√
3

amax =
√
3g.

The inertial force in this case is mamax leftwards, where m is the mass

of the triangle, which implies that the friction force must be f = mamax
rightwards to ensure translational equilibrium in the horizontal direction.

Since the normal force must constantly be mg to balance the weight of the

object, the coefficient of static friction μ must satisfy

μ ≥ f

N
=
amax
g

=
√
3

for the triangle to remain static for all accelerations smaller than amax.

Finally, when a > amax, the triangle can no longer stay stationary and

begins to rotate about its left vertex. To show that the triangle eventually

topples over, we simply have to prove that the triangle is able to attain the

configuration where a vertical line along its center of mass passes through
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the left vertex that it rotates about. To this end, we simply have to show

that the kinetic energy of the triangle is positive for all configurations before

this particular configuration. Now, one might wonder if the angular velocity

of the triangle might be in the wrong direction (tending to turn it back into

the original position) while its kinetic energy is still positive. The resolution

to this query is that there cannot be a sudden discontinuity in the sign of

the triangle’s angular velocity (as the torque is finite) — if it begins at a

positive value, it will remain positive until it attains a null value (which we

shall prove to be impossible when it is in the process of rotating).

Instead of computing the kinetic energy of the triangle directly, we can

make the astute observation that the inertial force is conservative such that

we can ascribe a potential energy function to it (similar to the gravitational

potential energy with −a being the uniform gravitational field where a is the

acceleration of the truck) and demand that the change in the total potential

energy of the triangle is negative to show that its kinetic energy is positive

(since its initial kinetic energy is zero). Define the origin at the fixed vertex

that the triangle rotates about and the x and y axes to be positive right-

wards and upwards respectively. The potential energy of the triangle due to

the inertial force is max where x is the x-coordinate of its center of mass.

Denoting l as the length of the segment connecting the origin to the center

of mass and θ as the angle subtended by the position vector of the center of

mass and the vertical,

x = l sin θ.

The total potential energy of the triangle is

U(θ) = mal sin θ +mgl cos θ.

The initial potential energy is

U (60◦) =
√
3

2
mal +

1

2
mgl.

The change in potential energy from the initial state to a state at angle θ is

ΔU = mal

(
sin θ −

√
3

2

)
+mgl

(
cos θ − 1

2

)
.

For the sake of convenience, express a as a = kg for some constant k, so that

ΔU = mgl

(
k sin θ − k

√
3

2
+ cos θ − 1

2

)
.
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Our objective is to show that this is negative for all 0 < θ < 60◦ — this is

equivalent to showing that

k sin θ − k
√
3

2
+ cos θ − 1

2
< 0.

Substituting our boundary case a = amax such that k =
√
3, we wish to

prove

√
3 sin θ − 3

2
+ cos θ − 1

2
< 0

=⇒ 2 cos(θ − 60◦)− 2 < 0

for 0 < θ < 60◦. This is evidently true as cos(θ − 60◦) < 1 for 0 < θ < 60◦

(the maximum value of 1 occurs at the prohibited value of θ = 60◦). Finally,
to show that the relevant inequality is valid for larger values of k, simply

observe that sin θ−
√
3
2 < 0 for 0 < θ < 60◦ such that a larger value of k only

exacerbates the negative value of the left-hand side (through the k sin θ−k
√
3
2

term).

11.1.1 Tides

A classic application of the inertial force pertains to the rises and falls of the

sea levels on Earth, termed as high and low tides respectively. Tides arise

due to the disparity in the acceleration of different parts on Earth due to the

gravitational forces of the Sun and the Moon. Though the land on Earth can

be approximated as a spherical rigid body, the oceans are free to flow around

and thus can undertake non-spherical shapes due to the varying accelerations

at different points on Earth. A common misconception is that the Sun or

Moon pulls water towards the closer side of the Earth — forming a single

bulge. However, the paramount effect here is the difference in accelerations.

It is true that a mass on the closer side of the Earth (relative to the Sun

or Moon) experiences a greater acceleration than Earth, but it is also true

that the Earth experiences a greater acceleration than a mass located at the

further end of the Earth. The latter factor causes another bulge to develop

at the further end of the Earth — explaining the two observed high tides

per day. Ultimately, the formation of tides is a relative phenomenon.

Let us analyze the effect of the gravity of a single spherical object, of

uniform mass M , on Earth first. Define r0 as the position vector of a mass

m located on the surface of Earth with respect to the center of the massive

object, r, as that with respect to the center of Earth and R as the position
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Figure 11.2: Distortion of oceans due to massive object

vector of the Earth with respect to the center of the massive object. Since the

Earth accelerates at −GM
R3 R, the inertial force on m in the Earth’s frame is

F inertial =
GMm

R3
R.

The forces on m (including the fictitious forces) in the Earth’s frame can be

divided into three groups — the gravitational force due to M , the inertial

force F inertial and all other forces denoted by
∑

F others (e.g. the gravita-

tional force due to Earth).

F net = −GMm

r30
r0 +

GMm

R3
R+

∑
F others.

The last term persists in the absence of M while the first two terms arise

from the presence of M — the combination of these two additional terms is

known as the tidal force F tidal, where

F tidal = −GMm

(
r0
r30

− R

R3

)
. (11.6)

This tidal force is the impetus behind the deformation of the oceans. Usually,

r � R so we can make a few approximations and discard second-order terms

in r
R to simplify the expression for the tidal force. Since r0 = R+ r,

F tidal = −GMm

(
R+ r

|R+ r|3 − R

R3

)
.

The magnitude of r0 can be simplified via a binomial expansion.

|R+ r| =
√
R2 + r2 + 2R · r ≈ R

√
1 +

2R · r
R2

≈ R

(
1 +

R · r
R2

)
,

F tidal = −GMm

(
R+ r

R3
(
1 + R·r

R2

)3 − R

R3

)
(11.7)
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≈ −GMm

(
R+ r

R3

(
1− 3

R · r
R2

)
− R

R3

)
(11.8)

≈ −GMm

R3
(r − 3(R̂ · r)R̂). (11.9)

Let us consider a few special cases of the tidal force to get an intuitive feeling

for the shape of the ocean. When R̂ is parallel to r (i.e. at the closest and

furthest ends), (R̂ · r)R̂ = r.

F tidal =
2GMmr

R3
.

That is, the tidal force tends to push water radially outwards at these

locations — resulting in high tides of equal magnitude at the left and right

ends. When R̂ is perpendicular to r at the top and bottom of Earth in the

plane containing m and the centers of M and the Earth, R̂ · r = 0.

F tidal = −GMmr

R3
.

The tidal force “attracts” water towards the center of the Earth — resulting

in low tides at these locations. With a rough gauge of how the ocean sur-

face should look like, we can actually calculate the height of the high tides

with this model. The trenchant observation here is that the other forces

on a piece of fluid
∑

F others consist of mg, the gravitational force due to

Earth, and the buoyant force due to neighboring fluid segments which is per-

pendicular to the surface of the fluid, as a fluid cannot withstand or exert

any shear force (forces parallel to its surface) without deformation. There-

fore, for a piece of fluid to not deform, the gravitational force due to the

Earth and the tidal force must be perpendicular to its surface. If we are

able to define a potential energy function for the tidal force, the surface of

the ocean must correspond to an equipotential surface as the force, which is

the negative gradient of the potential energy, must be perpendicular to the

surface.

It is easy to guess a potential energy function for the tidal force if we

express Eq. (11.9) in terms of Cartesian coordinates. Define the x and y axes

to be positive rightwards and upwards, with the origin located at the center

of Earth. If an element of mass m is located at (x, y),

F tidal =
2GMmx

R3
î− GMmy

R3
ĵ.
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One can check that the negative gradient1 of

Utidal = −GMmx2

R3
+
GMmy2

2R3
(11.10)

indeed results in the force above — implying that it is the correct tidal

potential energy. The total potential energy of a fluid element is the sum of

the tidal potential energy and the gravitational potential energy associated

with its interactions with Earth. The latter shall be denoted by Ugrav. Since

the ocean surface is equipotential, the total potential energy at the top end

should be equal to that at the right end, and

Ugrav,top + Utidal,top = Ugrav,right + Utidal,right,

Ugrav,right − Ugrav,top = Utidal,top − Utidal,right.

The left-hand side is simply mgh where g is the gravitational field strength

at the surface of Earth and h is the height difference between the low and

high tides as h should be small when compared to Re, the radius of Earth. In

fact, h can also be taken to be the altitude of the high tide as the altitude of

the low tide should be approximately zero. In evaluating the tidal energies,

the coordinates of the top and right ends can be taken at (0, Re) and (Re, 0)

respectively as h is small compared to Re, and is hence even smaller when

compared to R. Substituting these expressions,

mgh =
3GMmR2

e

2R3

h =
3GMR2

e

2gR3
.

By Gauss’ law, g = GMe
R2

e
where Me is the mass of Earth. Thus,

h =
3MR4

e

2MeR3
. (11.11)

Using the actual parameters (Me = 5.98 × 1024kg, Re = 6.37 × 106m for

Earth and M = 7.35 × 1022kg, R = 3.84 × 108m for the Moon), the height

1Actually, we can also easily guess a potential energy function for the exact tidal force
given by Eq. (11.6) but subsequent approximations would still yield the same expression
as Eq. (11.10).
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of the high tide caused individually by the Moon is

hMoon = 54cm.

On the other hand, using the values (M =1.99 × 1030kg and R=

1.50 × 1011m) for the Sun yields

hSun = 25cm.

Since both of these values are significant, the height of high tides depends

on the relative orientations of the Earth, Moon and Sun. If the centers are

collinear, the effects of the Moon and Sun are reinforced such that the pre-

dicted value for the high tide attains the maximum altitude

hspring = 54 + 25 = 79cm.

These tides are known as spring tides. If the lines joining the center of Earth

to the Moon and Sun are mutually perpendicular, the effects of the Moon

and Sun counteract each other such that high tides of the minimum altitude,

known as neap tides, are formed:

hneap = 54− 25 = 29cm.

That said, take these altitudes with a pinch of salt as there are many com-

plications that this model has not accounted for. For example, the Earth is

not perfectly spherical due in part to the equatorial bulge stemming from

the centrifugal force (discussed later). The existence of bordering continents

in certain regions also help to clump water together, producing larger tides.

However, the order of magnitude of these altitudes are consistent with the

observed values, so the above model is still useful in this sense.

11.2 Accelerating and Rotating Frame

Most generally, a frame can accelerate translationally and rotate at an angu-

lar velocity ω with respect to an inertial frame. It was shown in Section 3.5.1

that the rate of change of a vector A of fixed length emanating from a fixed

origin and rotating at an angular velocity ω in a frame is

dA

dt
= ω ×A. (11.12)

This relationship will be very useful later. Adopting the same notation as

the previous section, let r0 be the position vector of a particle of interest

with respect to an inertial frame S, r be that with respect to a non-inertial

frame S’ of concern and R be the position vector of the origin O′ of S’ with
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Figure 11.3: Inertial frame S and non-inertial frame S’

respect to the origin O of S (Fig. 11.3). S’ possesses an angular velocity ω

and possibly accelerates translationally relative to S.

From the basic principles of vector addition,

r0 = R+ r =⇒ d2r0
dt2

=
d2R

dt2
+
d2r

dt2
.

We will stick to the notation d
dt for time derivatives instead of the dot nota-

tion, for the sake of greater clarity. From Newton’s second law, we know

that ∑
F = m

d2r0
dt2

,

where m is the mass of the particle. The two equations above yield

∑
F = m

d2R

dt2
+m

d2r

dt2
. (11.13)

Our objective is to relate the acceleration as perceived in the non-inertial

frame S’, to
∑

F . To this end, though the equation above quintessentially

involves vector quantities which can be evaluated in any frame and are frame-

independent, we should express r in terms of the basis vectors î′, ĵ′ and k̂′

in S’, as

r = rx′ î
′ + ry′ ĵ

′ + rz′k̂
′.

Instead of deriving d2r
dt2 directly, we can first create an important tool that will

expedite this process. Let us determine dA
dt for a general vector A given by

A = Ax′ î
′ +Ay′ ĵ

′ +Az′ k̂
′.
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The rate of change of A emerges from the changes in the components of A

in the coordinate system of S’ and the change in the basis vectors of S’:

dA

dt
=

(
dAx′

dt
î′ +

dAy′

dt
ĵ′ +

dAz′

dt
k̂′
)
+Ax′

d̂i′

dt
+Ay′

dĵ′

dt
+Az′

dk̂′

dt
.

The first three terms correspond to the rate of change of A as observed in

the non-inertial frame, as the basis vectors of a particular frame are not

perceived to change in that frame. We will denote them as dA
dt

∣∣
rot

. Next, to

determine the rate of change of the basis vectors, notice that these vectors

are of fixed length and are rotating at angular velocity ω with respect to S.

Applying Eq. (11.12),

d̂i′

dt
= ω × î′,

dĵ′

dt
= ω × ĵ′,

dk̂′

dt
= ω × k̂′.

Overall,

dA

dt
=
dA

dt

∣∣
rot

+ ω ×
(
Ax′ î

′ +Ay′ ĵ
′ +Az′ k̂

′
)

dA

dt
=
dA

dt

∣∣
rot

+ ω ×A. (11.14)

We can express the above in a more illuminating form, in terms of operators.

d

dt
=

d

dt

∣∣
rot

+ ω×

When we apply d
dt to a vector, it is equivalent to applying the right-hand

side to that vector too. Armed with this tool, we can compute dr
dt in our

original problem by applying the above to r.

dr

dt
=
dr

dt

∣∣
rot

+ ω × r. (11.15)

Applying the operator again, we can procure our desired d2r
dt2

∣∣
rot

(acceleration

as observed in S’).

d2r

dt2
=

d

dt

(
dr

dt

∣∣
rot

)
+
dω

dt
× r + ω × dr

dt

=

(
d

dt

∣∣
rot

+ ω×
)
dr

dt

∣∣
rot

+
dω

dt
× r + ω ×

(
dr

dt

∣∣
rot

+ ω × r

)
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=
d2r

dt2

∣∣
rot

+ ω × dr

dt

∣∣
rot

+
dω

dt
× r + ω × dr

dt

∣∣
rot

+ ω × (ω × r)

=
d2r

dt2

∣∣
rot

+ ω × (ω × r) + 2ω × dr

dt

∣∣
rot

+
dω

dt
× r.

For the sake of brevity, denote arot =
d2r
dt2

∣∣
rot

and vrot =
dr
dt

∣∣
rot

as the accel-

eration and velocity observed in the non-inertial frame, respectively. Then,

d2r

dt
= arot + ω × (ω × r) + 2ω × vrot +

dω

dt
× r. (11.16)

Substituting Eq. (11.16) into (11.13),

∑
F = m

(
d2R

dt2
+ arot + ω × (ω × r) + 2ω × vrot +

dω

dt
× r

)
.

Rearranging,

marot =
∑

F −m
d2R

dt2
−mω × (ω × r) + 2mvrot × ω −m

dω

dt
× r

(11.17)

=
∑

F + F inertial + F cen + F cor + F azi, (11.18)

where the corresponding fictitious forces are termed the inertial, centrifugal,

Coriolis and azimuthal forces respectively. Since the inertial force has already

been explicated, we proceed with the centrifugal force.

11.3 Centrifugal Force

The origin of the centrifugal force F cen = −mω × (ω × r) becomes lucid

when we first view the situation from an inertial frame. Consider a ball

that is connected to a fixed pivot via an inextensible string of length r on a

frictionless table. If the ball undergoes circular motion with an instantaneous

angular speed ω, the instantaneous tension in the string must be −mrω2,

where the negative sign indicates that the force is directed radially inwards,

to provide the required centripetal acceleration. On the other hand, if we

switch to the frame of the ball, the centrifugal force on the ball is

F cen = −mω × (ω × r) = −m [ω(ω · r)− r (ω · ω)] = 0 +mω2r, (11.19)

as ω is perpendicular to r in this case. As implied by its nomenclature, the

centrifugal force is directed radially outwards as it tends to throw objects

away from the center. We say that in this frame, the tension on the ball

balances the centrifugal force. In a certain sense, the cause and effect are
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reversed. In an inertial frame, some force must provide the centripetal accel-

eration required by a particle to undergo circular motion, while in a frame

rotating at ω relative to the inertial frame, the centrifugal force acts as a

litmus test for whether the particle can indeed rotate at ω in the inertial

frame by checking if some force can counteract it. Note that these state-

ments easily extend to the more general case where ω is not perpendicular

to r — the centrifugal force is simply directed radially outwards from the

center of rotation in the plane perpendicular to ω that contains the rotating

particle (which is at a perpendicular distance r sin θ from the rotational axis

ω, where θ is the angle between ω and r).

Problem:Modeling the Earth as a uniform and rotating sphere, explain why

a plumb line (the string connecting a bob to a pivot at equilibrium) on Earth

does not point towards the center of Earth in general. Determine the angle α

that the plumb line makes with the true gravitational force on the bob due

to Earth as a function of θ, the colatitude on Earth at which the experiment

is conducted, in terms of self-defined parameters. Note that the colatitude

on a point on the surface of Earth refers to the angle subtended by the line

joining the center of the Earth to the North pole and the line joining the

center of the Earth to that particular point.

The plumb line does not point towards the center of the Earth as the bob

experiences a centrifugal force in addition to the gravitational force due

to the Earth. The string must then be adjusted accordingly to balance

these forces. Denote g0 as the actual gravitational field (g0 ≈ 9.81ms−2)

at the location of the experiment due to the Earth. r is the position vector

of the location of the experiment, relative to the origin defined at the center

of Earth. The effective gravitational field strength g arises from the vector

sum of g0 and the centrifugal force F cen (whose direction is depicted below).

g = −g0r̂ + F cen = −g0r̂ −mω × (ω × r).

Figure 11.4: Effective gravity at colatitude θ
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The radial and tangential components of g are

gr = −(g0 − Fcen · sin θ) = −(g0 −mr sin2 θω2),

gt = Fcen · cos θ = mrω2 sin θ cos θ.

Therefore,

α = tan−1

∣∣∣∣ gtgr
∣∣∣∣ = tan−1 rω

2 sin θ cos θ

g0 − rω2 sin2 θ
.

Incidentally, this means that we have to revamp our definition of the vertical.

Usually, the vertical is defined as the direction along g rather than g0 as the

latter is difficult to measure (excluding the special case at the equator).

Another consequence of the above is that one weighs less near the equator,

where gr is minimum, than at the poles where gr is maximum.

11.3.1 Centrifugal Potential

We can in fact ascribe a potential energy function to the centrifugal force,

owing to its conservative nature. Consider the work done by the centrifugal

force along a certain path while letting r denote the position vector of a

point along the path relative to the origin of the non-inertial frame.

Wcen =

∫
F cen · dr

=

∫
m [(ω · ω)r − (ω · r)ω] · dr

=

∫
mω2r · dr −

∫
m(ω · r)ω · dr

=

∫
1

2
mω2d(r · r)−

∫
1

2
md [(ω · r) · (ω · r)]

= Δ

(
1

2
mω2r2 − 1

2
m |ω · r|2

)

= Δ

(
1

2
mω2r2 sin2 θ

)
,

where θ is the angle subtended by ω and r, while r is the distance from the

origin of the non-inertial frame. Note that the integral is performed along

the entire path that we have chosen. Observe that the work done is path-

independent as it is only dependent on the initial and final values of r and θ.

Since the change in potential energy between two states is defined as the
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negative work done by a conservative force along a path between them, the

centrifugal potential energy can be defined as

Ucen = −1

2
mω2r2 sin2 θ, (11.20)

by setting the zero reference point at θ = 0. Another way to express the

above is Ucen = −1
2mω

2r2⊥, where r⊥ is the perpendicular distance of the

point of concern to the axis of rotation. The negative value of Ucen, which is

amplified with increasing r⊥, implies that particles tend to be propeled away

from the axis of rotation in an attempt to minimize their potential energies.

Equatorial Bulge of Earth

The rotation of the Earth causes it to deviate from a perfectly spherical

shape as the centrifugal force engenders the stretching of the equator. The

equatorial bulge of Earth refers to the difference in the equatorial and polar

diameters of Earth and is empirically measured to be 42.7km. A theoretical

estimate of this value can be obtained by requiring the surface of the Earth

to be equipotential — for the same reasons underscored in the section on

tides. The two components of the potential are the gravitational potential

due to the Earth and the centrifugal potential. Let R be the radius of the

Earth if it were to be perfectly spherical (i.e. we turn off the centrifugal force)

and (r, θ) be the polar coordinates of a point on the actual surface of the

Earth. Define h = r − R as the excess altitude beyond R — it is presumed

that h� R. In approximating the gravitational potential, the gravitational

field strength can be taken to be that at the surface of Earth, g0, as h� R,

and the zero reference point can be set at r = R. The potential at (r, θ) is

then

g0h− 1

2
ω2r2 sin2 θ = c,

where ω is the angular speed of the Earth’s rotation about its own axis and

c is some constant. Rearranging,

h =
c

g0
+
ω2r2 sin2 θ

2g0
.

We can replace r with R here without much penalty as ω2

g0
is already small

in the case of the Earth.

h =
c

g0
+
ω2R2 sin2 θ

2g0
= b− ω2R2 cos2 θ

2g0
,
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where b = c
g0
+ ω2R2

2g0
is another constant. To set the value of b, we can enforce

the condition that the volume of the deformed sphere should still be equal

to the volume of the original sphere. This is equivalent to saying that the

integral of h over the surface of the original sphere is zero.∫ π

0

∫ 2π

0
hR2 sin θdφdθ =

∫ π

0
h2πR2 sin θdθ = 0.

Substituting the expression for h,∫ π

0

(
b− ω2R2 cos2 θ

2g0

)
2πR2 sin θdθ =

[(
−b cos θ + ω2R2 cos3 θ

6g0

)
2πR2

]π
0

= 2πR2

(
2b− ω2R2

3g0

)
.

For this integral to be zero,

b =
ω2R2

6g0

=⇒ h(θ) =
ω2R2

6g0
− ω2R2 cos2 θ

2g0
=
ω2R2

6g0

(
1− 3 cos2 θ

)
.

The excess polar altitude is h(0) = −ω2R2

3g0
while the excess equatorial alti-

tude is h(π2 ) =
ω2R2

6g0
. The equatorial bulge is thus

2h
(π
2

)
− 2h(0) =

ω2R2

g0
.

Substituting the actual values (ω = 7.29 × 10−5s−1, R = 6.37 × 106m and

g0 = 9.81ms−2), the hypothetical equatorial bulge is roughly 22.0km, which

is the same order of magnitude as the observed value (42.7km) but is still

significantly off. The reason behind this non-negligible discrepancy is that

in writing the potential as g0h, we have implicitly assumed that the Earth

was spherically symmetric with radius R. However, the whole point of this

exercise is to show that it is not! To rectify this issue, one can perform

one more iteration to compute a more accurate gravitational potential by

treating the actual Earth as a superposition of a uniform sphere of radius R

and a shell of height h(θ) above the sphere and adding the contribution of the

latter to g0h. It turns out that this method would produce a correction factor

of roughly 5
2 which narrows the gap between the predicted and observed

equatorial bulges. The remaining discrepancy mainly stems from the fact

that the mass of the Earth is not uniformly distributed.
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11.3.2 Rigid Bodies

An interesting question is to determine the net translational effect of the

centrifugal force exerted on an extended body of total mass m. Each point

on the body experiences a different centrifugal force so we have to sum up

the contributions from all points to compute the net force.

F cen =

∫
[−(ω · r)ω + (ω · ω)r] dm = −ω

(
ω ·
∫

rdm

)
+ ω2

∫
rdm.

Since
∫
rdm = mrCM where rCM is the position vector of the center of

mass of the extended body by definition,

F cen = −mω(ω · rCM ) +mrCMω
2 = −mω × (ω × rCM ).

That is, the net centrifugal force on an extended body of total mass m is

effectively that on a point mass m located at the center of mass. However,

there is no way to ascribe this net centrifugal force to a single point of

action — one has to manually integrate the torque experienced by each

infinitesimal element due to the centrifugal force to compute the total torque

experienced by the body. Despite this limitation, the expression for the net

centrifugal force, coupled with
∑

F = maCM for a rigid body, can yield

illuminating results in situations where only the translational motion of a

rigid body is of concern.

Problem: A uniform thin rod of mass m and length l is constrained to slide

within a tube of negligible mass that is rotating at initial angular velocity ω0

around its center. The center of the rod is initially aligned with the center

of the tube. Show that the center of the tube corresponds to an unstable

equilibrium for the rod (when their centers coincide) in the direction along

the tube. Furthermore, show that the rod will travel to infinity (assuming

that the tube is long enough) if it slightly deviates from the center of the

tube with a negligible initial velocity.

Let r be the radial distance of the center of the rod from the center of

the tube and ω be the instantaneous angular speed of the rod and tube.

In the frame rotating at ω with respect to the lab frame (i.e. the tube),

the centrifugal force is mrω2 outwards. Combining this with the fact that∑
F = maCM for a rigid body,

mr̈ = mrω2

r̈ = rω2.

Therefore, r = 0 corresponds to an equilibrium position, regardless of the

value of ω. Furthermore, it is an unstable equilibrium as r̈ always has the
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same sign as r (for all instantaneous ω) such that the rod tends to deviate

further away from the center of the tube. In order to solve the above differ-

ential equation, we first have to express ω in terms of r via the conservation

of angular momentum. When the rod is at radial position r and the tube is

rotating at angular velocity ω, the total angular momentum is

L = mrvCM + ICMω,

where vCM = rω is the tangential velocity of the center of mass of the rod

and ICM = 1
12ml

2 is the moment of inertia of a uniform rod about its center.

Since the initial value of L is 1
12ml

2ω0,

m

(
r2 +

l2

12

)
ω =

1

12
ml2ω0

ω =
l2ω0

12r2 + l2

=⇒ r̈ =
l4ω2

0r

(12r2 + l2)2
.

Using the trick r̈ = dṙ2

2dr ,∫ ṙ2

0
d(ṙ2) =

∫ r

0

2l4ω2
0r

(12r2 + l2)2
dr

ṙ2 =
l2ω2

0

12
− l4ω2

0

12(12r2 + l2)
=

l2ω2
0r

2

12r2 + l2
.

Since ṙ must always be positive (in light of r̈ = rω2),

ṙ =
lω0√
12 + l2

r2

.

We can directly argue from the above expression that r should tend to infin-

ity. As r increases, ṙ increases — thereby leading to a self-perpetuating

vicious cycle. The rod thus slides to infinity as an increasing series cannot

converge (r is the integral of ṙ over time, which is tantamount to summing

up individual values of ṙ multiplied by small time intervals). This is best

illustrated when r � l as ṙ is approximately constant at lω0

2
√
3
.
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11.4 Coriolis Force

The Coriolis force is

F cor = 2mvrot × ω. (11.21)

To understand the cause of the Coriolis force intuitively, first consider a per-

son traveling along a straight radial line at a constant outwards velocity v on

a merry-go-round in the lab (inertial) frame. The merry-go-round is rotating

at angular speed ω anti-clockwise in the lab frame. Since the person is trav-

eling at a constant velocity in the inertial frame, he must not experience any

net real force such that his acceleration in the frame of the merry-go-round,

if any, must be solely due to the fictitious forces. Suppose the person travels

a radial distance dr = vdt from r to r + dr in time dt. Observe that a spot

on the carousel at radius r would have traveled distance rωdt in that time

while a spot on the carousel at radius r + dr would have traveled distance

(r + dr)ωdt. Therefore, when the person traverses distance dr, he does not

land on the same radial line on the carousel (though he does with respect to

a stationary line in the lab frame) — he lies on another one that is displaced

by a tangential distance −drωdt (negative as this is clockwise) with respect

to the original one. Therefore, there must have been a clockwise tangential

acceleration a in the frame of the carousel, which is essentially constant over

the small time interval dt. From basic kinematics,

1

2
a(dt)2 = −drωdt = −vω(dt)2

a = −2vω.

This component of the Coriolis force then accounts for the tangential accel-

eration in this case (note that v is also the radial velocity in the carousel’s

frame). Now, a puzzling question to ponder is why the tangential speed only

changes by −vωdt from −rω to −(r + dr)ω in time dt in the frame of the

carousel even though the tangential acceleration is −2vω. This discrepancy

is due to the fact that the radial vector of the person is constantly chang-

ing — causing the tangential unit vector to follow suit (this is similar to a

common misconception in polar coordinates). We cannot simply integrate a

to obtain the tangential velocity as the direction of the tangential accelera-

tion is changing. Instead, we use the following relationship of the tangential

acceleration in polar coordinates:

aθ = rθ̈ + 2ṙθ̇,

where θ is the angle between the horizontal axis of the rotating frame and

the position of the particle. Currently θ̇ = −ω, as the person who does not



July 10, 2018 12:24 Competitive Physics 9.61in x 6.69in b3146-ch11 page 597

Non-Inertial Frames 597

have an angular velocity in the lab frame possesses a clockwise angular speed

ω in the rotating frame of the carousel. Substituting aθ = −2vω, ṙ = v and

θ̇ = −ω at the current instance,

rθ̈ = 0,

which means that θ̇ remains at −ω at the next instance. Therefore, the

tangential velocity at the next instance is just −(r + dr)ω. But wait, why

can we then presume that the distance covered by the person in time dt in

the carousel’s frame was 1
2a(dt)

2? Well, this is because a, by proposition, is

always tangential to the position vector of the person such that 1
2a(dt)

2 really

represents the distance along an arc (which we equated to −drωdt) between
two corresponding points at the same radial distance r on two adjacent radial

lines of the carousel, that are separated by an angle ωdt. When we compute

the increase in tangential velocity, we take the straight line distance between

those two points (which is the additional displacement2 covered in time dt

due to the increase in tangential velocity) and divide it by the infinitesimal

time interval dt. As dt→ 0, this straight line distance becomes the length of

the arc so that the change in tangential velocity is 1
2adt = −vωdt = −drω,

which is consistent with the change from −rω to −(r + dr)ω.

Now, let us consider a different set-up to elucidate the radial component

of the Coriolis force. The person now travels at an instantaneous tangential

speed v anti-clockwise at distance r in the frame of the carousel — symboliz-

ing that the person travels at an anti-clockwise tangential speed v+rω in the

lab frame. It is presumed that the person is again free from real forces. In the

lab frame, after time dt, the radial coordinate would have changed from r to

r + dr =
√
r2 + (v + rω)2(dt)2 = r

√
1 +

(v + rω)2

r2
(dt)2

≈ r

(
1 +

(v + rω)2

2r2
(dt)2

)
,

dr =
1

2

(
v2

r
+ 2vω + rω2

)
(dt)2.

Then, from basic kinematics again (with ṙ = 0 initially and with r̈ approx-

imately constant over dt),

1

2
r̈(dt)2 =

1

2

(
v2

r
+ 2vω + rω2

)
(dt)2

=⇒ r̈ =
v2

r
+ 2vω + rω2.

2Note that this is not the distance.
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Observe that r̈ must be the same in both frames as their origins are rela-

tively stationary. Now, let us consider the perspective of the carousel. The

radial forces here are the centrifugal force mrω2 and possibly the Coriolis

force. Applying F = ma in polar coordinates,

mrω2 + Fcor = mr̈ −m
v2

r
,

where v2

r is the instantaneous centripetal acceleration term (of the person)

in the carousel’s frame (do not confuse this with rω2). Equating the two

above expressions for r̈, we find that there must be a radial Coriolis force

Fcor = 2mvω.

Now that we have obtained an intuitive feeling for the advent of the Cori-

olis force, there is an interesting analogy between it and the magnetic force

experienced by a charge. 2m corresponds to the charge while ω is akin to

the magnetic field. This analogy is not profound in any sense but it helps us

to determine the direction of the Coriolis force. It is always perpendicular

to the instantaneous velocity of a particle in a rotating frame and hence

does no work. Furthermore, if ω is pointing out of the page, all particles are

deflected towards the right (in the page) of their instantaneous velocities,

regardless of their exact positions and velocities. Otherwise if ω points into

the page, all particles are deflected towards the left of their instantaneous

velocities. An intriguing application of this analogy is illustrated below.

Problem: A −kr force is exerted on a particle of mass m where r is the

position vector of the particle from the origin. Show that under arbitrary

initial conditions, the trajectory of the particle is generally an ellipse. You

do not have to calculate the specific parameters of the ellipse.

The first observation is that the angular momentum of the particle must

be conserved as the force is radial — a typical property of any central force

problem. Hence, the motion of the particle is restricted to the plane perpen-

dicular to the angular momentum vector — reducing this problem to two

dimensions. Instead of solving a particular case of the central force problem

head-on, we can switch to a new frame S’ that rotates at a certain angu-

lar velocity ω (perpendicular to the plane of motion) with respect to the

lab frame S such that the centrifugal force exactly cancels the central −kr
force. When r is perpendicular to ω, the centrifugal force becomes mω2r by

Eq. (11.19). The particle’s equation of motion in S’ is thus

marot = −kr +mω2r + 2mvrot × ω.
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Choosing

ω =

√
k

m

causes the centrifugal force to cancel the central force at all times. Then,

marot = 2mvrot × ω.

This equation of motion is analogous to that of a charged particle in a

uniform magnetic field and describes circular motion, as the acceleration is

always perpendicular to the instantaneous velocity — thus maintaining its

magnitude and providing a centripetal acceleration. The angular frequency Ω

of this circular motion (refer to the chapter on magnetism) can be computed

from the fact that arot is the centripetal acceleration for a constant speed

vrot; arot = vrot|Ω|.

mvrot|Ω| = 2mvrot|ω|
=⇒ |Ω| = 2|ω|.

Now, what is the direction of Ω? Suppose that the plane of motion of the

particle is this page and ω points out of the page (anti-clockwise). A particle

with any position and velocity is deflected rightwards of their instantaneous

velocity — implying that it tends to travel clockwise. Hence, Ω = −2ω. The

radius of circular motion R can easily be computed as

R =
vrot
Ω

=
vrot
2ω

,

where vrot is the constant speed in S’ (it can be calculated by |v0 +ω × r0|
where v0 and r0 are the initial velocity in S and the initial position vector

of the particle respectively). Since the particle undergoes circular motion at

Ω about a certain center C in S’, its coordinates (x′, y′) obey

x′ + iy′ = C0 +Rei(Ωt−φ1),

where C0 is a certain complex number. To see why this is so, simply imagine

this complex number in the complex plane. The real part represents the x′

coordinate while the complex part corresponds to the y′ coordinate. Evi-
dently, the trajectory of the complex number is a circle of radius R about

the center at coordinate C0 (with angular velocity Ω) and corresponds to

the trajectory of the particle. φ1 delineates the initial position of the par-

ticle with respect to the center. For the sake of convenience, express C0 in
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polar form

C0 = ceiφ2 ,

where c is the distance of the center of rotation from the origin in S’ (which

overlaps with the origin in S). The computation of c is rather straightforward,

albeit tedious, and is left to the reader.

x′ + iy′ = ceiφ2 +Rei(Ωt−φ1).

To transform these coordinates in S’ into those in S, observe that the axes

of S’ would have rotated an anti-clockwise angle ωt with respect to those

of S at time t. Thus, a vector that makes an anti-clockwise angle θ with

respect to the x’-axes at time t would make angle θ+ωt with respect to the

x-axes. We simply have to multiply x′ + iy′ by eiωt to obtain the complex

representation x+ iy in S, where (x, y) are the instantaneous coordinates of

the particle in S.

x+ iy = (x′ + iy′)eiωt =
(
ceiφ2 +Rei(Ωt−φ1)

)
eiωt = cei(ωt+φ2) +Re−i(ωt+φ1)

as Ω = −2ω. The x and y coordinates in S are the real and complex compo-

nents of this complex number, respectively.

x = c cos(ωt+ φ2) +R cos(ωt+ φ1),

y = c sin(ωt+ φ2)−R sin(ωt+ φ1).

It is hard to see why these parametric equations represent an ellipse at the

first glance so consider the special case where φ1 = φ2 = φ for now. Then,

x = (R+ c) cos(ωt+ φ),

y = (c−R) sin(ωt+ φ)

=⇒ (R − c)2x2 + (R+ c)2y2 = (R2 − c2)2.

Assuming R 	= c (one can show that this occurs only if the initial velocity

in S is purely radial),

x2

(R+ c)2
+

y2

(R− c)2
= 1,

which is the standard equation of an ellipse. Now, what about the case

where φ1 	= φ2? Consider the multiplication of x+ iy with e−i(
φ1−φ2

2
) which
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represents the transformation of coordinates from the axes in S to those with

respect to a new set of axes in S” that are rotated φ1−φ2
2 anti-clockwise with

respect to the former.

(x+ iy)e−i(
φ1−φ2

2
) = cei(ωt+

φ1+φ2
2

) +Re−i(ωt+
φ1+φ2

2
).

Since the angles in the exponents are equal, the trajectory of the particle with

respect to the new set of axes in S” is an ellipse, as implied by the previous

result. Therefore, the trajectory of the particle in S is a tilted ellipse with

semi-axes lengths R+c and |R−c|, rotated by an anti-clockwise angle φ1−φ2
2

with respect to the positive x-axis.

11.4.1 Deflection of Free-Falling Objects

A prominent manifestation of the Coriolis effect is the eastwards deflection of

a projectile near the surface of Earth. Let ω be the angular velocity of Earth

and r denote the instantaneous vector pointing from the center of Earth to

the projectile — we assume that the range of the projectile is small relative

to the radius of Earth such that its colatitude and r̂ remain constant. The

projectile’s equation of motion in Earth’s rotating frame is

ma = −mg0r̂ −mω × (ω × r) + 2mv × ω,

where we have dropped the subscript “rot”. In this analysis, we will be

ignoring terms that are second order in ω so the centrifugal term is negligible.

Then,

ma = −mg0r̂ + 2mv × ω.

Integrating the above,

v = v0 − g0tr̂ + 2 (r − r0)×ω,

where v0 and r0 are the initial velocity and position of the object. Substi-

tuting this expression for v into a,

a = −g0r̂ + 2 [v0 − g0tr̂ + 2 (r − r0)× ω]× ω.

Neglecting the second-order term in ω,

a = −g0r̂ + 2v0 × ω − 2g0tr̂ ×ω.
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Figure 11.5: Coordinate system at colatitude θ

Integrating this again and using the fact that v = v0 initially,

v = v0 − g0tr̂ + 2tv0 ×ω − g0t
2r̂ × ω.

Integrating this one last time and using the initial condition r = r0 at t = 0,

r = r0 + v0t− 1

2
g0t

2r̂ + t2v0 ×ω − 1

3
g0t

3r̂ × ω. (11.22)

To visualize this result, consider the plane containing ω and r0 with ω being

the vertical axis, pointing from the South pole to the North pole (Fig. 11.5).

Define the origin at the surface of the Earth at which r0 intersects, the

positive z-axis to be aligned with r̂0 (such that r̂ = k̂) and the positive x-

axis to point tangentially northwards in this plane. Then, the positive y-axis

can be defined from the fact that î × ĵ = k̂ for a conventional coordinate

system and is directed westwards (opposite to the direction that the origin

tends to rotate towards, and is out of the page in this case). This coordinate

system is fixed to the Earth (i.e. rotating).

Besides the first three terms, r0 + v0t − 1
2g0t

2r̂, that we expect of a

standard projectile motion, there is an additional expression t2v0 × ω −
1
3g0t

3r̂ × ω. The latter −1
3g0t

3r̂ × ω term is dominant in the long run

and yields an additional 1
3g0t

3ω sin θ displacement eastwards (into the page)

where θ is the approximately constant angle between ω and r.

11.4.2 Foucault Pendulum

The Foucault pendulum is a famous device that demonstrates the rotation

of Earth. Due to the rotation of the Earth, the plane of oscillation of a

swinging pendulum precesses in the frame of the Earth, at a rate that is

dependent on the colatitude θ at which the experiment is conducted. This
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Figure 11.6: Coordinate system with pendulum

is obvious when θ = 0 as an external inertial observer (possibly located

on the distant, fixed stars) would observe the pendulum to swing in a

single plane while Earth rotates at angular speed ω beneath it. Thus, in

the frame of the Earth, the plane of oscillation of the pendulum should

precess at −ω.
Moving on to the general case while adopting the coordinate system

defined in Fig. 11.5, ω = (ω sin θ, 0, ω cos θ).

In the frame of the Earth, define the origin at the fixed point of the rope

holding the pendulum. Let the coordinates of the pendulum be (x, y, z).

Then, if T is the tension in the string, its components are (−Tx
l ,−Ty

l ,−Tz
l )

where l is the length of the string (Fig. 11.6). For small oscillations,

the rope does not deviate much from the z-axis such that x and y are

small and z is approximately −l. The tension vector is then approximately

T = (−Tx
l ,−Ty

l , T ). The equation of motion of the pendulum in the Earth’s

frame is

ma = −mg0k̂ + 2mv × ω + T ,

where we have neglected the centrifugal term. For z ≈ −l, ż and z̈ are both

small. This, coupled with the fact that the z-component of the Coriolis term

disappears when ẏ is small, shows that the z-component of T must nullify

−mg0k̂ so that z̈ = 0. Then,

T = mg0.
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The equation of motion becomes

a =

⎛
⎜⎝
ẍ

ÿ

z̈

⎞
⎟⎠ =

⎛
⎜⎝
− g0x

l

− g0y
l

0

⎞
⎟⎠+ 2

⎛
⎜⎝
ẋ

ẏ

ż

⎞
⎟⎠×

⎛
⎜⎝
ω sin θ

0

ω cos θ

⎞
⎟⎠ .

In terms of its components,

ẍ = −g0
l
x+ 2ω cos θẏ,

ÿ = −g0
l
y − 2ω cos θẋ,

z̈ ≈ 0,

for small ẏ and ż. Now, we define a new complex variable η = x + iy and

add the second equation multiplied by i to the first. Defining ω2
0 = g0

l as the

natural frequency of the pendulum,

η̈ = −ω2
0η − 2iω cos θη̇.

Guessing an exponential solution of the form η = η0e
αt and solving for α,

α2 = −ω2
0 − 2iω cos θα,

whose solutions are

α = −iω cos θ ±
√

−ω2 cos2 θ − ω2
0 .

In practice, ω0 � ω (as the rotation of Earth about its own axis is slow)

such that

α ≈ −iω cos θ ± iω0.

The general solution for η is thus

η = Ae(−iω cos θ+iω0)t +Be−(iω cos θ+iω0)t = e−iω cos θt
(
Aeiω0t +Be−iω0t

)
for some complex constant A and B. Rewriting the above in terms of sine

and cosine,

η = e−iω cos θt(C sinω0t+D cosω0t),

where C and D are new complex constants. Recall that η on an Argand

diagram represents the trajectory of the pendulum (x is the real component

while y is the imaginary component). Since ω0 � ω, the term in front of the
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brackets is essentially constant for a small period of time. Then, η is solely

described by the rapidly oscillating terms in ω0t — implying that the x and

y components of the pendulum vary sinusoidally at the natural frequency ω0.

After a significant amount of time Δt, the e−iω cos θt term comes into effect

and rotates the plane of oscillation by −ω cos θΔt anti-clockwise. Thus, the

pendulum oscillates at angular frequency ω0 while its plane of oscillation

slowly precesses at angular frequency

Ω = −ω cos θ.
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Problems

1. Pendulum*

Supposing that you are trapped in an unknown room at the North pole

with a constant acceleration, how would you determine the acceleration of

the room using a pendulum, a protractor and a stopwatch? Suppose that

you know that the true gravity points in the direction perpendicular to the

ground of the room.

2. Cup of Water**

Supposing that you are trapped in an unknown room at the North pole with

a constant acceleration, you observe that the surface of a cylindrical cup of

water (that is stationary relative to you) obeys the equation y = kx from

the side-view where y is the height of the liquid level from the base, x is the

horizontal distance from the left tip of the base and k is a constant. The

length of the base is l. Suppose that you know that the true gravity points

in the direction perpendicular to the ground of the room. Explain how you

can determine your acceleration using this cup, a knife and a stopwatch (it

is also possible to do so with a cup and a ruler, albeit involving much more

tedious calculations). Hint: perform another experiment with the cup.

3. Rolling without Slipping*

A uniform sphere of radius R lies on a rough plank. If the plank is given a

uniform acceleration A rightwards and the sphere subsequently rolls without

slipping, what is the angular acceleration of the sphere?

4. Falling Off an Accelerating Circle*

A particle initially rests on top of a stationary, massive circle. If the circle is

now accelerated at a constant acceleration a leftwards, determine the angle

θ from the vertical at which the particle loses contact with the circle.
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5. Swinging Door**

The door of a truck, which can be modeled as a uniform rod of mass m

and length l, is initially fully open, as shown in the diagram below. The

truck then experiences a constant acceleration a rightwards. Determine the

angular velocity of the door θ̇, as a function of its angle θ from the vertical in

the diagram. Finally, determine the force exerted by the hinge on the door

as a function of θ.

Centrifugal and Coriolis Forces

6. Rotating Candle*

A candle is placed inside a transparent box. The box is then rotated by an

external agency about a fixed center of rotation on a horizontal table at a

constant angular velocity ω. What direction does the flame tilt towards after

a long time (assuming that there is sufficient oxygen supply)?

7. Circular Motion in Rotating Frame*

A carousel is rotating at angular velocity ω1 anti-clockwise in the lab frame

about its center. In a frame fixed to the carousel, a particle of mass m

undergoes circular motion at radiusR and angular velocity ω2 anti-clockwise,

also about the center of the carousel. Explain why the friction force on the

particle should be mR(ω1+ω2)
2 from both the perspectives of the lab frame

and the rotating frame.

8. Rotating Bucket*

Show, without the consideration of any forces, that the surface of a cylinder

of water rotating about its cylindrical axis at an angular velocity ω is a

paraboloid at equilibrium.

9. Mass on Fork*

A mass m is placed at the center of a frictionless fork as shown in the figure

on the next page. It is connected to two identical massless springs of spring
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constant k. If the fork is now rotated anti-clockwise at angular velocity ω

about a vertical axis passing through the center of the fork, determine the

range of ω for which m can undergo simple harmonic motion when it is

slightly displaced along the axial direction of the spring. Also determine the

angular frequency of such oscillations.

10. Disk on Rotating Table**

A large horizontal table is rotating at a constant anti-clockwise angular

velocity ω relative to the upwards direction, about a vertical axis crossing

a certain point O on the table. A uniform disk is then placed on the table

and initially possesses arbitrary center of mass and angular velocities. If the

surface between the table and the disk is rough, determine the steady state

angular velocity of the disk. Assume that the normal force on the disk is

evenly distributed over the disk.

11. Straight Line on Carousel**

A frictionless carousel is rotating at a constant angular velocity ω anti-

clockwise in the lab frame. Consider a non-rotating coordinate system x and

y along the plane of the carousel in the lab frame. A particle is placed at

an initial coordinate (x0, y0) and given an initial velocity (ux, uy) along the

plane of the carousel. In the lab frame, the trajectory of the particle is a

straight line. Determine the coordinates of the particle in a frame fixed to

the carousel as a function of time by working in the rotating frame. Show

that the trajectory of the particle in this frame, after a significant amount of

time, takes the form of a spiral. The simple way is to directly transform the

coordinates of the particle in the lab frame into those of the rotating frame,

but try to solve this problem via the equation of motion in the rotating

frame.

12. Larmor’s Theorem**

An isolated system of charges is currently interacting in the lab frame. Show

that if a small magnetic field is introduced, the system evolves in the same

way, except that the entire system now precesses in a certain plane at a

certain angular velocity. Hint: consider a rotating frame and try to cancel

some terms in the equation of motion of a charge.
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13. Sniping South**

A sniper at colatitude θ wishes to shoot a target along the south direction.

Suppose that the bullet leaves his gun barrel at an initial velocity v0, what

is the southwards distance between his target and him, tangential to the

surface of the Earth at his location, for which he can simply point his gun

towards the south? Neglect the drop of the bullet towards the ground (well,

perhaps the target is very tall) and assume that the target is not too far

away such that its colatitude is also θ.
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Solutions

1. Pendulum*

Firstly, observe the equilibrium position of the pendulum. If the pendulum

bob tilts from the vertical, there must be a horizontal component of accel-

eration. Consider the plane containing the vertical and the pendulum string

and define the direction of the horizontal axis to be positive towards the

bob. Denote θ as the positive angle between the equilibrium position of the

string and the vertical. The forces on the pendulum bob are the fictitious

inertial force, tension and gravity. Let −ax and ay denote the horizontal

and vertical components of the acceleration of the room, where the latter

is positive when directed upwards. Then, the bob experiences inertial forces

max in the positive horizontal direction and may downwards. In order for

the bob to remain at equilibrium, the combination of the inertial force and

gravity must be parallel to the tension (i.e. the string), Hence,

tan θ =
ax

ay + g
.

Next, displace the pendulum from the equilibrium position slightly and time

the period of small oscillations T . The angular frequency is ω = 2π
T . Since

the pendulum effectively lives in a world with gravitational field strength√
a2x + (ay + g)2, directed θ clockwise from the vertical, the angular fre-

quency of the pendulum should be

ω =

√√
a2x + (ay + g)2

l
,

where l is the length of the string. Substituting the first equation into the

second,

(g + ay) sec θ = ω2l

ay = ω2l cos θ − g,

ax = (g + ay) tan θ = ω2l sin θ.

2. Cup of Water**

Consider the plane of the side view of the cup and define the x and y-axes to

be positive rightwards and upwards respectively. Let the horizontal and ver-

tical accelerations of the room be −ax and ay respectively. Then, every fluid

element of mass dm in the cup experiences inertial forces dmax rightwards
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and dmay downwards. The water in the cup effectively lives in a world where

the uniform gravitational field is (ax,−(g+ay)). Now, observe that the effec-

tive gravity must be perpendicular to a liquid surface at equilibrium as a

liquid surface cannot withstand any shear forces. This requires

g + ay
ax

=
1

k

=⇒ k(g + ay) = ax.

Another equivalent way of obtaining this result is to observe that the sur-

face of the water must correspond to an equipotential surface (due to the

potential energies ascribed to the inertial force and the gravitational force).

The potential energy per unit mass at a point on the surface at coordinates

(x, kx) is −axx+ k(g+ ay)x and must undertake a common value 0 (poten-

tial energy per unit mass at the origin) — leading to the same conclusion.

Now, let us perform another experiment with the cup. By using the knife

to poke a small hole on the surface of the cup and observing the resultant

parabolic motion,3 we can deduce another relationship between ay and ax.

It is convenient to puncture the midpoint of the fluid level at the right edge

(at height kl
2 ). Then, record the time t taken for the stream of water to

reach the table that the cup is sitting on. Since the effective vertical gravity

is g + ay, basic kinematics yields

kl

2
=

1

2
(g + ay)t

2,

as the initial vertical velocity of the water escaping the cup should be zero.

Then,

ay =
kl

t2
− g,

ax =
k2l

t2
.

You can also determine a relationship between ax and ay in the second

experiment by solely recording the trajectory of the fluid, but the ensuing

calculations will be much more tedious.

3. Rolling without Slipping*

Define the x and y-axes to be positive rightwards and upwards. Let the

mass of the sphere be m. In the accelerating frame of the plank, the sphere

3Note that the symmetrical axis of the parabola is no longer along the vertical as the
effective gravity does not point along this direction.
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experiences an inertial force −mA (leftwards), friction f , its weight −mg
(downwards) and a normal force due to the plank N = mg (upwards to

nullify the weight). The acceleration a of its center of mass is

f −mA = ma.

Furthermore, the friction produces a torque about the center of the sphere

which engenders an anti-clockwise angular acceleration α.

Rf =
2

5
mR2α,

where we have used the fact that the moment of inertia of a uniform sphere

of mass m and radius R about an axis passing through its center is 2
5mR

2.

For the sphere to not slip with respect to the plank, the acceleration of the

bottom of the sphere (point of contact) must be zero in the plank’s frame.

Therefore,

a+Rα = 0.

Substituting a = −Rα into the first equation,

mRα = mA− f.

Solving this equation simultaneously with the second equation,

α =
5A

7R
,

which is an expected result, as the situation in the plank’s frame is akin

to a circle rolling without slipping along an inclined plane with an angle of

inclination of 90◦ (i.e. a vertical wall) and g being A.

4. Falling Off an Accelerating Circle*

Define the x and y-axes to be positive rightwards and upwards and the origin

to be at the center of the circle. In the accelerating frame of the circle, the

particle experiences an inertial force ma rightwards, where m is its mass.

As this inertial force is conservative, we can ascribe an inertial potential

energy −max to the particle where x is its x-coordinate. When the position

vector of the particle subtends an angle θ with the vertical, its total potential

energy is

U = mgR cos θ −maR sin θ,
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where R is the radius of the circle, as the coordinates of the particle are

(R sin θ,R cos θ). Applying the conservation of energy, the kinetic energy of

the particle at angle θ is

1

2
mR2θ̇2 = mgR(1− cos θ) +maR sin θ

=⇒ mRθ̇2 = 2mg(1 − cos θ) + 2ma sin θ,

where θ̇ is the angular velocity of the particle. Now, at angle θ, the combi-

nation of the gravitational, inertial and normal forces provides the necessary

centripetal force, such that

mg cos θ −N −ma sin θ = mRθ̇2.

When the particle loses contact with the circle, N = 0. Substituting the

previous expression for mRθ̇2,

mg cos θ −ma sin θ = 2mg(1 − cos θ) + 2ma sin θ

3g cos θ − 3a sin θ = 2g

3
√
g2 + a2 cos

(
θ + tan−1 a

g

)
= 2g

θ = cos−1 2g

3
√
g2 + a2

− tan−1 a

g
.

5. Swinging Door**

Define the x and y-axes to be positive rightwards and upwards and the

origin to be at the hinge. In the frame of the uniformly accelerating truck,

an inertial force acts on the rod. Since the inertial force is akin to the force

due to a uniform gravitational field, an effective inertial force −ma acts

on the center of mass of the rod along the x-direction. Furthermore, since

the inertial force is conservative, we can ascribe to it a potential energy

function max where x is the x-coordinate of the center of mass (similar

to the gravitational potential). Applying the conservation of energy to the

initial state of the door and its state at angle θ,

mal sin θ

2
=

1

2
· 1
3
ml2θ̇2,
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where 1
3ml

2 is the moment of inertia of a uniform rod of mass m and length

l about one of its ends. Simplifying,

θ̇2 =
3a

l
sin θ

θ̇ =

√
3a

l
sin θ.

Now, to determine the force exerted by the hinge, we have to ensure that the

net force on the door correctly reflects the acceleration of the center of mass.

The latter is l
2 θ̈ tangentially and − l

2 θ̇
2 radially (centripetal acceleration).

We can compute θ̈ using the trick

θ̈ =
dθ̇2

2dθ
=

3a

2l
cos θ.

The acceleration of the center of mass is thus

aCM =

(
3a

2
− 9a

4
cos2 θ

)
î− 9a

4
sin θ cos θĵ.

The forces on the door are the inertial force and that due to the hinge.

F hinge −mâi = maCM

F hinge =
(10− 9 cos2 θ)ma

4
î− 9ma sin θ cos θ

4
ĵ

6. Rotating Candle*

Consider a rotating frame with its origin at the center of rotation that pos-

sesses an angular velocity ω with respect to the lab frame. The box is station-

ary in this frame but its constituents experience a centrifugal force (directed

radially outwards). Therefore, there must be a pressure gradient within the

box to counteract the centrifugal force on each air section for the air inside to

attain equilibrium. Specifically, the pressure in the box must increase radi-

ally outwards to produce a net force radially inwards. Therefore, the flame

tilts radially inwards — towards a region of lower pressure.

7. Circular Motion in Rotating Frame*

We first begin with the simpler case — the lab frame. Since angular velocities

add, the particle simply rotates at angular velocity ω1+ω2 anti-clockwise in
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the lab frame. Hence, the friction force must be

f = mR(ω1 + ω2)
2

to provide the necessary centripetal force. In the frame rotating at ω1 anti-

clockwise relative to the lab frame, the particle first experiences a centrifugal

force mRω2
1 radially outwards. Furthermore, since the particle is traveling at

velocity Rω2 anti-clockwise, it experiences a Coriolis force 2mRω1ω2 radially

outwards. The combination of friction and the two fictitious forces must

provide the necessary centripetal forcemRω2
2 radially inwards for the particle

to undergo circular motion at angular velocity ω2.

f −mRω2
1 − 2mRω1ω2 = mRω2

2

f = mR(ω1 + ω2)
2.

8. Rotating Bucket*

In the rotating frame of the bucket, the fluid surface must be equipotential as

the fluid cannot withstand any shear forces (remember to include centrifugal

potential energy). Equating the potential energy per unit mass at the surface

at a perpendicular distance r from the axis of the bucket to the potential

energy per unit mass at the surface along the axis of the bucket,

gy − r2ω2

2
= gy0,

where y is the height of the surface at perpendicular distance r and y0 is the

equilibrium height along the axis of the bucket. Rearranging,

y = y0 +
r2ω2

2g
.

9. Mass on Fork*

Suppose that m is displaced from the center by a distance x along the axial

direction. Letting l0 be the rest length of the springs and l be the distance

between the fixed end of a spring and the center of the fork, the potential

energy of m is

U =
1

2
k(l + x− l0)

2 +
1

2
k(l − x− l0)

2 − mx2ω2

2
,
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where we have included the centrifugal potential. Computing the derivatives

of U with respect to x,

dU

dx
= k(l + x− l0)− k(l − x− l0)−mxω2 = 2kx−mxω2

d2U

dx2
= 2k −mω2.

If m is indeed able to oscillate about the center of the fork, its angular

frequency of oscillations is

Ω =

√
d2U
dx2

∣∣
x=0

m
=

√
2k

m
− ω2.

m will be in a neutral or unstable equilibrium at x = 0 if the term in the

square root is not positive. This requires

ω ≥
√

2k

m
.

Otherwise if ω <
√

2k
m , m will undergo simple harmonic motion with the

above angular frequency Ω.

10. Disk on Rotating Table**

In such problems where a rough platform is moving, it is always intu-

itive to consider the perspective of the platform as the direction of friction

depends on the relative velocity between the platform and an object placed

on it. Therefore, we can switch to the frame of the table which is rotat-

ing at anti-clockwise angular velocity ω relative to the lab frame. In this

frame, the disk experiences centripetal and Coriolis forces in addition to

friction.

We shall prove that the former two factors result in zero torque about the

center of the disk. Referring to the diagram on the left in Fig. 11.7, join a line

from O to the center of the disk O’. Observe that the torques about O’ due to

the centripetal forces on two points on the disk that are mirror images about

this line nullify each other. An example of such a pair is depicted in the same

figure on the left. Since the line divides the circle into two equal halves, the

centripetal force must contribute to zero net torque about O’. To analyze

the effect of the Coriolis force and friction, it is important to note that even

though the velocity of the center of the disk may not have attained a steady

value when the steady state angular velocity is achieved, the motion of the

disk can be represented by a pure rotation about an instantaneous center of
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Figure 11.7: Centrifugal and friction forces

rotation (ICoR) which we call point C. Points on the rigid body that have

equal speeds are equidistant from C. That is, they lie on an arc centered

about C. Consider the set of points along one such arc — the Coriolis force

on them is radially outwards (relative to the center C). Similar to the case

of the centrifugal force which is also radial, the net torque about O’ due to

the Coriolis forces on pairs of points that are mirror images about the line

CO’ is zero — implying that the net torque about O’ due to the Coriolis

force on the entire disk is zero.

To analyze the torque due to friction, suppose that the ICoR is located at

a finite distance from the center of the disk. Notice that every point on the

disk experiences a friction force of the same magnitude that is perpendicular

to the line joining C and it (right diagram of Fig. 11.7). Now, consider two

chords that are perpendicular to line CO’ and are the same perpendicular

distance away from O’ (they lie on different sides of O’). Since the chord

closer to C subtends a larger angle with respect to C, the friction forces along

this chord generally make larger angles with the chord — implying that the

torque about O’ due to friction along this chord is smaller in magnitude than

the torque on its counterpart. In the case of the right figure where the angular

velocity of the disk in the rotating frame is anti-clockwise relative to C, the

friction forces on the disk are clockwise relative to C such that every pair

of corresponding chords experience a net frictional torque clockwise about

O’ — violating the claim that the angular velocity of the disk is constant.

Therefore, for the disk to attain a steady angular velocity (i.e. no torque

about O’), its instantaneous center of rotation must be located at infinity,

such that all points on the disk experience identical friction forces pointing

towards the same direction (i.e. the disk solely translates and does not rotate

about its center). This implies that the angular velocity of the disk is zero

in the rotating frame and is thus ω anti-clockwise in the lab frame.
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11. Straight Line on Carousel**

Consider a coordinate system fixed to the carousel and define the X and Y

axes of this rotating frame to coincide with the x and y axes at time t = 0.

By Eq. (11.17), the equation of motion of the particle in this frame is

m

⎛
⎜⎝
Ẍ

Ÿ

Z̈

⎞
⎟⎠ = mω2r + 2m

⎛
⎜⎝
Ẋ

Ẏ

0

⎞
⎟⎠×

⎛
⎜⎝
0

0

ω

⎞
⎟⎠ ,

m

⎛
⎜⎝
Ẍ

Ÿ

Z̈

⎞
⎟⎠ = mω2

⎛
⎜⎝
X

Y

0

⎞
⎟⎠+ 2m

⎛
⎜⎝

Ẏ ω

−Ẋω
0

⎞
⎟⎠ ,

Ẍ = ω2X + 2ωẎ ,

Ÿ = ω2Y − 2ωẊ.

Defining a new complex variable η = X + iY and adding the product of the

second equation with i to the first,

η̈ + 2iωη̇ − ω2η = 0.

Guessing a solution of the form η = η0e
αt,

α2 + 2iωα − ω2 = 0

(α+ iω)2 = 0,

and we only have one solution α = −iω. However, there should be two inde-

pendent solutions to accommodate two initial conditions (initial coordinates

and velocities). Similar to the case of critical damping, the general solution

for η is in fact

η = Ae−iωt +Bte−iωt,

where A and B are complex constants. Substituting the initial condition

η = x0 + iy0 at t = 0,

A = x0 + iy0.

Differentiating η with respect to time,

η̇ = −iωAe−iωt +Be−iωt − iωBte−iωt.
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Before enforcing the initial condition, we first determine η̇ at t = 0 by deter-

mining the initial velocity of the particle in the rotating frame. Since

v = vrot + ω × r,

ux = uX − ωy0,

uy = uY + ωx0,

where uX and uY are the components of initial velocity in the rotating frame.

Then, η̇ at t = 0 is

uX + iuY = ux + ωy0 + i(uy − ωx0).

Enforcing this initial condition in the solution we guessed for η̇,

B = ux + iuy.

Therefore,

η = (x0 + iy0)e
−iωt + (ux + iuy)te

−iωt.

The physical X and Y can be determined by taking the real and imaginary

components of the above respectively.

X = Re(η) = x0 cosωt+ y0 sinωt+ uxt cosωt+ uyt sinωt,

Y = Im(η) = y0 cosωt− x0 sinωt+ uyt cosωt− uxt sinωt.

Finally, when t is large, the oscillatory part of η with a constant amplitude

pales in comparison with the other term whose amplitude scales with t. Thus,

the former vanishes and η becomes

η ≈ (ux + iuy)te
−iωt =

√
u2x + u2yte

−i(ωt−φ),

where φ = tan−1 uy
ux
. Then,

X =
√
u2x + u2yt cos(ωt− φ),

Y = −
√
u2x + u2yt sin(ωt− φ),

=⇒ X2 + Y 2 = (u2x + u2y)t
2.

Now, why is this shape of the form of a spiral? Notice that if the right-

hand side is simply a constant, this equation describes a circle, with its

radius being the square root of the right-hand side. However, in the current

situation, the radius of the “circle” (
√
u2x + u2yt) constantly increases while
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X and Y oscillate between positive and negative values such that the particle

rotates about the origin at an increasing radius — corresponding to a spiral.

12. Larmor’s Theorem**

Define f(r) to be the net force that a charge at position vector r experiences

in the original experiment. Now, consider the set-up with the magnetic field

and switch to a frame rotating with respect to the original frame at a certain

angular velocity ω. The equation of motion of a charge in this frame is

marot = f(r) + qvlab ×B −mω × (ω × r) + 2mvrot ×ω

= f(r) + q(vrot + ω × r)×B −mω × (ω × r) + 2mvrot × ω

= f(r) + vrot × (qB + 2mω) + q(ω × r)×B −mω × (ω × r).

Now, you might be confused about why the magnetic force is qvlab×B and

not qvrot×B. Well, this is because by definition, the magnetic force is a real

force that a charge experiences and must thus be invariant across all frames

in the context of classical mechanics. Therefore, we can compute it in the

lab frame to obtain qvlab×B. Technically, we can also compute the Lorentz

force on the charge in the rotating frame but it is no longer solely due to

a magnetic force as a pure magnetic field in one frame generally transforms

into an electric-cum-magnetic field (the magnetic field may not even be the

same) in another frame. In fact, we usually make the above arguments in the

reverse direction — by imposing the condition that the real Lorentz force

on the charge must vary in a certain manner across different frames (we are

no longer in the regime of classical mechanics where forces are necessarily

invariant), we can compute the transformations of electromagnetic fields.

Moving on, notice that if we choose

ω = −qB
2m

,

the second term vanishes. Furthermore, the third and fourth terms will be

second order in B2 and will be negligible for small B when compared to

f(r). The equation of motion then reduces to

marot = f(r),

which is simply the equation of motion in the original experiment! Remem-

bering that the above quantities are observed in the rotating frame, the

entire set-up must evolve in the same manner as the first experiment, while

precessing at ω = − qB
2m .
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13. Sniping South**

Adopting the same axes definitions as in Fig. 11.5, the displacement of the

bullet at time t is given by Eq. (11.22) as⎛
⎜⎝
x

y

z

⎞
⎟⎠ =

⎛
⎜⎜⎝
v0t

0

− gt2

2

⎞
⎟⎟⎠+ t2

⎛
⎜⎝
v0

0

0

⎞
⎟⎠×

⎛
⎜⎝
ω sin θ

0

ω cos θ

⎞
⎟⎠+

t3

3

⎛
⎜⎝

0

0

−g

⎞
⎟⎠×

⎛
⎜⎝
ω sin θ

0

ω cos θ

⎞
⎟⎠

=

⎛
⎜⎜⎝

v0t

−v0t2w cos θ − gt3

3 ω sin θ

− gt2

2

⎞
⎟⎟⎠ .

The only non-trivial solution to the y-component of the displacement being

zero is

t = −3v0
g

cot θ.

Substituting this expression into the x-component,

x = −3v20
g

cot θ.

The southwards distance is hence
3v20
g cot θ.
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Chapter 12

Lagrangian Mechanics

In the past few chapters, we have examined the quintessence of Newtonian

mechanics. However, in this chapter, we shall adopt a completely different

approach to dynamics via a general principle known as Hamilton’s principle.

In analytical mechanics, dynamics problems are reduced to writing down a

function known as the Lagrangian, performing a few differentiations and then

solving the ensuing differential equations. In fact, Lagrange prided himself

on not including a single diagram in his treatise! We will delve directly into

the heart of this topic, so please bear with the abrupt jump.

12.1 Action and Hamilton’s Principle

The action S of a system along an evolutionary path q(t) between a starting

state at time t1 and an ending state at time t2 is defined as

S =

∫ t2

t1

L(q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n, t)dt. (12.1)

L is the Lagrangian and is a function given by

L = T − V, (12.2)

where T and V are the instantaneous kinetic and potential energies of

the system. This seems like an odd combination but some analogies will

be revealed soon. q1, q2,. . . , qn are generalized coordinates which uniquely

describe the state of a system. As their nomenclature implies, they are indeed

quite all-encompassing as they can represent translational coordinates such

as x, angular coordinates such as θ and even time-varying coordinates, such

as those of a rotating coordinate system. For brevity, they are collectively

represented as q which can be seen as an n-dimensional vector. Note that

this vector has little physical meaning — evident from the fact that even

623
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the units of each qi can be different. q̇1, q̇2, . . . , q̇n are the time derivatives

of the generalized coordinates and are known as generalized velocities —

collectively denoted by q̇.

Next, we move on to the crucial pillar of Lagrangian mechanics.

Hamilton’s principle states that the path q(t) taken by a system between

times t1 and t2 is one that results in a stationary value of the action S.

Notice that S is dependent on the entire function q(t) and is hence, known

as a functional. To determine the condition that results in a stationary value

of S, we turn to the calculus of variations.

12.2 Calculus of Variations

Firstly, we quantify what a stationary value of a functional actually means.

Suppose that q0(t) is the desired path that results in a stationary value of

the functional

S =

∫ t2

t1

L[q(t)]dt.

Then, functions q(t)’s in the immediate vicinity of q0(t) result in values of S

adopting deviations of second-order and above from the value of S0 produced

by q0(t) for any possible deviation. Let us consider the case of a functional

that involves only a single coordinate x(t), its derivative ẋ and t (which is

just a variable that is not necessarily time).

S[x(t)] =

∫ t2

t1

L(x, ẋ, t)dt.

Remember that the end points x(t1) and x(t2) are fixed at certain values,

as we have predetermined initial and final states.1 Usually if f(x) were a

function of x, we would determine points that yield df
dx = 0 to find stationary

points. Since it is impossible to differentiate a variable with respect to an

entire function, consider the substitution of

x(t) = x0(t) + αη(t)

ẋ(t) = ẋ0(t) + αη̇(t),

1Note that the final state at time t2 is not really well-specified. For example, if you
are analyzing the motion of a simple projectile, there is no clear point in time where the
motion ends. However, Hamilton’s principle states that whatever time you choose as the
final state, the actual path taken by the ball between time t1 and this final time extremizes
the action.
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where α is a constant and η(t) is any arbitrary function with η(t1) =

η(t2) = 0 such that the endpoints of the path are kept fixed at x(t1) = x0(t1)

and x(t2) = x0(t2). Together, αη is known as a variation of x(t), denoted by

δx. Then, S is now a function of α and we can consider its derivative with

respect to α. In order for S to be stationary, we require ∂S
∂α = 0.

∂S

∂α
=

∂

∂α

∫ t2

t1

Ldt.

As L is not integrated with respect to α, we can bring the partial derivative

into the integral such that it becomes a total derivative.

∂S

∂α
=

∫ t2

t1

dL
dα
dt

=

∫ t2

t1

∂L
∂x

∂x

∂α
dt+

∫ t2

t1

∂L
∂ẋ

∂ẋ

∂α
dt,

where the term
∫ t2
t1

∂L
∂t

∂t
∂αdt = 0 has been excluded as α is a time-independent

constant. Now, note that

∂x

∂α
= η(t)

∂ẋ

∂α
= η̇(t).

Then,

∂S

∂α
=

∫ t2

t1

∂L
∂x

ηdt+

∫ t2

t1

∂L
∂ẋ

η̇dt.

Integrating the second term by parts,

∂S

∂α
=

∫ t2

t1

∂L
∂x

ηdt+
∂L
∂ẋ

η
∣∣∣t2
t1
−
∫ t2

t1

d

dt

(
∂L
∂ẋ

)
ηdt.

Since η(t1) = η(t2) = 0, ∫ t2

t1

(
∂L
∂x

− d

dt

∂L
∂x

)
ηdt = 0

in order for ∂S
∂α = 0. By the fundamental lemma of the calculus of

variations, if ∫ t2

t1

M(x, t)η(t)dt = 0
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for all η(t)’s that are twice continuously differentiable, then

M(x, t) = 0.

Applied to the situation at hand where η is an arbitrary function, it implies

that

d

dt

(
∂L
∂ẋ

)
=
∂L
∂x

for S to be extremized. This is known as the Euler-Lagrange equation (we will

refer to this as the E-L equation for the sake of convenience). Another way

to see why this must be true without the use of the fundamental lemma is to

imagine choosing a η(t) such that it has the same sign at all times with (∂L∂x −
d
dt
∂L
∂x ) (it could be this expression scaled down by a certain factor). If the

latter expression were not zero, the integrand would be positive at all times

and, hence, cause the integral to be positive — leading to a contradiction.

For functions that depend on n coordinates q1, q2,. . . , qn, the above can be

easily generalized by letting

qi(t) = q0i (t) + αiηi(t),

where q0i (t) is the correct function for coordinate qi and αiηi(t) is a variation

along this coordinate. Then one can take

∂S

∂αi
= 0

for all 1 ≤ i ≤ n. Since adding a variation to the coordinates other than

qk does not result in a change in the partial derivative of the Lagrangian

with respect to αk, we can use the previous result to deduce that the overall

condition for S(q(t)) to undertake a stationary value is

d

dt

(
∂L
∂q̇i

)
=
∂L
∂qi

for all 1 ≤ i ≤ n. We can express this in a rather succinct form

d

dt

(
∂L
∂q̇

)
=
∂L
∂q

,

where a derivative of a function y with respect to q means

∂y

∂q
=

⎛
⎜⎜⎜⎜⎝

∂y
∂q1
∂y
∂q2
...
∂y
∂qn

⎞
⎟⎟⎟⎟⎠.
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12.3 Equations of Motion

Now that we have understood the requirements for a function to extremize

a functional, let us return to our original question regarding the action that

depends on the path taken by a system

S =

∫ t2

t1

L(q, q̇, t)dt.

To attain a stationary value for S, the E-L equations require that

d

dt

(
∂L
∂q̇

)
=
∂L
∂q

. (12.3)

The desired q(t) that extremizes the action is known as an extremal. Let

us see how the Newtonian equations of motion in Cartesian coordinates can

be “recovered” in the case of a single particle. In Cartesian coordinates,

L = T − V =
1

2
m(ẋ2 + ẏ2 + ż2)− V.

Then,

d

dt

(
∂L
∂q̇

)
=
∂L
∂q

=⇒ mẍ = −∂V
∂x

,

mÿ = −∂V
∂y

,

mz̈ = −∂V
∂z

,

=⇒ mr̈ = −∂V
∂r

.

Notice that −∂V
∂r is simply the net conservative external force on the particle.

Therefore, we retrieve the equation

F = ma.

For a system of particles, our generalized coordinates could be the union

of all (xi, yi, zi) for each particle i and the F = ma equation would hold

for each particle. Newton’s second law is therefore equivalent to Hamilton’s

principle applied in Cartesian coordinates!

From the above example, it should be clear that there are analogies

between the Newtonian momentum and forces with the terms in the E-L
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equations. pi ≡ ∂L
∂q̇i

is known as the canonical momentum conjugate

to coordinate qi, while Qi ≡ ∂L
∂qi

is known as the generalized force

associated with coordinate qi.

What about non-conservative forces? The fact is that from experience,

all of the fundamental forces that we know today can be formulated in terms

of potentials. Non-conservative forces, such as the viscous drag force which

originates from the bombardment of fluid particles on an object, are not

fundamental forces. Therefore, the Lagrangian formulation is still general at

the most fundamental level. However, if we utterly insist on including non-

conservative forces, we can “cheat” a little and add an appropriate expression

on the right-hand side of Eq. (12.3) to represent a non-conservative force.

12.3.1 Different Coordinate Systems

The Lagrangian may not seem particularly enlightening right now but its

utility really shines when it comes to different coordinate systems. If we

were to use Newton’s laws, which are only valid in an inertial frame, in a

rotating frame for example, we would have to modify the laws of motion

to include “fictitious forces.” However, by the Lagrangian formulation, the

fundamental Hamilton’s principle holds in all frames. Concomitantly, the

E-L equations hold for various coordinate systems — we simply have to

express T and V in terms of the different coordinates. This can be seen in

two ways: physically and mathematically. Physically, the path of an extremal

should not depend on the frame of reference. For example, the shortest path

between two points is a straight line, regardless of the frame it is viewed

from. Mathematically, we can show that if the E-L equations hold for a set

of n coordinates x(t) (and we already know that it holds for the Cartesian

coordinate system), it must hold for the same Lagrangian in another set of

N coordinates2 q(t) that is given by

qi(t) = fi(x, t) (12.4)

=⇒ q̇i(t) = ḟi(x, ẋ, t)

for all 1 ≤ i ≤ N . That is, each transformed coordinate is a function of the

previous coordinates and time t. The following proof is just a formality and

can be skipped by readers who simply want to learn how the Lagrangian can

be applied.

2N is not necessarily equal to n.
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Returning to the problem, we wish to prove that

d

dt

(
∂L
∂q̇

)
=
∂L
∂q

given that

d

dt

(
∂L
∂ẋ

)
=
∂L
∂x

.

Consider

∂L
∂qk

=

n∑
i=1

∂L
∂xi

· ∂xi
∂qk

+

n∑
i=1

∂L
∂ẋi

· ∂ẋi
∂qk

=

n∑
i=1

d

dt

(
∂L
∂ẋi

)
· ∂xi
∂qk

+

n∑
i=1

∂L
∂ẋi

· ∂ẋi
∂qk

.

For the final term on the right, observe that

∂ẋi
∂qk

=
∂

∂qk

⎛
⎝ N∑
j=1

∂xi
∂qj

· q̇j + ∂xi
∂t

⎞
⎠

=

N∑
j=1

∂

∂qj

(
∂xi
∂qk

)
· q̇j + ∂

∂t

(
∂xi
∂qk

)

=
d

dt

(
∂xi
∂qk

)
.

Note that we have used the fact that partial derivatives are interchangeable

in writing the second inequality. Therefore,

∂L
∂qk

=

n∑
i=1

d

dt

(
∂L
∂ẋi

)
· ∂xi
∂qk

+

n∑
i=1

∂L
∂ẋi

· d
dt

(
∂xi
∂qk

)

=
d

dt

(
n∑
i=1

∂L
∂ẋi

· ∂xi
∂qk

)
.

As our objective is to show that this is equal to d
dt(

∂L
∂q̇k

), we simply have to

prove that

∂xi
∂qk

=
∂ẋi
∂q̇k

.
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Observe that

ẋi =

N∑
j=1

∂xi
∂qj

· q̇j + ∂xi
∂t

=⇒ ∂ẋi
∂q̇k

=
∂xi
∂qk

.

Thus,

∂L
∂qk

=
d

dt

(
n∑
i=1

∂L
∂ẋi

· ∂ẋi
∂q̇k

)
=

d

dt

(
∂L
∂qk

)

for all 1 ≤ k ≤ N . This implies that

d

dt

(
∂L
∂q̇

)
=
∂L
∂q

.

If the E-L equations are valid for one set of coordinates (for example, Carte-

sian coordinates), they are also valid for all other coordinates of the form

given by Eq. (12.4). A direct corollary of this is that frames related by

Galilean transformations are equivalent as the coordinate transformations

are of the form q′i = qi + vit for some constant vi.

Polar Coordinates

The Lagrangian really distinguishes itself in finding the F = ma equa-

tions of a single particle in polar coordinates — whose transformations

from Cartesian coordinates evidently obey Eq. (12.4). Our objective is

to express T in terms of polar coordinates. To do so, we have to deter-

mine |drdt |2 where r is the position vector of the particle. This can be

written as ∣∣∣∣drdt
∣∣∣∣
2

=
dr · dr
(dt)2

=
(dr1)

2

(dt)2
+

(dr2)
2

(dt)2
+

(dr3)
2

(dt)2
,

where dr1, dr2 and dr3 are three perpendicular infinitesimal length segments

(the usual infinitesimal quantities we integrate over). Let us apply this to an

example.
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Spherical Coordinates

The infinitesimal length segments in spherical coordinates are dr1 = dr,

dr2 = r sin θdφ and dr3 = rdθ. Hence, the Lagrangian is

L =
1

2
m
(
ṙ2 + r2 sin2 θφ̇2 + r2θ̇2

)
− V.

We wish to evaluate how the change of these coordinates relates to

the conservative forces along the unit vectors in spherical coordinates3

which are ⎛
⎜⎝
Fr

Fφ

Fθ

⎞
⎟⎠ =

⎛
⎜⎝
− ∂V
∂r1

− ∂V
∂r2

− ∂V
∂r3

⎞
⎟⎠ =

⎛
⎜⎝

−∂V
∂r

− ∂V
r sin θ∂φ

− ∂V
r∂θ

⎞
⎟⎠ . (12.5)

Applying the E-L equations (∂L∂q = d
dt(

∂L
∂q̇ )) with respect to generalized coor-

dinates r, φ and θ respectively,

−∂V
∂r

+mr sin2 θφ̇2 +mrθ̇2 =
d

dt
(mṙ) = mr̈,

−∂V
∂φ

=
d

dt

(
mr2 sin2 θφ̇

)
= 2mr sin2 θṙφ̇+ 2mr2 sin θ cos θφ̇θ̇ +mr2 sin2 θφ̈,

−∂V
∂θ

+mr2 sin θ cos θφ̇2 =
d

dt

(
mr2θ̇

)
= 2mrṙθ̇ +mr2θ̈.

Dividing the second and third equations by r sin θ and r respectively and

applying Eq. (12.5),

Fr = m(r̈ − r sin2 θφ̇2 − rθ̇2),

Fφ = m(2 sin θṙφ̇+ 2r cos θφ̇θ̇ + r sin θφ̈),

Fθ = m(2ṙθ̇ − r sin θ cos θφ̇2 + rθ̈).

We have derived such a complicated version of F = ma without the use of

any vectors! This is the slickness of the Lagrangian.

Rotating Coordinate Systems

Consider a rotating coordinate system X, Y , Z that is rotating at a constant

anti-clockwise angular velocity ω around the z-axis, of a fixed coordinate

3This is just the negative gradient of V in spherical coordinates (the definition of a
conservative force).
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frame x, y, z which coincides with the rotating frame at t = 0. Then, the x,

y, z coordinates can be expressed in terms of X, Y and Z as

x = X cosωt− Y sinωt,

y = X sinωt+ Y cosωt,

z = Z.

The first two equations can be swiftly obtained from applying the rotation

matrix
(
cosωt − sinωt
sinωt cosωt

)
to
(
X
Y

)
. In doing so, be cautious that the x and y-axes

rotate at ω clockwise relative to the X and Y -axes.

ẋ = Ẋ cosωt− ωX sinωt− Ẏ sinωt− ωY cosωt,

ẏ = Ẋ sinωt+ ωX cosωt+ Ẏ cosωt− ωY sinωt,

ż = Ż.

The Lagrangian in terms of the fixed coordinate frame is

L =
1

2
m
(
ẋ2 + ẏ2 + ż2

)− V.

This can be expressed in terms of the rotating coordinates as

L =
1

2
m
[
Ẋ2 + Ẏ 2 + Ż2 + 2ωXẎ − 2ωẊY + ω2(X2 + Y 2)

]
− V.

Applying the E-L equations (∂L∂q = d
dt(

∂L
∂q̇ )) with respect toX, Y and Z yields

mωẎ − ∂V

∂X
+mω2X = mẌ −mωẎ ,

−mωẊ − ∂V

∂Y
+mω2Y = mŸ +mωẊ,

−∂V
∂Z

= mZ̈.

Note that (− ∂V
∂X ,−∂V

∂Y ,−∂V
∂Z ), where the unit vectors are along the axes of the

rotating frame, represents the real conservative force F which is invariant

across all frames (as it is a physical vector). Let r be the position vector

of the particle which is independent of the frame of reference. Furthermore,

denote vrot = (Ẋ, Ẏ , Ż) and arot = (Ẍ, Ÿ , Z̈) as the particle’s velocity and

acceleration, as observed in the rotating frame, respectively. Summarizing
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the above equations in terms of vectors would yield

marot = F − 2mω × vrot −mω × (ω × r).

Keep in mind that ω is the angular velocity of the rotating frame with

respect to the lab frame and points in the positive z-direction.

12.3.2 Additional Time Derivatives

The Lagrangian describing the evolution of a system is in fact not unique.

Try adding a total time derivative of a function of generalized coordinates

and time df(q,t)
dt to the original Lagrangian of a system. Note that df

dt could

simply be a constant too. The action between times t1 and t2 becomes

S′ =
∫ t2

t1

(
L+

df(q, t)

dt

)
dt =

∫ t2

t1

Ldt+ f(q2, t2)− f(q1, t1),

where q2 and q1 are the final and initial generalized coordinates respectively.

Those additional terms on the right are fixed and do not vary — the equa-

tions of motion of this new system thus do not differ from the original one.

This implies that total time derivatives can simply be discarded from the

Lagrangian of a system as they are inconsequential — a neat trick in tidying

up the Lagrangian.

Problem: A particle of mass m is attached to a wall via a massless spring

with spring constant k. In this one-dimensional problem, the x-coordinate

of the wall is constrained to obey X(t) = A cosωt where A > 0 is a constant

while the particle and the origin lie on opposite sides of the wall. Let x

denote the additional displacement of the particle from the wall, beyond the

rest length of the spring, in the positive x-direction. Show that

ẍ+ ω2
0x = B cosωt,

where ω0 =
√

k
m is the natural frequency of this system and B is a constant.

The velocity of the particle is Ẋ + ẋ = ẋ−Aω sinωt. The Lagrangian of

the particle is thus

L =
1

2
m(ẋ−Aω sinωt)2 − 1

2
kx2.

We can discard the 1
2mA

2ω2 sin2 ωt term since it is a total time derivative,

to obtain

L =
1

2
mẋ2 −mAω sinωtẋ− 1

2
kx2.
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Applying the E-L equation
(
d
dt

(
∂L
∂ẋ

)
= ∂L

∂x

)
,

mẍ−mAω2 cosωt = −kx
ẍ+ ω2

0x = Aω2 cosωt,

as required by the problem. Observe that this equation of motion describes

a forced oscillation whose general solution can be determined by methods

introduced in the chapter on oscillations.

12.4 Systems with Constraints

In many mechanics problems, there are constraints imposed on a system. For

example, a falling object cannot penetrate the ground and the length of a

rigid rod remains constant. Constraints can be holonomic or non-holonomic.

A holonomic constraint can be expressed algebraically in the following form:

f(q, t) = 0.

An example of a holonomic constraint would be that of rigid bodies —

the preservation of relative distances can be expressed in terms of the gen-

eralized coordinates. Constraints that cannot fulfil the above criterion are

termed non-holonomic — they usually involve time derivatives of generalized

coordinates, and inequalities instead of equalities. Note that the constraint

on a rigid body to roll without slipping along a single direction, despite its

appearance, is holonomic as the time derivatives can be easily removed via

integration.

The Lagrangian formulation can only be conveniently applied to holo-

nomic systems. The two general methods in doing so will be elaborated in

the following section.

But first, there is an often simpler approach to determine whether a sys-

tem is holonomic or non-holonomic, instead of expressing the constraints

algebraically. Define the degrees of freedom (DOFs) of a system as the num-

ber of coordinates of a system that can be varied independently of all other

coordinates (i.e. keep the other coordinates fixed). Let there be N particles

in a system. Then, an unconstrained system has 3N DOFs and requires 3N

coordinates to specify a state. In holonomic systems, the DOFs of a system

are equal to the number of independent coordinates required to uniquely

specify a state of a system. This is due to m holonomic constraints reducing

the DOFs by m. From a mathematical perspective, holonomic constraints

furnish m additional equations in terms of the generalized coordinates and

time such that the 3N coordinates can be expressed in terms of (3N −m)
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independent ones. A non-holonomic system, naturally, does not fulfil the cri-

terion that the DOFs are equal to the number of independent coordinates

needed to uniquely define a state.

Example of a Non-holonomic System

One might wonder how such an intuitive requirement can be violated.

Consider the classic example of a sphere on a two-dimensional table. It is not

allowed to translate or rotate about an axis in the vertical direction. Further-

more, it is constrained such that it cannot slip. Then, the sphere only has

2 DOFs — rolling in the x and y directions along the table. Now you might

think that one simply needs two coordinates such as the x and y-coordinates

of the center of the sphere to specify its state. Let us perform an experiment

to convince you otherwise. Place the sphere at the origin initially and paste

a sticker on top of it. Then, consider the following series of movements.

(1) Let the circumference of the sphere be C. Then, roll the sphere to coor-

dinate (C, 0). The sticker is on top of the sphere at this juncture. Then,

roll it to coordinate (C,C). The sticker is still on top.

(2) Roll the sphere directly along the diagonal from the origin to (C,C).

The sticker is no longer on top of the sphere!

In this system, 4 coordinates are in fact necessary to describe a configuration

of the sphere! The non-holonomic constraint originates from the requirement

of rolling without slipping in two dimensions such that the velocities in two

directions are inextricably coupled in an equation which cannot be trivially

integrated to remove the time derivatives. Anyway, non-holonomic systems

will not be considered in this chapter and our analysis of such systems ends

here.

Hamilton’s Principle in Holonomic Systems

We cannot directly apply the previous results — namely the E-L equations

to holonomic systems as the variations may not be consistent with the con-

straints. However, Hamilton’s principle still holds and our modified objective

is to determine a path that extremizes the action, while obeying the con-

straints. There are then two approaches that we can take.

Firstly, we can use m constraint equations to solve for (3N −m) inde-

pendent coordinates which can be used to define the state of a system.

Often, we can even directly define coordinates that satisfy the constraints.

The variations then naturally obey the constraints — the E-L equations can
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consequently be directly applied to this judiciously chosen set of indepen-

dent coordinates. The greatest benefit of this approach is that the forces of

constraint, such as normal forces, are completely ignored. As this method

is rather straightforward, let us consider two examples to summarize the

concepts so far.

Problem: A block of mass m lies on a frictionless inclined plane of mass M

and angle of inclination θ. If there is no friction between the plane and the

ground, determine the acceleration of the plane.

Define x to be the horizontal coordinate of the highest tip of the plane.

Take the vertical coordinate to be zero at this tip. Then, define s to be the

distance between the mass m and this tip (we assume that the gradient of

the slope is negative in the positive x-direction). This definition ensures that

m satisfies the constraint of remaining on the plane. The coordinates of m

are thus (x+s cos θ,−s sin θ). The velocity of m is (ẋ+ ṡ cos θ,−ṡ sin θ). The
Lagrangian of the combined system comprising m and M is

L = T − V

=
1

2
Mẋ2 +

1

2
m
[
(ẋ+ ṡ cos θ)2 + ṡ2 sin2 θ

]
+mgs sin θ

=
1

2
(M +m)ẋ2 +

1

2
mṡ2 +mẋṡ cos θ +mgs sin θ.

Applying the E-L equation ( ddt(
∂L
∂q̇ ) =

∂L
∂q ) with respect to x and s,

(M +m)ẍ+ms̈ cos θ = 0,

ms̈+mẍ cos θ = mg sin θ.

Solving for ẍ,

ẍ = −mg sin θ cos θ
M +m sin2 θ

.

Problem: Consider a massm undergoing uniform circular motion at angular

velocity ω in a fixed, hollow inverted cone of half angle θ. Determine the

equations of motion of the particle and hence find l0, the distance of the

particle from the apex such that this uniform circular motion can occur.

Then, show that this equilibrium is stable and determine the frequency of

small oscillations Ω about l0 when the particle is slightly perturbed in the

direction joining the apex and the particle.

Let the distance of the particle to the apex be l and the azimuthal angular

coordinate of the particle be φ. Then, l sin θφ̇ is the azimuthal velocity while
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l̇ is the other component of velocity along the surface of the cone. Hence,

the Lagrangian of this particle is

L =
1

2
m(l̇2 + l2 sin2 θφ̇2)−mgl cos θ.

Applying the E-L equation with respect to l and φ,

ml̈ = ml sin2 θφ̇2 −mg cos θ,

d

dt
(ml2 sin2 θφ̇) = 0 =⇒ ml2 sin2 θφ̇ = L,

for some constant L. The Newtonian interpretation of this is simply the

component of the angular momentum of the particle along the symmetrical

axis of the cone. The above are the equations of motion for the particle. To

determine l0, we set l̈ = 0 and φ̇ = ω. Then,

l0 =
g cos θ

ω2 sin2 θ
.

Now, consider a perturbation from l0 such that l = l0+ ε for some infinitesi-

mal deviation ε. We first rewrite the first equation of motion strictly in terms

of a single variable l with the help of L:

ml̈ =
L2

ml3 sin2 θ
−mg cos θ.

Keep in mind that

L2

ml30 sin
2 θ

−mg cos θ = 0, (12.6)

as this will be used later. We then substitute l = l0 + ε into the previous

equation to get

mε̈ =
L2

ml30 sin
2 θ
(
1 + ε

l0

)3 −mg cos θ.

Using the first-order binomial expansion (1 + x)n ≈ 1 + nx,

mε̈ =
L2

ml30 sin
2 θ

(
1− 3

ε

l0

)
−mg cos θ.

Applying Eq. (12.6) yields

ε̈ = − 3L2

m2l40 sin
2 θ
ε.
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Note that such cancellations always occur in perturbation problems. The

equilibrium is stable as the particle will undergo simple harmonic motion

about l0, after a slight deviation, at a frequency

Ω =

√
3 |L|

ml20 sin θ
.

Since L = ml20 sin
2 θω,

Ω =
√
3 sin θ|ω|.

Lagrange Multipliers

The second method entails directly finding variations that adhere to the

constraints without changing the generalized coordinates. Mathematically,

if there are m holonomic constraints and n generalized coordinates, we wish

to extremize the functional

S =

∫ t2

t1

L(q, q̇, t)dt

under m constraints, with the ith constraint being

fi(q, t) = 0.

Taking the total derivative of the above equation, we obtain the relationship

between the variations of generalized coordinates that is imposed by the ith

constraint.

∂fi
∂q1

δq1 +
∂fi
∂q2

δq2 + · · ·+ ∂fi
∂qn

δqn = 0. (12.7)

Now, consider the most general variation of the action which depends on

q and q̇ (t cannot be varied):

δS =

∫ t2

t1

n∑
j=1

(
∂L
∂qj

δqj +
∂L
∂q̇j

δq̇j

)
dt.

The δq̇j term for all j can be integrated by parts, while keeping in mind that

δqj(t1) = δqj(t2) = 0 (as the end points must be fixed), to obtain

δS =

∫ t2

t1

n∑
j=1

(
∂L
∂qj

− d

dt

(
∂L
∂q̇j

))
δqjdt.

Since the right-hand side of Eq. (12.7) is zero, we can add to the above equa-

tion Eq. (12.7), for each 1 ≤ i ≤ m, multiplied by an arbitrary function of
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time λi(t) without affecting the value of δS. These variables {λ1, λ2, . . . , λm},
collectively referred to as λ, are known as Lagrange Multipliers.

δS =

∫ t2

t1

n∑
j=1

(
∂L
∂qj

− d

dt

(
∂L
∂q̇j

)
+

m∑
i=1

λi(t)
∂fi
∂qj

)
δqjdt.

We can always find a λ such that the terms in the brackets equate to zero

for j = {1, 2, . . . ,m}. Effectively, the first m variations, {δq1, δq2, . . . , δqm},
are expressed in terms of the other (n−m) variations. Then,

∂L
∂qj

− d

dt

(
∂L
∂q̇j

)
+

m∑
i=1

λi(t)
∂fi
∂qj

= 0

for 1 ≤ j ≤ m. Furthermore, the variations {δqm+1, δqm+2, . . . , δqn} have

been decoupled and thus can be varied independently. This is because the

first m variations have been expressed in terms of them in a manner such

that given {δqm+1, δqm+2, . . . , δqn}, one can always tweak {δq1, δq2, . . . , δqm}
such that they collectively satisfy the constraints. Since the last (n − m)

variations are free to take on any functions, the term in the brackets for

each m + 1 ≤ j ≤ n must also be zero for S to be stationary (by the

fundamental lemma). All-in-all,

d

dt

(
∂L
∂q̇j

)
− ∂L
∂qj

=

m∑
i=1

λi(t)
∂fi
∂qj

(12.8)

for all 1 ≤ j ≤ n! These are the modified E-L equations for systems with

holonomic constraints. There is a neat way to recapitulate the results derived.

In order to solve an extremization problem with holomonic constraints,

we introduce m additional coordinates, λi(t). Then, the above problem can

be solved by finding the stationary values of the new action

S′ =
∫ t2

t1

[
L(q, q̇, t) +

m∑
i=1

λi(t)fi(q, t)

]
dt,

with (n +m) generalized coordinates {q,λ}. The modified Lagrangian is

L′ = L+
m∑
i=1

λifi.

To see why this is coherent with the previous results, apply the E-L equations

with respect to a coordinate λi. Since L′ is independent of λ̇i,

fi(q, t) = 0.
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It can be seen that the constraints are enforced by introducing these addi-

tional terms. Therefore, we can vary q freely in a certain sense now as the

extremals of S′ will definitely obey the constraints. Furthermore, it is obvious

that if S′ is extremized, then S is also extremized (in a legal manner consis-

tent with the constraints) as
∑m

i=1 λi(t)fi(q, t) = 0 when S′ is extremized.

Applying the E-L equations to L′, with respect to qj, yields

d

dt

(
∂L
∂q̇j

)
− ∂L
∂qj

=
m∑
i=1

λi
∂fi
∂qj

.

Therefore, this method of modifying the Lagrangian is equivalent to the

previous discussion and is valid. There are now (n + m) E-L equations to

solve for (n+m) variables {q,λ}.
Finally, the term on the right-hand side of Eq. (12.8) has a physical

meaning. If there were no constraints, the right-hand side should be zero.

Then, this additional term must be due to the generalized force exerted by

the constraints in this case!

Qj, constraint =

m∑
i=1

λi
∂fi
∂qj

. (12.9)

If qj is a particular translational coordinate, Qj, constraint corresponds to the

forces of constraint, such as static friction and normal force, along that coor-

dinate! If qj is an angular coordinate, one would have to modify Eq. (12.8)

such that the denominator of the partial derivative ∂L
∂qj

becomes an infinites-

imal length segment (similar to our derivation of F = ma in spherical coor-

dinates) to obtain that particular component of the forces of constraint.

Problem: Let us consider the trivial example of calculating the tension in a

simple pendulum. Let the fixed end of the string be at the origin and let the

coordinates of the bob be (r, θ) where θ is the anti-clockwise angle between

the string and the negative y-axis, that is pointing vertically downwards.

There is a holonomic constraint r = l where l is the length of the inextensible

string. Then, the modified Lagrangian (we will still use L to represent it) is

L =
1

2
m
(
ṙ2 + r2θ̇2

)
+mgr cos θ + λ(r − l).

The E-L equation with respect to r is

mr̈ = mrθ̇2 +mg cos θ + λ.
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Now applying the constraint r = l, r̈ = 0,

λ = −mrθ̇2 −mg cos θ.

The force of constraint along the r direction, which is simply the tension

force on the bob due to the string in this case, is

T = Qr, constraint = λ
∂(r − l)

∂r
= λ = −mrθ̇2 −mg cos θ,

where the negative sign indicates that the direction of the force on the bob

is radially inwards.

Problem: A point mass m initially rests on top of an immobile, frictionless

circle of radius R. If it is given a slight displacement, determine the angle

from the vertical at which it loses contact with the circle.

Although the constraint in this problem is technically that the mass

cannot penetrate the circle (i.e. the radial coordinate of m with respect

to the center satisfies r ≥ R), the only relevant regime is where r = R.

Therefore, we shall take r = R as our holonomic constraint as we can

identify the exact moment where it fails (i.e. when the normal force

becomes zero). Define θ to be the angle that the position vector of m

makes with the vertical axis, which is positive upwards. The modified

Lagrangian is

L =
1

2
m(ṙ2 + r2θ̇2)−mgr cos θ + λ(r −R).

This Lagrangian is similar to that in the previous problem, with an additional

negative sign in front of mgr cos θ due to the differing definitions of θ. Then,

the normal force N in this case can be obtained by substituting (π− θ) into

the previous expression for tension, i.e.

N = λ
∂(r −R)

∂r
= −mrθ̇2 +mg cos θ.

Next, we apply the E-L equation with respect to θ. In doing so, we can treat

r as a constant (r = R) as the Lagrange multiplier is independent of θ such

that its presence does not affect the equation of motion with respect to this

coordinate.

g sin θ = Rθ̈.
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Adopting the substitution θ̈ = d(θ̇2)
2dθ and separating variables,

∫ θ̇2

0
d(θ̇2) =

∫ θ

0

2g

R
sin θdθ

θ̇2 =
2g

R
(1− cos θ).

Armed with this expression, we can determine the angle θ at which N = 0.

When N = −mrθ̇2 +mg cos θ = 0,

θ̇2 =
g

R
cos θ

g

R
cos θ =

2g

R
(1− cos θ)

θ = cos−1 2

3
.

At this point in time, we are pining for the conservation of energy — a

crucial component of Newtonian mechanics — as it would have drastically

simplified the process in this problem.

12.5 Conserved Quantities and Symmetry*

The conservations of energy, momentum and angular momentum and more

general forms of conserved quantities are actually direct consequences of

Hamilton’s principle. In fact, they are closely related to the symmetries

of a system. This section is a formality in the sense that it simply proves

that the Lagrangian formulation is coherent with several defining aspects of

the Newtonian one. It is often much simpler to directly use the Newtonian

formulation to obtain the conserved quantities.

12.5.1 The Conservation of Energy

If the Lagrangian is not an explicit function of t, we claim that the quantity

H ≡
(

n∑
i=1

∂L
∂q̇i

· q̇i
)

− L

is conserved (time-independent). In a closed system, the Lagrangian is indeed

time-independent as we should in principle be able to describe all states —

past, present and future — in terms of the generalized coordinates and their

first-order time derivatives.
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H is known as the Hamiltonian of the system but is, most of the time,

equivalent to the mechanical energy of the system. Since we will not be

analyzing the Hamiltonian formulation here, we shall just refer to H as the

mechanical energy of the system. To prove the claim above, consider the

total time derivative of the Lagrangian.

dL
dt

=
∂L
∂t

+
n∑
i=1

∂L

∂qi
· q̇i +

n∑
i=1

∂L
∂q̇i

· q̈i

=

n∑
i=1

d

dt

(
∂L
∂q̇i

)
· q̇i +

n∑
i=1

∂L
∂q̇i

· d
dt

(q̇i)

=
d

dt

(
n∑
i=1

∂L
∂q̇i

· q̇i
)
,

where we have applied ∂L
∂t = 0 as the Lagrangian does not explicitly depend

on t. Shifting dL
dt to the right-hand side,

d

dt

(
n∑
i=1

∂L
∂q̇i

· q̇i − L
)

= 0

=⇒
n∑
i=1

∂L
∂q̇i

· q̇i − L = H

for some constant H. How does this obscure-looking term reduce to the

familiar H = T + V ? The answer: Euler’s theorem of homogeneous

functions.

Euler’s Theorem of Homogeneous Functions

Let f(q1, q2, . . . , qn) be a homogeneous function of degree k such that

f(mq1,mq2, . . . ,mqn) = mkf(q1, q2, . . . , qn).

We claim that

n∑
i=1

∂f

∂qi
· qi = kf.
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We differentiate the first equation with respect to m to obtain

kmk−1f(q1, q2, . . . , qn) =
∂f(mq1,mq2, . . . ,mqn)

∂m

=

n∑
i=1

∂f(mq1,mq2, . . . ,mqn)

∂(mqi)
· ∂(mqi)

∂m

=

n∑
i=1

∂f(mq1,mq2, . . . ,mqn)

∂(mqi)
· qi.

Substituting m = 1,

n∑
i=1

∂f

∂qi
· qi = kf.

Returning to our problem at hand, we need to evaluate

n∑
i=1

∂L
∂q̇i

· q̇i.

Assuming that the potential energy V does not depend on the time-

derivative of generalized coordinates — an assumption which is only

invalid in the presence of charges, the Lagrangian of a closed system is of

the form

L = T (q, q̇)− V (q),

where T is quadratic in q̇ (i.e. it is a homogeneous function in q̇ of degree 2).

Therefore,

n∑
i=1

∂L
∂q̇i

· q̇i =
n∑
i=1

∂T

∂q̇i
· q̇i = 2T

H = 2T − (T − V ) = T + V.

We have recovered the familiar expression for mechanical energy! Two

assumptions were made in our derivation. Firstly, the Lagrangian is time-

independent. This is equivalent to saying that a translation in time does not

modify the system’s behaviour. Secondly, the potential energy V is inde-

pendent of q̇. When an electromagnetic field is present, this assumption is

invalid and energy is seemingly not conserved.
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12.5.2 Cyclic Coordinates

Observe that if the Lagrangian does not depend on a certain coordinate qk
(but possibly q̇k), it follows from the E-L equations that

d

dt

(
∂L
∂q̇k

)
= 0

=⇒ ∂L
∂q̇k

= c

is a conserved quantity. Such coordinates qk are known as cyclic coordi-

nates. To illustrate this, consider a particle under the influence of a central

potential in spherical coordinates. Then,

L =
1

2
m
(
ṙ2 + r2 sin2 θφ̇2 + r2θ̇2

)
− U(r).

Noticing that L does not depend on φ,

∂L
∂φ̇

= mr2 sin2 θφ̇

is conserved. This is simply the z-component of the angular momentum of

the particle!

12.5.3 Continuous Symmetries

Even in the case where there are no obvious cyclic coordinates, there can

still be certain conserved quantities. Well, perhaps we just did not choose a

convenient coordinate system. Let us consider an instructive Lagrangian of

two particles with coordinates q1 and q2 that move only in a single direction.

L =
1

2
m(q̇21 + q̇22) + U(aq1 + bq2)

for some constants a and b. Observe that if we increment q1 by a certain bδ

where δ is a constant infinitesimal quantity and q2 by −aδ,
q1 → q1 + bδ,

q2 → q2 − aδ.

The Lagrangian remains the same! This is a form of continuous symmetry

(continuous because the Lagrangian is invariant after infinitesimal vari-

ations of coordinates). Now, we turn to another topic: finding a quantity
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that is conserved in this system. Consider the canonical momenta p1 and p2
conjugate to q1 and q2 respectively. From the E-L equations,

dp1
dt

=
∂U(aq1 + bq2)

∂(aq1 + bq2)
· ∂(aq1 + bq2)

∂q1
= aU ′(aq1 + bq2),

dp2
dt

=
∂U(aq1 + bq)

∂(aq1 + bq2)
· ∂(aq1 + bq2)

∂q2
= bU ′(aq1 + bq2).

Notice that

b
dp1
dt

− a
dp2
dt

= 0

=⇒ bp1 − ap2 = c

is a conserved quantity of the system, also known as an integral of motion,

even though there were no cyclic coordinates! Furthermore, we notice that

the coefficients in front of p1 and p2 are strangely identical to that of δ

when varying q1 and q2! We shall now explore the deeper reason behind this

coincidence.

12.5.4 Noether’s Theorem

Noether’s theorem elegantly connects the symmetries of a system to con-

served quantities through Hamilton’s principle, which acts as a mediator.

Consider a variation of each coordinate qi in the following manner:

qi → qi + fi(q, t)δ

q̇i → q̇i + ḟi(q, q̇, t)δ,

where fi(q, t) is any arbitrary function in terms of the generalized coordinates

q and t for each coordinate qi and δ is a constant infinitesimal quantity. If

the Lagrangian is preserved to the first order in δ after such an infinitesimal

variation of coordinates,

0 =
∂L
∂δ

=
n∑
i=1

∂L
∂qi

· ∂qi
∂δ

+
n∑
i=1

∂L
∂q̇i

· ∂q̇i
∂δ

=

n∑
i=1

d

dt

(
∂L
∂q̇i

)
· fi +

n∑
i=1

∂L
∂q̇i

· ḟi
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=
d

dt

(
n∑
i=1

∂L
∂q̇i

· fi
)

=⇒
n∑
i=1

∂L
∂q̇i

· fi = Q

is an integral of motion. Note that we have applied the E-L equation in

obtaining the second equality. This relationship is known as Noether’s the-

orem. We see that it elegantly implies that symmetries are closely tied to

conserved quantities and this relationship is enforced by Hamilton’s princi-

ple. In practice, we have to determine fi by trial and error, but this is usually

not too tedious.

Consider the Lagrangian of a two-dimensional harmonic oscillator

L =
1

2
m(ẋ2 + ẏ2)− 1

2
k(x2 + y2).

Let us examine the ramifications of the following variation:

x→ x− yδ,

y → y + xδ.

Notice that

(x− yδ)2 + (y + xδ)2 = x2 + y2,

where we have neglected second-order terms in δ. Meanwhile, ẋ2+ẏ2 remains

unchanged as the variations are time-independent. Therefore, the above vari-

ation is a symmetry of the system. The conserved quantity is then

n∑
i=1

∂L
∂q̇i

· fi = ∂L
∂ẋ

· −y + ∂L
∂ẏ

· x = m(xẏ − yẋ).

This is, again, simply the angular momentum of the oscillating body in

the z-direction. We have merely expressed our system in the cumbersome

Cartesian coordinates instead of the convenient polar coordinates, which

would have directly resulted in a cyclic angular coordinate!

Conservation of Momentum

Now, let us derive two conserved quantities in Newtonian mechanics from

the homogeneity and isotropy of space and time in inertial frames. The

conservation of momentum is a result of the homogeneity of space — which

simply put, means that space is uniform. This causes the Lagrangian to be
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invariant when the entire closed system is displaced by a certain distance in

a certain direction. Let there be n particles in total, with the ith particle

having coordinates xi, yi and zi. Then, we can shift the entire system (or our

coordinate axes) such that

xi → xi + δ,

yi → yi,

zi → zi,

and the Lagrangian should still remain the same. By Noether’s theorem, the

quantity

n∑
i=1

∂L
∂ẋi

=
n∑
i=1

∂T

∂ẋi
=

n∑
i=1

mẋi = px,

which corresponds to the x-component of the total momentum of the system,

is conserved for a closed system. Note that in writing the first equality, the

potential V was assumed to be independent of ẋi. We can repeat the above

process for the y and z directions, to conclude that the total momentum

vector p of a closed system is conserved.

Conservation of Angular Momentum

Due to the isotropy of space in an inertial frame (that is, all directions are

equal), the Lagrangian of a closed system does not change after an infinitesi-

mal rotation about an origin. Note that the position vector of the ith particle,

ri, changes in the following manner after an infinitesimal rotation about the

origin described by the rotation vector δ.

ri → ri + δ × ri.

Assuming that the rotation is solely along the z-direction, δ = δẑ,

xi → xi − yiδ,

yi → yi + xiδ,

zi → zi.
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The conserved quantity is then

n∑
i=1

∂L
∂ẋi

· (−yi) +
n∑
i=1

∂L
∂ẏi

· xi =
n∑
i=1

m(xiẏi − yiẋi)

=
n∑
i=1

(ri × pi)z

= Lz,

which is the z-component of the total angular momentum of the system. We

can then repeat this for rotations about the x and y-axes to conclude that

the total angular momentum L is conserved for a closed system.
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Problems

1. Pendulum about Rotating Pivot*

A pendulum bob of mass m is initially attached to the circumference of a

wheel of radius R at polar coordinates (R, 0) via an inextensible string of

length l. The x and y directions are defined to be positive rightwards and

upwards respectively. The wheel then begins to rotate anti-clockwise at a

constant angular velocity ω. Determine the equations of motion of the bob.

2. Cylinder on Inclined Plane**

A uniform cylinder of massm and radiusR is initially held still on an inclined

plane with an angle of inclination θ and mass M , with its cylindrical axis

parallel to the width of the plane. If the cylinder is released and subsequently

rolls without slipping on the surface of the plane, determine the horizontal

acceleration of the inclined plane.

3. Small Oscillations on Circle**

A circular track of radius R is carved from a rectangular block, as shown in

the figure below. The final track has mass M . Define θ to be the angular

coordinate of a mass m that is placed on the frictionless track. For small θ

and small velocities, determine the angular frequency of small oscillations of

m about its equilibrium position.

Now, consider a separate problem where a bead of mass m is hung along

a thin circular hoop of mass M and radius R that rests vertically on

the ground. There is no friction between m and the hoop. If the mass is

released at a small angle from the bottom of the hoop and the hoop sub-

sequently rolls without slipping on the ground, determine the angular fre-

quency of small oscillations about the bottom without performing additional

calculations.

4. Two Sticks**

Two massless sticks of length 2r, each with a mass m fixed at its center, are

connected via a hinge at its ends. Referring to the figure on the next page,
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the bottom end of the lower stick is hinged to the ground. Initially, the sticks

are held such that the lower stick is vertical while the upper one is tilted at

a small angle ε clockwise from the vertical. At the moment where they are

subsequently released, determine the instantaneous angular accelerations of

the two sticks.

5. Particle on Rotating Plate**

A particle of mass m rests on a frictionless plate that is initially horizon-

tal. Then, you lift up the left edge of the plate and rotate it at a con-

stant clockwise angular velocity ω about its fixed right edge. Denote the dis-

tance between m and the right edge as x. Determine x(t) given that x=x0
at t = 0.

6. Swinging Pulley**

Two equal masses m are connected by a string that hangs over two fixed

pulleys (of negligible size) as shown in the figure below. The left mass moves

along the vertical direction while the right one is able to swing back and

forth in the plane of the masses and pulleys. Find the equations of motion

of this system. Assuming that the left mass starts at rest and the right

mass undergoes small oscillations with angular amplitude ε	 1, what is the

initial average acceleration (averaged over a few periods of the mass on the

right) of the mass on the left? In which direction is this acceleration oriented

towards?

7. Particle on Rotating Hoop**

A particle is constrained to move on a vertical thin hoop of radius R that

initially lies in the xz-plane and is rotating about the vertical z-axis at a

constant angular velocity ω anti-clockwise. Define the origin to be at the

center of the hoop. Let θ be the angular coordinate of the particle, measured

clockwise from the positive z-axis. Show that there exist angular positions,



July 10, 2018 12:25 Competitive Physics 9.61in x 6.69in b3146-ch12 page 652

652 Competitive Physics: Mechanics and Waves

other than that at the top and bottom of the hoop, such that the particle can

remain stationary if the magnitude of ω is large enough. Find these angular

positions and the minimum value of ω required. Do these equilibrium posi-

tions correspond to stable equilibria? If so, determine the frequency of small

angular oscillations if the particle is slightly displaced from those angular

positions.

8. Particle on Rotating Curve**

A particle is constrained to move on a rigid curve f(x) that is initially in the

x ≥ 0 region in the x-z plane. The curve rotates at a constant angular velocity

ω about the z-axis in the anti-clockwise direction. Obtain an equation that

can be used to determine possible initial x-coordinates that correspond to

equilibrium positions. Determine the condition for such positions to be stable

equilibria.

9. Massive Spring Oscillation**

Firstly, prove that if a spring of mass M undergoes uniform stretching,

the kinetic energy of the spring is 1
6Mε̇2, where ε is the extension of the

spring. Now, determine the frequency of oscillations for a massive spring of

mass M and spring constant k, connected to a point mass m and a wall,

on a horizontal table. Lastly, suppose that we add an identical spring to

the system. How does the frequency of oscillations change in each case if

the additional spring is connected in series and in parallel with respect to the

original one?

10. Oscillations with Hoop**

A particle of mass M is attached to a massless hoop of radius R as shown in

the figure below. The hoop is supported about a fixed axle through its center

but it is able to rotate freely.M is then connected to another particle of mass

m via a massless string hung over a frictionless, small pulley. Determine the

angular frequency of small oscillations of this system about its equilibrium

state if m always remains vertical.
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11. Oscillating Mass Attached to Another Mass**

A simple pendulum of mass m and length l is attached to a particle of mass

M that lies on a pair of frictionless horizontal rails that extend in a single

direction. Find the equations of motion of this system if m only oscillates in

the plane of the rails. For small oscillations ofm about the vertical, determine

the normal modes of this motion and explain them.

12. Atwood’s Machine with Massive String**

Consider the simplest Atwood’s Machine with two masses m1 and m2, con-

nected by a uniform inextensible string of mass m3 and length l. Define the

x-axis to be positive downwards and let the coordinate of m1 be x. If the

circumference of the pulley is assumed to be negligible such that the amount

of string wrapping around the pulley is negligible, find the constant α > 0,

if x(t) can be expressed as

x(t) = Aeαt +Be−αt + C,

for some constants A, B and C.

13. Brachistochrone**

In the xy-plane, a bead starts off from rest at the origin and slides along a

smooth wire to a predetermined point below the origin. Show that the shape

of the wire y(x) that minimizes the time taken by this bead satisfies the

parametric equations

x = a(φ− sinφ),

y = a(1− cosφ),

where y is defined to be positive downwards, a is a constant and φ is a vari-

able. Try to deduce the parameterization yourself! These equations describe

the shape of a cycloid which is the trajectory of a particle attached to a rim

of a circle of radius a that rolls without slipping in the x-direction. Hint:

Apply a certain “conservation law.”

14. Wire Pendulum**

A particle of mass m is constrained to move along a wire described by the

equation y(x), which is concave upwards. The wire is horizontal at the origin.

Let s(x) denote the arc length between the point on the wire at x-coordinate

x and the origin along the wire, such that the particle’s velocity along the
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wire is ṡ. Show that if y = ks2 for some constant k, the particle will undergo

simple harmonic motion, regardless of its initial distance from the origin and

velocity. Solve for y and x in terms of parametric equations and describe the

shape of the wire. We have thus constructed a pendulum that exhibits simple

harmonic motion exactly, independent of the amplitude of oscillation.

15. Virial Theorem**

Consider an arbitrary bounded system of N particles (bounded implies that

the coordinates and velocities of these particles do not diverge) subject

to a homogeneous potential energy U(x1, y1, z1, x2, y2, z2, . . . , xN , yN , zN ) of

degree d where xi, yi and zi are the x, y and z-coordinates of the ith particle.

Consider the quantity G =
∑N

i=1miri · ṙi where mi and ri are the mass and

position vector of the ith particle. Argue why 〈dGdt 〉 = lim
t→∞

1
t

∫ t
0
dG
dt dt = 0

where angle brackets in this problem mean that the time average is taken

over a period that tends to infinity. Hence, prove that 〈2T − dU〉 = 0 where

T is the total kinetic energy of the system. You may find Euler’s theorem of

homogeneous functions to be very useful.

16. Cylinder on Cylinder***

Consider a uniform cylinder of massm and radius r2 placed on top of another

uniform cylinder of mass M and radius r1 that is fixed translationally but

can still rotate about its cylindrical axis. Both of the cylindrical axes are

aligned and are parallel to the ground. The cylinder on top is then given

a slight azimuthal push. Let the angle subtended by the line joining the

two centers of the cylinder and the vertical be θ (positive clockwise). Using

the method of Lagrange multipliers, find θ̈ in terms of θ and find θmax, the

angle at which the cylinders lose contact with each other. Assume that the

cylinders do not slip with respect to each other.

17. Inverted Pendulum***

A pendulum consists of a mass m attached to a platform oscillating ver-

tically at Y (t) = A cosωt via a massless stick of length l. Determine the

equation of motion of m, in terms of the angle θ that the stick subtends

with the vertical. Surprisingly, when A 	 l and ω is large enough, the

stick will not topple when m is given a slight angular deviation from the

vertical when it is initially on top of the platform (i.e. the pendulum is

upside-down). Instead, it will sort of oscillate like an upside-down pendu-

lum. Make rough arguments about why this should be the case. Your cal-

culations do not have to be exact. Hint: as ω is large, θ oscillates rapidly
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with angular frequency ω over a short period (due to the movement of the

platform) such that we can write θ = B + C cosωt where B and C are

possibly time-dependent constants whose time-scales are much larger than
2π
ω . Furthermore, we know that C 	 B as A 	 l such that the oscilla-

tion of the platform should not affect the position of m much in a single

period.

18. Double Pendulum***

A pendulum bob of mass m1 is fixed via an inextensible string of length

l1 to a ceiling. Then, another bob of mass m2 is tied to this first bob via

another string of length l2. Let the anti-clockwise angles subtended by the

first and second strings and the vertical be θ1 and θ2 respectively (the strings

and the vertical lie in a single plane). Find the possible frequencies of small

oscillations.

19. Unraveling Rope***

A uniform, smooth rope of total length l and mass M is initially wrapped

into a stationary spiral of radius R. The exterior end, which is at the bottom

of the spiral, is fixed to a support as shown in the figure below. The rope

is then given a slight push such that it begins to roll without slipping on

the ground in a single direction, while unraveling as it travels. Assume that

the spiral constantly maintains a circular shape and that segments of the

rope that are no longer part of the spiral immediately come to a stop. Write

down the Lagrangian of this system and derive the equation of motion.

Then, show that given the slightest impulsive push, the rope will always

completely unravel. Finally, determine the time taken for it to completely

unravel if the initial velocity of the center of mass of the rope is negligible.

As the result will involve a difficult integral, use the constant α to represent∫ π
2
0

√
sin θdθ ≈ 1.198 in your answer.
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Solutions

1. Pendulum about Rotating Pivot*

Let the angle that the string makes with the vertical be θ, taking positive

values in the anti-clockwise direction. If we define the origin to be at the

center of the wheel, the coordinates of the bob are

x = R cosωt+ l sin θ,

y = R sinωt− l cos θ,

which implies that

ẋ = l cos θθ̇ −Rω sinωt,

ẏ = l sin θθ̇ +Rω cosωt.

Hence, the squared speed of the bob is

v2 = ẋ2 + ẏ2 = l2θ̇2 + 2Rlω sin(θ − ωt)θ̇ +R2ω2.

Hence, the Lagrangian of the bob (after discarding the 1
2mR

2ω2 and

mgR sinωt terms which represent total time derivatives) is

L =
1

2
m
(
l2θ̇2 + 2Rlω sin(θ − ωt)θ̇

)
+mgl cos θ.

Applying the E-L equation with respect to θ,

ml2θ̈ −mRlω2 cos(θ − ωt) +mRlω cos(θ − ωt)θ̇ = −mgl sin θ,

which returns to the familiar ml2θ̈ = −mgl sin θ in the limiting case where

ω = 0.

2. Cylinder on Inclined Plane**

Let the horizontal coordinate of the vertical edge of the plane be x. Let s be

the distance between the point of contact of the cylinder with the hypotenuse

and the top of the vertical edge. Then, the coordinates of the center of the

cylinder are (x+ s cos θ +R sin θ,−s sin θ+R cos θ) if we presume the slope

of the plane to be negative in the positive x-direction. The translational

velocities of the center of mass of the cylinder in the x and y directions are

ẋ+ ṡ cos θ and −ṡ sin θ respectively. Since the cylinder rolls without slipping,
Rω = ṡ where ω is the angular velocity of the cylinder. The rotational kinetic
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energy of the cylinder is 1
2Iω

2 = 1
4mR

2ω2 = 1
4mṡ

2. Hence, the Lagrangian

of the system comprising the cylinder and plane is

L =
1

2
m
(
(ẋ+ ṡ cos θ)2 + ṡ2 sin2 θ

)
+

1

2
Mẋ2 +

1

4
mṡ2 +mgs sin θ

=
1

2
m
(
ẋ2 + ṡ2 + 2ẋṡ cos θ

)
+

1

2
Mẋ2 +

1

4
mṡ2 +mgs sin θ,

where we have discarded the total time derivative −mgR cos θ. The E-L

equations with respect to x and s yield

mẍ+ms̈ cos θ +Mẍ = 0,

3

2
ms̈+mẍ cos θ = mg sin θ.

Solving this system of equations,

ẍ = − mg sin θ cos θ(
1
2 + sin2 θ

)
m+ 3

2M
.

3. Small Oscillations on Circle**

Define the origin at the center of the circle and the x and y-axes to be positive

rightwards and upwards respectively. Then, define x as the x-coordinate of

the center of mass of the track. The coordinates of the mass m are then

(x+R sin θ,−R cos θ). The squared speed of the mass m is

v2 = (ẋ+R cos θθ̇)2 +R2 sin2 θθ̇2 = ẋ2 +R2θ̇2 + 2R cos θẋθ̇.

The Lagrangian of the combined system comprising the track and the mass

is

L =
1

2
m(ẋ2 +R2θ̇2 + 2R cos θẋθ̇) +

1

2
Mẋ2 +mgR cos θ.

Applying the E-L equation with respect to x and θ,

mẍ−mR sin θθ̇2 +mR cos θθ̈ +Mẍ = 0,

−mR sin θẋθ̇ +mR cos θẍ+mR2θ̈ = −mR sin θẋθ̇ −mgR sin θ,

=⇒ mRθ̈ = −mg sin θ −m cos θẍ.

For small angles, sin θ ≈ θ and cos θ ≈ 1. Furthermore, discarding the θ̇2

term which is very small for small angles by the conservation of energy,

(m+M)ẍ = −mRθ̈,
mRθ̈ = −mgθ −mẍ.
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Eliminating ẍ,

θ̈ = −g(m+M)

RM
θ.

The angular frequency of oscillations is thus

ω =

√
g(m+M)

RM
.

In the second problem, define x to be the horizontal coordinate of the center

of mass of the circular hoop and θ to be the anti-clockwise angular coordinate

of the small mass from the bottom of the hoop. Then, the Lagrangian of

this system is almost the same as the previous one, with the addition of a

rotational kinetic energy term of the hoop. The moment of inertia of a hoop

is MR2. Therefore, its rotational kinetic energy with angular velocity ω is

1

2
MR2ω2 =

1

2
Mẋ2,

after applying the non-slip condition Rω = ẋ. This implies that the kinetic

energy of M doubles, as compared to the previous question. Since the only

dependence of the Lagrangian on M is through the kinetic energy term, the

angular frequency Ω in the second problem can be directly determined by

substituting 2M for M in the result, ω, of the first problem, and

Ω =

√
g(m+ 2M)

2RM
.

4. Two Sticks**

Label the bottom and top masses as 1 and 2 respectively. Define the x and

y-axes to be positive rightwards and upwards, with the origin located at the

bottom end of the lower stick. Next, define θ1 and θ2 as the clockwise angles

that the lower and upper sticks subtend with the vertical. The coordinates

of masses 1 and 2 are

(x1, y1) = (r sin θ1, r cos θ1)

=⇒ (ẋ1, ẏ1) = (r cos θ1θ̇1,−r sin θ1θ̇1),
(x2, y2) = (2r sin θ1 + r sin θ2, 2r cos θ1 + r cos θ2)

=⇒ (ẋ2, ẏ2) = (2r cos θ1θ̇1 + r cos θ2θ̇2,−2r sin θ1θ̇1 − r sin θ2θ̇2).



July 10, 2018 12:25 Competitive Physics 9.61in x 6.69in b3146-ch12 page 659

Lagrangian Mechanics 659

The Lagrangian of the entire system is thus

L =
1

2
m(ẋ21 + ẏ21) +

1

2
m(ẋ22 + ẏ22)−mgr cos θ1 −mg(2r cos θ1 + r cos θ2)

=
1

2
mr2θ̇21 +

1

2
m
[
4r2θ̇21 + r2θ̇22 + 4r2θ̇1θ̇2 cos(θ1 − θ2)

]
−mgr(3 cos θ1 + cos θ2).

Applying the E-L equation with respect to θ1 and θ2, while substituting

θ̇1 = θ̇2 = 0 initially, we obtain

3mgr sin θ1 = 5mr2θ̈1 + 2mr2θ̈2 cos(θ1 − θ2),

mgr sin θ2 = mr2θ̈2 + 2mr2θ̈1 cos(θ1 − θ2).

Substituting θ1 = 0 and θ2 = ε	 1 initially,

5θ̈1 + 2θ̈2 = 0,

2θ̈1 + θ̈2 =
gε

r
.

Solving the above simultaneously, the instantaneous angular accelerations

are initially

θ̈1 = −2gε

r
,

θ̈2 =
5gε

r
.

5. Particle on Rotating Plate**

Define the origin at the fixed right edge of the plate and consider polar

coordinates about this origin. x effectively functions as the radial coordinate

of the particle m. Therefore, it has a radial velocity ẋ and tangential velocity

xω. The Lagrangian of m is thus

L =
1

2
m(ẋ2 + x2ω2)−mgx sinωt.

Applying the E-L equation,

mẍ = mxω2 −mg sinωt

ẍ− ω2x = −g sinωt.
We first solve for the particular solution of this expression. Substituting a

trial solution of the form x = A sin(ωt+ φ),

−2Aω2 sin(ωt+ φ) = −g sinωt.
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Considering the instant where t = 0, we obtain

φ = 0.

Equating the amplitudes of both sides,

A =
g

2ω2
.

Therefore, the particular solution is

xp =
g

2ω2
sinωt.

Moving on, we investigate the homogeneous solution to the equation

ẍ− ω2x = 0,

whose solution is

xh = Beωt +Ce−ωt

for some constants B and C. The general solution for x(t) is thus

x = xh + xp = Beωt + Ce−ωt +
g

2ω2
sinωt.

Imposing the initial conditions B +C = x0 and ωB − ωC + g
2ω = 0,

B =
x0
2

− g

4ω2
,

C =
x0
2

+
g

4ω2
,

x =
(x0
2

− g

4ω2

)
eωt +

(x0
2

+
g

4ω2

)
e−ωt +

g

2ω2
sinωt.

6. Swinging Pulley**

Define the instantaneous length of the string segment between the right

pulley and the right mass to be r. Then, the vertical coordinate (positive

upwards) of the left mass is −r up to the addition of a constant (whose

associated gravitational potential energy vanishes from the Lagrangian any-

way). Let θ be the anti-clockwise angle subtended by the right mass and the
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vertical. The Lagrangian of this system is

L =
1

2
mṙ2 +

1

2
m(ṙ2 + r2θ̇2) +mgr(cos θ − 1).

Applying the E-L equation with respect to r and θ,

2mr̈ = mrθ̇2 +mg(cos θ − 1)

2mṙθ̇ +mr2θ̈ = −mgr sin θ.
When the right mass undergoes small oscillations, θ, θ̇ and ṙ are small

(initially) such that the second equation becomes

θ̈ = −g
r
θ.

If ṙ is small, r is approximately constant over a period of θ. Therefore,

θ = ε cos

(√
g

r
t+ φ

)

=⇒ θ̇ = −ε
√
g

r
sin

(√
g

r
t+ φ

)
,

where ε is the amplitude and φ is a constant. Substituting these into the

first equation of motion while using the Maclaurin expansion cos θ ≈ 1− θ2

2

for small θ,

2mr̈ = mgε2 sin2
(√

g

r
t+ φ

)
− 1

2
mgθ̇2

r̈ =
gε2

2
sin2
(√

g

r
t+ φ

)
− gε2

4
cos2
(√

g

r
t+ φ

)
.

Since the averages of both sin2(
√

g
r t + φ) and cos2(

√
g
r t + φ) are 1

2 over a

single period, the initial average r̈ is

〈r̈〉 = gε2

8
.

The positive value of 〈r̈〉 indicates that the left mass is accelerated upwards.

7. Particle on Rotating Hoop**

The velocity of the particle along the hoop is Rθ̇ while the velocity of the par-

ticle perpendicular to the plane of the hoop is R sin θω (due to its rotation).
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Hence, the Lagrangian of the particle is

L =
1

2
m
(
R2θ̇2 +R2 sin2 θω2

)
−mgR cos θ.

From the E-L equation,

mR2θ̈ = mR2 sin θ cos θω2 +mgR sin θ. (12.10)

At the equilibrium positions, θ̈ = 0. Hence,

cos θ = − g

Rω2

if sin θ �= 0 (excluding positions corresponding to the top and bottom of the

hoop). Since | cos θ| ≤ 1,

ω2 ≥ g

R

|ω| ≥
√
g

R

for such an equilibrium to exist. Then, the possible equilibrium angles satisfy

cos θ = − g

Rω2
.

The two equilibrium positions correspond to θ0 and 2π − θ0 with

θ0 = cos−1
(
− g

Rω2

)
.

We shall just analyze the stability of θ0 as the set-up is symmetrical about

the z-axis. In this process, remember that from Eq. (12.10),

1

2
mR2 sin 2θ0ω

2 +mgR sin θ0 = 0,

as θ0 corresponds to an equilibrium position. Suppose we displace the particle

slightly such that its angular coordinate θ = θ0 + ε for some infinitesimal

angular displacement ε. Substituting this expression into the equation of
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motion,

mR2ε̈ =
1

2
mR2 sin(2θ0 + 2ε)ω2 +mgR sin(θ0 + ε).

Using small angle approximations sin x ≈ x and cosx ≈ 1, valid if x is small,

and using the trigonometric identity sin(a+ b) = sin a cos b+ sin b cos a,

mR2ε̈ =
1

2
mR2 sin 2θ0ω

2 +mR2ω2 cos 2θ0ε+mgR sin θ0 +mgR cos θ0ε.

Note that

cos 2θ0 = 2cos2 θ0 − 1 =
2g2

R2ω4
− 1.

Substituting the expressions for cos θ0 and cos 2θ0 and canceling the terms
1
2mR

2 sin 2θ0ω
2 +mgR sin θ0 = 0,

ε̈ =

(
g2

R2ω2
− ω2

)
ε =

1

ω2

(
g2

R2
− ω4

)
ε.

Note that the coefficient in front of ε is negative as ω2 > g
R . This means that

this equilibrium corresponds to a stable equilibrium. The frequency of small

oscillations about this position is then

Ω =

√
R2ω4 − g2

R|ω| .

8. Particle on Rotating Curve**

Let x be the horizontal coordinate of the particle in the plane of the curve.

The component of the velocity of the particle along the curve is
√

1 + f ′(x)2ẋ
while the component perpendicular to the plane of the curve is xω. Hence,

the Lagrangian of the particle is

L =
1

2
m
[(
1 + f ′(x)2

)
ẋ2 + x2ω2

]−mgf(x).

The E-L equation yields

m(1 + f ′(x)2)ẍ+ 2mf ′(x)f ′′(x)ẋ2 = mxω2 −mgf ′(x). (12.11)

At equilibrium positions, ẍ = 0 and ẋ = 0 and we get

x

f ′(x)
=

g

ω2
.

Let the x-coordinate of a particular equilibrium position be x0. Then, to

determine whether this position corresponds to a stable equilibrium, consider
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an infinitesimal displacement ε such that the x-coordinate of the particle

becomes x0 + ε. Substituting this expression into Eq. (12.11),

{1 + [f ′(x0) + f ′′(x0)ε]2}ε̈+ 2[f ′(x0) + f ′′(x0)ε][f ′′(x0) + f ′′′(x0)ε]ε̇2

= (x0 + ε)ω2 − g[f ′(x0) + εf ′′(x0)],

where we have performed a Taylor expansion and approximated f ′(x0 +

ε) ≈ f ′(x0) + f ′′(x0)ε — ditto for subsequent derivatives. Simplifying the

resultant equation by cancelling terms which correspond to the equation of

motion at coordinate x0 that equate to zero, and by discarding second-order

infinitesimal terms (note that ε̇ and ε̈ are small too),

ε̈ =
ω2 − gf ′′(x0)
1 + f ′(x0)2

ε.

Hence, the frequency of small oscillations is

Ω =

√
gf ′′(x0)− ω2

1 + f ′(x0)2

if gf ′′(x0) > ω2. This inequality is also the condition for x0 to be a stable

equilibrium.

9. Massive Spring Oscillation**

Let the relaxed length of the spring be l and define the origin at the fixed

end of the spring. Then, after an extension ε, an infinitesimal segment of the

spring which was initially between coordinates x and x+dx, now corresponds

to coordinates

x′ = x
(
1 +

ε

l

)
and x′ + dx′. Hence, the velocity of this segment as a function of ε̇ is

ẋ′ =
x

l
ε̇.

The kinetic energy of this infinitesimal segment is 1
2λẋ

′2dx where λ = M
l is

the density of the relaxed spring and dx is the length of the infinitesimal

segment when the spring was relaxed. Note that the mass of this segment,

after stretching, is still λdx as no mass crosses its boundaries. Hence, the

total kinetic energy of the spring is obtained by integrating 1
2λẋ

′2dx over the
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original length of the entire spring.

T =

∫ l

0

1

2
λẋ′2dx =

∫ l

0

1

2
λ
x2

l2
ε̇2dx =

1

6
λlε̇2 =

1

6
Mε̇2.

Now, consider a horizontal spring-mass system in which the spring can be

presumed to stretch uniformly. Define the origin at the stationary end of

the spring again. Let x be the horizontal coordinate of the mass. Then, the

Lagrangian of the spring-mass system is

L =
1

2
mẋ2 +

1

6
Mẋ2 − 1

2
k(x− l)2.

The E-L equations yield

(
m+

M

3

)
ẍ = −k(x− l)

=⇒ ÿ = − k

m+ M
3

y,

where y = x− l. The angular frequency of oscillation is

ω =

√
k

m+ M
3

.

It can be seen that the effect of the mass of the spring is to “add” an

additional M3 to the oscillating body. Adding an identical spring doubles the

mass of the effective spring. Furthermore, the effective spring constants for

two springs connected in series and parallel are k
2 and 2k respectively. Hence,

ωseries =

√
k

2m+ 4M
3

,

ωparallel =

√
2k

m+ 2M
3

.

10. Oscillations with Hoop**

Let θ denote the anti-clockwise angle subtended byM and the vertical. Then,

the vertical coordinate (taking upwards as positive) of m is −Rθ up to the
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addition of a constant. Therefore, the Lagrangian of the system is

L =
1

2
(m+M)R2θ̇2 +mgRθ +MgR cos θ.

Applying the E-L equation with respect to θ,

(m+M)R2θ̈ = gR(m−M sin θ).

The equilibrium angle θ0 evidently corresponds to

sin θ0 =
m

M
.

Now, consider a slight deviation from this angle such that θ = θ0 + ε where

ε	 1. Substituting this expression into the equation of motion,

(m+M)R2ε̈ = gR(m−M sin θ0 −M cos θ0ε),

where we have applied the trigonometric identity sin(x + y) = sinx cos y +

cos x sin y. Since m−M sin θ0 = 0,

ε̈ = − Mg cos θ0
(m+M)R

ε,

which describes a simple harmonic motion with angular frequency

ω =

√
Mg cos θ0
(m+M)R

=

√√√√Mg
√

1− m2

M2

(m+M)R
= 4

√
M −m

M +m

√
g

R
.

11. Oscillating Mass Attached to Another Mass**

Define the x-axis to be along the rails and let the x-coordinate ofM be x. Let

θ denote the instantaneous anti-clockwise angle subtended by the pendulum

and the vertical. Then, the coordinates of m are (x + l sin θ,−l cos θ). The
Lagrangian of this system is thus

L =
1

2
Mẋ2 +

1

2
m(ẋ2 + 2l cos θẋθ̇ + l2θ̇2) +mgl cos θ.

Applying the E-L equation with respect to x and θ,

(M +m)ẍ−ml sin θθ̇2 +ml cos θθ̈ = 0,

ml cos θẍ−ml sin θẋθ̇ +ml2θ̈ +mgl sin θ = 0.

For small oscillations of m, θ and θ̇ are small such that the above become

(M +m)ẍ+mlθ̈ = 0,

ẍ+ lθ̈ + gθ = 0.
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Eliminating ẍ,

θ̈ = −(M +m)g

Ml
θ

=⇒ θ = A cos(ωt+ φ)

for some constants A and φ determined by initial conditions and where

ω =

√
(M +m)g

Ml

is the angular frequency of the simple harmonic motion. Now, integrating

(M +m)ẍ+mlθ̈ = 0 twice, we obtain

x = − ml

M +m
θ +Bt+ C

x = − ml

M +m
A cos(ωt+ φ) +Bt+ C,

where B and C are some constants determined by initial conditions. In the

current context, the normal modes refer to the independent motions that

can be exhibited by this system (i.e. fix all other motions and see if there is

still one more). C is largely irrelevant here as it just depends on the choice

of origin. One obvious normal mode occurs when A = 0 such that m remains

vertical while the two particles simply travel along the rails at a constant

velocity. Another mode occurs when B = 0 such that bothm andM oscillate

at angular frequency ω in opposite directions while the center of mass does

not shift.

12. Atwood’s Machine with Massive String**

As the string is inextensible, the masses and all segments of the string must

have the same speed. The Lagrangian of the system is

L =
1

2
(m1 +m2 +m3) ẋ

2 +m1gx+m2g(l − x) +
l2 − 2lx+ 2x2

2l
m3g.

The E-L equations yield

(m1 +m2 +m3)ẍ = m1g −m2g +

(
2x

l
− 1

)
m3g.

Simplifying,

ẍ =
2gm3

(m1 +m2 +m3)l
x+

m1 −m2 −m3

m1 +m2 +m3
g.
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Using the substitution x′ = x+ (m1−m2−m3)l
2m3

,

ẍ′ =
2gm3

(m1 +m2 +m3)l
x′.

The general solution to this differential equation is

x′ = Ae

√
2gm3

(m1+m2+m3)l
t
+Be

−
√

2gm3
(m1+m2+m3)l

t

=⇒ x = Ae

√
2gm3

(m1+m2+m3)l
t
+Be

−
√

2gm3
(m1+m2+m3)l

t − (m1 −m2 −m3)l

2m3
.

Then, α =
√

2gm3

(m1+m2+m3)l
.

13. Brachistochrone**

The velocity of the bead at a y-coordinate y is given by the classical conser-

vation of energy as

v =
√
2gy.

An infinitesimal length along the wire y(x) is

ds =
√
dx2 + dy2 =

√
1 + y′2dx.

Therefore, the time that we are trying to minimize is

t =

∫ B

A

ds

v
=

∫ B

A

√
1 + y′2

2gy
dx,

with predetermined endpoints A and B. We can thus apply the results from

the calculus of variations, with the “Lagrangian” being

L =

√
1 + y′2

2gy
.

However, instead of applying the E-L equation, we can observe that the

Lagrangian is independent of x. Therefore, the “Hamiltonian” is conserved.
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Consequently, the function y(x) that minimizes t satisfies

L− ∂L
∂y′

· y′ = c

for some constant c. √
1 + y′2

2gy
− y′2√

2gy(1 + y′2)
= c

1

2gy(1 + y′2)
= c2

y′ =

√
1

2gc2
− y

y
.

Expressing 1
2gc2 as a new constant β,

y′ =

√
β − y

y
.

This suggests that we should try the parameterization y = β sin2 θ for some

variable θ. Then,

y′ = cot θ.

Since y′ = dy
dx = dy

dθ · dθdx and dy
dθ = 2β sin θ cos θ,

dx

dθ
=

dy
dθ

y′
= 2β sin2 θ.

Applying the formula 2 sin2 θ = 1− cos 2θ,∫ x

0
dx =

∫ θ

0
β(1− cos 2θ)dθ

x = β

(
θ − sin 2θ

2

)
.

Defining new variables φ = 2θ and a = β
2 ,

x = a(φ− sinφ),

y = a(1− cosφ).

The curve described by these parametric equations is known as a cycloid and

its geometric interpretation is given in the solution to the next problem.
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14. Wire Pendulum**

The kinetic energy of the particle is 1
2mṡ

2 while its gravitational potential

energy is mgy = mgks2. Therefore, the Lagrangian of the particle is

L =
1

2
mṡ2 −mgks2.

Applying the E-L equation,

ms̈ = −2mgks

s̈ = −2gks,

which indicates a simple harmonic motion. This is independent of the initial

coordinate and velocity of the particle along the wire as we have not made

any assumptions about them (e.g. that s and ṡ are small). The definition of

s(x) implies

s(x) =

∫ x

0

√
1 + y′2dx.

Therefore, ds
dx =

√
1 + y′2. Differentiating y = ks2 with respect to x,

y′ = 2ks
√

1 + y′2

y′√
1 + y′2

= 2ks = 2
√
ky.

The above equation suggests the substitution y′ = tan θ such that

sin θ = 2
√
ky

y =
sin2 θ

4k
.

We can now solve for x(θ) by using the fact that

y′ =
dy
dθ
dx
dθ

=
sin θ cos θ

2k
dx
dθ

,

dx

dθ
=

cos2 θ

2k
=

cos 2θ + 1

4k

=⇒ x =
sin 2θ

8k
+

θ

4k
+ c,

where c is a constant. Notice that the origin must correspond to θ = 0 as

y′ = tan θ = 0 at x = 0 (as required by the wire being horizontal at the
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origin). Therefore, x(0) must be zero — implying that

c = 0,

x =
sin 2θ

8k
+

θ

4k
,

y =
sin2 θ

4k
=

1

8k
− 1

8k
cos 2θ.

We can rewrite the above in a more suggestive form by introducing a new

variable φ = 2θ such that

x =
1

8k
sinφ+

φ

8k
,

y =
1

8k
− 1

8k
cosφ.

Observe that the above is akin to the trajectory of a particle attached to the

rim of a circle of radius 1
8k , rolling without slipping in the positive x-direction

along the ground at y = 0. The particle begins at the bottom of the circle.

The center of the circle after the circle has rotated anti-clockwise by angle φ

is at ( φ8k ,
1
8k ) — implying that the coordinates of the particle are described

by the above equations. Such a trajectory is known as a cycloid. Finally,

notice that the curve described in the solution to the previous problem is

also a cycloid. It is remarkable how ubiquitous a cycloid is (and how it

often optimizes something). In fact, we will encounter a cycloid again when

we analyze the motion of a charge in mutually perpendicular and constant

electric and magnetic fields.

15. Virial Theorem**

Firstly, G must be bounded (i.e. does not diverge) as the coordinates and

velocities of the particles are bounded. Therefore,
∫ t
0
dG
dt dt = G(t) − G(0)

must be finite for all times t — implying that

lim
t→∞

1

t

∫ t

0

dG

dt
dt = 0.

Now, let us evaluate dG
dt explicitly.

dG

dt
=

N∑
i=1

miṙi · ṙi +
N∑
i=1

miri · r̈i.

The first summation is simply equal to twice the total kinetic energy of the

system, 2T . Meanwhile, since mir̈i is equal to the force experienced by the
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ith particle, − ∂U
∂ri

, the above becomes

dG

dt
= 2T −

N∑
i=1

ri · ∂U
∂ri

= 2T −
N∑
i=1

(
xi
∂U

∂xi
+ yi

∂U

∂yi
+ zi

∂U

∂zi

)

= 2T − dU,

where we have applied Euler’s theorem of homogeneous functions in the last

step. Taking the time-average of both sides over an infinite period,

〈2T − dU〉 = 0.

In fact, the virial theorem is extremely useful in estimating the total mass

in a galaxy (which can be safely assumed to be bounded since it has been

there for a long time). For a system under a gravitational potential, d = −1

such that 〈2T + U〉 = 0. The total kinetic energy can be estimated via the

Doppler effect while the gravitational potential energy can be approximated

in a manner similar to that of a spherical blob (with a measurable radius)

such that the total mass in the galaxy can be estimated. In fact, this method

led to the earliest hypothesis about the existence of dark matter, as the mass

of the Milky Way galaxy, predicted by this model, vastly differed from the

total mass of the observable stars.

16. Cylinder on Cylinder***

Let the angles that the bottom and top cylinders have rotated about their

own centers be ψ and φ respectively. They are measured clockwise from the

vertical axis. Define the origin to be at the center of the bottom cylinder.

Let the radial coordinate of the center of the top cylinder be r (we set this

as a variable as we wish to include a Lagrange multiplier). Then, rθ̇ is the

azimuthal velocity of the center of the top cylinder. Hence, the non-slip

condition is

rθ̇ − r2φ̇ = r1ψ̇.

Furthermore, the condition for the top cylinder to remain on the surface of

the bottom cylinder is

r = r1 + r2.

Now, the Lagrangian of the system comprising the two cylinders will be

written down. The moments of inertia are 1
2Mr21 and 1

2mr
2
2 respectively.
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Hence, the Lagrangian of the system with the Lagrange multiplier is

L =
1

4
Mr21ψ̇

2 +
1

4
mr22φ̇

2 +
1

2
m(r2θ̇2 + ṙ2)−mgr cos θ + λ(r − r1 − r2).

Substituting the expression for ψ̇ obtained from the non-slip condition,

L =
1

4
M(rθ̇− r2φ̇)

2 +
1

4
mr22φ̇

2 +
1

2
m(r2θ̇2+ ṙ2)−mgr cos θ+λ(r− r1− r2).

Applying the E-L equation with respect to r,

mr̈ =
1

2
M
(
rθ̇ − r2φ̇

)
θ̇ +mrθ̇2 −mg cos θ + λ. (12.12)

For the rest of the coordinates θ and φ, r can be treated as a constant when

applying the E-L equation as the Lagrange multiplier term does not depend

on θ and φ.

1

2
M(rθ̈ − r2φ̈)r +mr2θ̈ = mgr sin θ, (12.13)

1

2
M(rθ̈ − r2φ̈)r2 +

1

2
mr22φ̈ = 0. (12.14)

Recall that our ultimate objective is to solve for λ∂(r−r1−r2)∂r = λ, which

represents the normal force, in terms of θ. Hence, we have to eliminate all

other variables. From Eq. (12.14),

φ̈ =
Mr

(M −m)r2
θ̈.

Substituting this expression for φ̈ in Eq. (12.13),

θ̈ =
2(M −m)g

(M − 2m)r
sin θ.

This is the expression for θ̈ in terms of θ. Now, we wish to solve for θ̇ which

appears in Eq. (12.12). By using the fact that θ̈ = dθ̇
dθ θ̇, shifting dθ to the

right-hand side and integrating both sides, we obtain

∫ θ̇

0
θ̇dθ̇ =

∫ θ

0

2(M −m)g

(M − 2m)r
sin θdθ

θ̇2 =
4(M −m)g

(M − 2m)r
(1− cos θ).
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By substituting φ̇ = Mr
(M−m)r2

θ̇ in Eq. (12.12) and enforcing the constraint

r̈ = 0,

λ = mg cos θ − m(M − 2m)r

2(M −m)
θ̇2.

Substituting the expression for θ̇2,

λ = 3mg cos θ − 2mg.

The normal force is

λ
∂(r − r1 − r2)

∂r
= λ.

Hence, the top cylinder loses contact with the bottom when λ = 0. Then,

θmax = cos−1

(
2

3

)
.

17. Inverted Pendulum***

The coordinates of the particle are

(x, y)= (l sin θ,A cosωt+ l cos θ) =⇒ (ẋ, ẏ)= (l cos θθ̇,−Aω sinωt− l sin θθ̇).

The Lagrangian of the particle is thus (after discarding the total time deriva-

tives)

L =
1

2
m(l2θ̇2 + 2Alω sinωt sin θθ̇)−mgl cos θ.

Applying the E-L equation,

ml2θ̈ +mAlω2 cosωt sin θ +mAlω sinωt cos θθ̇ = mgl sin θ.

For small θ and θ̇,

θ̈ + (aω2 cosωt− ω2
0)θ = 0,

where a = A
l 	 1 and ω0 =

√
g
l . When aω2  ω2

0 (this shall be our defini-

tion of large ω for now), θ effectively oscillates with the platform at angu-

lar frequency ω, virtually neglecting gravity, during time-scales considerably

shorter than 2π
ω0

such that we can try a solution

θ = B + C cosωt,

where the time-scales of B and C are much larger than 2π
ω . Furthermore,

B  C as A 	 l such that the effect of the platform on the position of m
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is small in a single period. Substituting the above expression for θ into the

previous equation while keeping B and C constant,

−Cω2 cosωt+ aω2 cosωtB = 0

=⇒ C = aB,

θ = B(1 + a cosωt).

Substituting this expression into θ̈ + (aω2 cosωt− ω2
0)θ = 0,

〈θ̈〉 = −〈(aω2 cosωt− ω2
0)(1 + a cosωt)B〉 = −

(
a2ω2

2
− ω2

0

)
B,

where we average over the relatively short period 2π
ω . Next, we also know

from θ = B(1 + a cosωt) that

θ̇ = Ḃ(1 + a cosωt)− aωB sinωt

θ̈ = B̈(1 + a cosωt)− 2aωḂ sinωt− aω2B cosωt

=⇒ 〈θ̈〉 = B̈,

=⇒ B̈ = −
(
a2ω2

2
− ω2

0

)
B,

which indicates a simple harmonic motion of angular frequency

Ω =

√
a2ω2

2
− ω2

0 =

√
A2ω2

2l2
− g

l

if aω >
√
2ω0 (implying that our initial assumption aω2  ω2

0 needs to be

further strengthened since a	 1). Therefore,

θ ≈ D sin(Ωt+ φ)(1 + a cosωt)

for some constants D and φ. This is oscillatory4 and is bounded by a maxi-

mum value D(1 + a) which must be small when its initial angular deviation

from the vertical is small. Therefore, the stick does not topple.

18. Double Pendulum***

Define the origin to be at the fixed end of the first string. Then

the coordinates of m1 and m2 are (l1 sin θ,−l1 cos θ) and (l1 sin θ1 +

4As Ω ≈ a√
2
ω � ω, we can treat sin(Ωt+ φ) as a constant over the period of cosωt.
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l2 sin θ2,−l1 cos θ1 − l2 cos θ2) respectively. The squared speed of m2 can be

obtained from differentiating its coordinates to be(
l1 cos θ1θ̇1 + l2 cos θ2θ̇2

)2
+
(
l1 sin θ1θ̇1 + l2 sin θ2θ̇2

)2
= l21 θ̇

2
1 + l22 θ̇

2
2 + 2l1l2θ̇1θ̇2 cos(θ1 − θ2).

The Lagrangian of the two bobs is then

L =
1

2
m1l

2
1θ̇

2
1 +

1

2
m2(l

2
1 θ̇

2
1 + l22θ̇

2
2 + 2l1l2θ̇1θ̇2 cos(θ1 − θ2))

+m1gl1 cos θ1 +m2g(l1 cos θ1 + l2 cos θ2).

The E-L equations with respect to θ1 and θ2 yield

(m1 +m2)l
2
1 θ̈1 +m2l1l2θ̈2 cos(θ1 − θ2)−m2l1l2θ̇2 sin(θ1 − θ2)(θ̇1 − θ̇2)

= −m2l1l2θ̇1θ̇2 sin(θ1 − θ2)− (m1 +m2)gl1 sin θ1,

m2l
2
2θ̈2 +m2l1l2θ̈1 cos(θ1 − θ2)−m2l1l2θ̇1 sin(θ1 − θ2)(θ̇1 − θ̇2)

= m2l1l2θ̇1θ̇2 sin(θ1 − θ2)−m2gl2 sin θ2.

Applying small angle approximations and discarding second-order terms

(θ̇1 and θ̇2 are considered to be small too), we obtain the following after

some simplification.

(m1 +m2)l1θ̈1 + (m1 +m2)gθ1 +m2l2θ̈2 = 0,

l1θ̈1 + l2θ̈2 + gθ2 = 0.

This set of equations represents the motion of coupled oscillators. Using the

substitution θ1 = Aeiωt and θ2 = Beiωt and expressing the resultant set of

equations in matrix form,(
(m1 +m2)(l1ω

2 − g) m2l2ω
2

l1ω
2 l2ω

2 − g

)(
A

B

)
=

(
0

0

)
.

For non-trivial solutions to exist for A and B, the matrix on the left must

be singular — implying that its determinant must be zero. Then,

(m1 +m2)(l1ω
2 − g)(l2ω

2 − g)−m2l2ω
2 · l1ω2 = 0.

Solving for the possible values of ω yields

ω± =

√
(m1 +m2)(l1 + l2)g ± g

√
(l1 − l2)2m2

1 + (l1 + l2)2m2
2 + 2(l21 + l22)m1m2

2m1l1l2
.
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19. Unraveling Rope***

Define the origin to be at the support and let the x-coordinate of the center

of mass of the spiral be x. Then, the mass m and radius r of the remaining

spiral as functions of x are

m =M
(
1− x

L

)
,

r = R
(
1− x

L

)
.

Since the spiral is akin to a circular disk, its moment of inertia is

I =
1

2
mr2.

Following from this, its rotational kinetic energy, given that its instantaneous

angular velocity is ω, is

1

2
Iω2 =

1

4
mr2ω2 =

1

4
mẋ2,

where we have applied the non-slip condition rω = ẋ. Therefore, the

Lagrangian of the entire rope, whose sole contributor is the remaining por-

tion of the spiral, is

L =
1

2
mẋ2 +

1

2
Iω2 −mgr

=
3

4
M
(
1− x

L

)
ẋ2 −MgR

(
1− x

L

)2
.

Computing the relevant derivatives,

∂L
∂x

= −3M

4L
ẋ2 +

2MgR

L

(
1− x

L

)
,

∂L
∂ẋ

=
3

2
M
(
1− x

L

)
ẋ,

d

dt

(
∂L
∂ẋ

)
= −3M

2L
ẋ2 +

3

2
M
(
1− x

L

)
ẍ.

Applying the E-L equation and equating the first and third expressions while

using ẍ = dẋ2

2dx ,

3

4
M
(
1− x

L

) dẋ2
dx

− 3M

4L
ẋ2 =

2MgR

L

(
1− x

L

)
.
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Simplifying,

(L− x)
dẋ2

dx
− ẋ2 =

8gR

3L
(L− x).

Observe that the left-hand side is the total derivative d[(L−x)ẋ2]
dx . Separating

variables and integrating,∫
d
[
(L− x)ẋ2

]
=

∫ x

0

8gR

3L
(L− x)dx.

Setting the constant of integration of the left-hand side as −4gR
3L c where c is

a positive constant (note that the constant of integration must be negative

as it is negative of L times the initial ẋ squared),

(L− x)ẋ2 − 4gR

3L
c =

4gR

3L
(2xL− x2).

Rearranging,

ẋ2 =
4gR

3L(L− x)
(2xL− x2 + c).

The only way for the rope to stop unraveling is for ẋ to attain zero at some

point before x = L so that it is possible for ẋ to become negative or remain

at zero. This requires

x2 − 2xL− c = 0,

with solutions

x =
2L±√

4L2 + 4c

2
= L±

√
L2 + c.

Notice that both solutions do not satisfy the above requirement as one is

negative while the other is larger than L. Therefore, the rope must completely

unravel. Moving on, in the case where the initial ẋ is negligible, c = 0. Then,

ẋ =

√
4gR

3L
· x(2L− x)

L− x
.

To determine the time t required for the rope to completely unravel, we

separate variables and integrate the above from x = 0 to x = L:

∫ L

0

√
L− x

x(2L− x)
dx =

∫ t

0

√
4gR

3L
dt.
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To simplify the integral on the left, we use the trick∫ b

a
f(x)dx =

∫ b

a
f(a+ b− x)dx,

which applies to any definite integral. In this case, a = 0 and b = L so we

substitute L− x for x in the integrand and get∫ L

0

√
L− x

x(2L− x)
dx =

∫ L

0

√
x

L2 − x2
dx.

Now, we can adopt the trigonometric substitution x = L sin θ and dx =

L cos θdθ. ∫ L

0

√
x

L2 − x2
dx =

∫ π
2

0

√
L sin θdθ =

√
Lα,

where we have agreed on using α to denote
∫ π

2
0

√
sin θdθ. Returning to the

original equation, we have

√
Lα =

√
4gR

3L
t.

Therefore,

t =

√
3Lα√
4gR

.
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Chapter 13

Waves

In this chapter, we will analyze waves which form an important concept

in various fields of physics. No new laws are introduced in this chapter.

Mechanical waves are still studied via the equation F = ma and electromag-

netic waves can be investigated by considering Maxwell’s equations. Waves

can be thought to be the mathematical consequence of the physical laws,

though they are surprisingly common and have profound physical meaning.

In this chapter, we will only be analyzing non-dispersive waves, whose

speed of propagation is independent of the wavelength of the wave.

13.1 Introduction

Consider a rope that is held under tension. If we give the left-end of the rope

a little wiggle, a “pulse” (known as a waveform) will be sent across the rope.

The string segment on the immediate right of the initial waveform will

be pulled upwards by the tension of the pulse. Then the next adjacent string

segment is also pulled upwards by the new shifted waveform and the wave

propagates through the string, resulting in a transfer of energy. However,

each section of the rope only oscillates up and down about its equilibrium

position and no section is actually physically transported from one end to

another. This can be best visualized by marking a section of the string with

a dot such as point P shown in Fig. 13.1.

This is an example of a traveling wave, which is a disturbance that is able

to transmit energy or momentum from a source to its surroundings. In the

case of a mechanical wave, the points in the medium that carry the wave do

not actually travel through the region through which the wave propagates.

A wave is analogous to an infinite series of coupled oscillators, though the

exact interactions between adjacent oscillators depend on the nature of the

681
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Figure 13.1: Traveling pulse

wave. Each point on the wave oscillates about its own equilibrium position.

In the case of a finite number of oscillators, each oscillator is associated

with its own displacement which is a function of time. As a wave can be

seen as an array of an infinite number of oscillators, the displacement ψ(x, t)

is used to denote the displacement of a point at the x-coordinate x on a

one-dimensional wave from its equilibrium position at time t.

13.1.1 Nature of Waves

There are two main types of waves that are of interest to us — namely

mechanical and electromagnetic waves. Definitely, these do not form an

exhaustive list. There are also other types of waves such as matter waves

and gravitational waves.

Mechanical Waves

A mechanical wave involves oscillations of matter. Mechanical waves propa-

gate due to restoring forces on particles that are displaced from their equilib-

rium positions. For instance, the disproportionate pressure on two sides of a
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section of air molecules provides the restoring force in a sound wave. There-

fore, all mechanical waves require media with mass and elasticity, whose

properties determine their speed of propagation, for propagation. Common

examples of mechanical waves include string waves, sound waves and water

waves.

Electromagnetic Waves (EM Waves)

An electromagnetic wave consists of an electric and magnetic field, both time-

varying, which are perpendicular both to the direction of wave propagation,

as well as to each other. As opposed to the movement of sections of string as

a string wave propagates, an electromagnetic wave leads to changes of the

surrounding electric and magnetic fields as the EM wave propagates.

Figure 13.2: Electric and magnetic field displacements in an EM wave

An electromagnetic wave propagates due to a self-sustaining induction

mechanism. A changing magnetic field induces a changing electric field and

vice-versa — the variations of the two fields are interconnected. As the propa-

gation of an electromagnetic wave relies solely on electromagnetic induction,

an EM wave is able to travel in a vacuum. In fact, all EM waves travel

at speed c in vacuum, which is commonly known as the speed of light in

vacuum.

c = 3.00 × 108m/s.

13.1.2 Direction of Vibration

Waves can also be divided into longitudinal and transverse waves based on

the direction of oscillation of points on the waves. A transverse wave is one in

which points of disturbance oscillate about their equilibrium positions per-

pendicular to the direction of wave propagation. All EM waves are transverse

waves. Transverse waves also have crests and troughs which correspond to

the points of the medium that have the most positive and negative displace-

ments from their equilibrium positions at a certain instant in time.
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Figure 13.3: Regions of compression and rarefaction

A longitudinal wave is one in which points of disturbance oscillate about

their equilibrium positions in a direction parallel to that of wave propagation.

A sound wave is an example of a longitudinal wave. Rather than crests and

troughs, a longitudinal wave contains regions where adjacent particles are

the closest and furthest with respect to each other at a certain instant. These

regions are known as points of compression and rarefaction, respectively.

In a sound wave, points of compression and rarefaction (Fig. 13.3) at a

particular instant in time correspond to the points of maximum and min-

imum pressure at that instant, respectively. Furthermore, they both cor-

respond to points of zero displacement as a particle at such points must

be at its equilibrium position in order to be squeezed by or evacuated of

surrounding molecules to the greatest extent.

Some waves, such as surface water waves, are a combination of both

transverse and longitudinal waves and are assigned to neither of the above

categories.

13.1.3 Definitions

Certain terminologies are used to describe a wave. The diagram below depicts

a “snapshot” of a one-dimensional traveling sinusoidal wave at a particular

instant. The y-axis corresponds to the displacements of particles from their

equilibrium position at a particular instant in time, which may be in the

transverse or longitudinal direction.

Figure 13.4: Traveling sinusoidal wave
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• The displacement, ψ(x, t), of a wave refers to the distance and direction

of the particle point at x-coordinate, x, from its equilibrium position at

time t. Note that ψ depends on both x and t. Figure 13.4 only shows

the displacements of the points on the wave at a particular instant. At

the next instant, the entire wave profile will shift to the right and the

displacements of the points will change.

• The amplitude, A, of a periodic wave at coordinate x is the maximum

magnitude of the displacement of the point on the wave at coordinate x

over all possible times. In the case of the sinusoidal wave depicted, the

amplitudes at all points on the wave are the same.

• The wavelength λ of a periodic wave is the distance between two adjacent

points that are in the same state of oscillation (with a phase difference of

2π) at a particular instant. This can be computed as the distance between

two successive crests or troughs for transverse waves and between two suc-

cessive compressions or rarefactions in the case of a longitudinal wave. The

labels in the figure are technically incorrect as the displacement cannot

refer to both the transverse and longitudinal displacements at the same

time. They are superimposed for the sake of simplicity.

One important fact to understand is that the displacement is along

the direction of propagation for longitudinal waves (i.e. the particles in

the above wave are displaced along the x-direction) though it is seem-

ingly transverse. To discern between compressions and rarefactions which

are both reflected by equilibrium points in a displacement graph, one

has to consider the instantaneous velocities of surrounding points. For

example, the first equilibrium point labeled corresponds to a point of

compression as its left neighbor has a positive velocity (towards larger

x as the displacement is longitudinal) while its left neighbor has a neg-

ative velocity. To visualize these velocities, simply consider the displace-

ments of those particles when the wave shifts slightly rightwards (in the

direction of propagation). Evidently, the particle at this equilibrium posi-

tion is squeezed from both sides and hence “compressed.” Similarly, the

neighboring molecules of the second equilibrium point labeled diverge

from the equilibrium point — implying that it corresponds to a point of

rarefaction.

• The period, T , of a periodic wave is the time taken for a point on the wave

to complete one oscillation cycle. That is, we fix a point of consideration

and observe how long it takes to return to its initial state. The period is

also the time taken for the wave to advance by a distance of one wavelength

as that is how long it takes for the corresponding point of the wave to travel

from another location to the point under consideration.
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Figure 13.5: Ripples

• The frequency, f , of a periodic wave is then the number of oscillation

cycles completed by a point on the wave per unit time, f = 1
T .

• The phase angle of a traveling sinusoidal wave at a certain point in space

represents the state of oscillation of that point at a particular time. For

example, for the sinusoidal traveling wave with ψ(x, t) given by

ψ = A cos (kx− ωt+ φ),

the quantity kx − ωt + φ is the phase angle of the point on the wave at

coordinate x at time t.

• A wavefront of a periodic wave is a locus of points on the wave that are

at the same state of oscillation (in phase) at a particular point in time.

By convention, the distance between consecutive wave fronts is drawn to

correspond to one wavelength. A vivid and intuitive illustration of wave

fronts would be the ripples that are obtained when a stone is dropped into

a pond (Fig. 13.5).

The crests of the water waves are joined to form wave fronts that are

delineated by solid lines while the troughs are connected to form wave

fronts that are represented by dotted lines. A trough lies in the middle of

two consecutive crests and vice-versa.

• The phase velocity, v, of a wave is the distance that the wave profile

appears to traverse per unit time. Since a periodic wave travels a distance

λ in a time period T , the phase velocity of a traveling wave satisfies the

relationship

v =
λ

T
= fλ. (13.1)
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Note that except for displacement and the speed of a wave, all quantities in

the bullet points above are usually defined only for waves with continuous

and periodic energy input. For example, a person would have to keep wiggling

a string under tension or continue dropping stones in a pond to maintain

string and water waves, respectively. If the waves are not sustained, there

will only be a limited number of “pulses” that are transmitted. Then, the

analyses of such waves are much harder to quantify.

13.2 The Wave Equation

To delve further into the concept of a wave, one has to turn to the quantita-

tive formulation of a wave. All one-dimensional waves along the x-direction

are described by the following partial differential equation, known as the

one-dimensional wave equation.

∂2ψ

∂x2
=

1

v2
∂2ψ

∂t2
, (13.2)

where ψ(x, t) refers to the displacement of a certain quantity from its equi-

librium value at x-coordinate x and time t. It could be the displacement of

a certain particle on a string at a certain point in time or the electric field

at a certain spatial position at a particular time. v is a constant that we will

discover to be the phase velocity of the wave.

All types of waves boil down to equations of this form, though the exact

mechanisms involved in their derivations may differ across various waves.

Any quantity ψ that satisfies the above partial differential equation corre-

sponds to a wave.

13.2.1 General Solution

The general solution to the one-dimensional wave equation can be obtained

elegantly by D’Alembert’s method. We define new variables ξ = x− vt and

η = x+ vt. We can rewrite ψ(x, t) as a function of ξ and η easily, i.e.

ψ(x, t) = ψ

(
ξ + η

2
,
η − ξ

2v

)
= ψ(ξ, η).

Then the partial derivatives in the wave equation can be rewritten as

∂

∂x
=

∂

∂ξ
· ∂ξ
∂x

+
∂

∂η
· ∂η
∂x

=
∂

∂ξ
+

∂

∂η
,
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∂

∂t
=

∂

∂ξ
· ∂ξ
∂t

+
∂

∂η
· ∂η
∂t

= −v ∂
∂ξ

+ v
∂

∂η
,

∂2

∂x2
=

(
∂

∂ξ
+

∂

∂η

)(
∂

∂ξ
+

∂

∂η

)

=
∂2

∂ξ2
+

∂2

∂ξ∂η
+

∂2

∂η∂ξ
+

∂2

∂η2

=
∂2

∂ξ2
+ 2

∂2

∂ξ∂η
+

∂2

∂η2
,

∂2

∂t2
=

(
−v ∂

∂ξ
+ v

∂

∂η

)(
−v ∂

∂ξ
+ v

∂

∂η

)

= v2
∂2

∂ξ2
− v2

∂2

∂ξ∂η
− v2

∂2

∂η∂ξ
+ v2

∂2

∂η2

= v2
∂2

∂ξ2
− 2v2

∂2

∂ξ∂η
+ v2

∂2

∂η2
.

The third equalities of the last two expressions stem from the fact that the

order in which partial derivatives are taken does not matter. Substituting

these partial derivatives into the wave equation, we obtain

∂2ψ

∂ξ2
+ 2

∂2ψ

∂ξ∂η
+
∂2ψ

∂η2
=

1

v2

(
v2
∂2ψ

∂ξ2
− 2v2

∂2ψ

∂ξ∂η
+ v2

∂2ψ

∂η2

)

=⇒ ∂2ψ

∂ξ∂η
= 0.

We can integrate the expression above with respect to η first. The constant

of integration is a function of ξ that is independent of η, as we treat it

as a constant when taking the partial derivative of ∂ψ
∂ξ with respect to η

(remember that ψ is now a function of ξ and η). Thus, we obtain

∂ψ

∂ξ
= h(ξ)

for some function h(ξ). Integrating this expression with respect to ξ and

letting the constant of integration be g(η), an arbitrary function of η that is
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independent of ξ, we obtain

ψ =

∫
h(ξ)dξ + g(η)

= f(ξ) + g(η)

= f(x− vt) + g(x+ vt),

where f(x−vt) and g(x+vt) are arbitrary functions with (x−vt) and (x+vt)

as their respective arguments. From this general solution, it is evident that v

is the phase velocity of the wave. Consider an arbitrary function, f(x−vt), at
a certain time t0. We know that if we reduce the argument by a certain Δx,

the function simply shifts towards the positive x-direction by that amount.

This is exactly what occurs after a time interval of Δt has passed as the

function becomes f(x− v(t0 +Δt)). It can be seen that f(x− vt) represents

a wave form that is traveling in the positive x-direction. In time Δt, the wave

profile appears to travel a distance vΔt. Hence, v must refer to the phase

velocity of the wave. A similar argument can be made for g(x + vt) which

represents a wave form traveling in the negative x-direction.

To obtain a more specific solution for ψ, it is necessary to impose initial

conditions for ψ, such as the shape of the wave when t = 0, ψ(x, 0), the

initial velocity of different points of the wave, ∂ψ
∂t (x, 0), and possibly, other

boundary conditions that we will explore later.

13.2.2 One-Dimensional Traveling Sinusoidal Waves

The particular solution for a sinusoidal progressive wave with a continu-

ous energy input and no energy loss during propagation in the positive

x-direction can be deduced from the above general solution to be

ψ = A cos (k(x− vt) + φ),

where φ is the phase offset of the wave and A is the amplitude of the wave.

The boundary condition, in this case, is actually imposed by the fact that

at all times, ψ must be a sinusoidal function of x that is traveling in the

positive x-direction — the displacement at the driver of the wave (e.g. at

the location of the hand wiggling the string) must itself be sinusoidal. Now,

there is a need to multiply (x − vt) by a quantity k, as the argument for a

trigonometric function must be dimensionless. It is more edifying to express

the above equation as

ψ = A cos(kx− ωt+ φ), (13.3)
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where ω is the angular frequency of oscillations of a point on the wave.

ω = kv; (13.4)

k is known as the wave number. By definition, the wavelength λ is the

distance between two adjacent points that are oscillating in phase at a certain

time. Thus, an additional λ increase in x should correspond to an increase

in the argument in the cosine function of 2π. Therefore,

k =
2π

λ
. (13.5)

Sometimes, it may be convenient to represent the displacement ψ(x, t) of a

one-dimensional traveling sinusoidal wave in terms of the real component of

a complex displacement ψ̃, so that

ψ̃ = Aei(kx−ωt+φ)

for a wave traveling in the positive x-direction such that

ψ = Re(ψ̃).

The advantage of this formulation is that linear operations of ψ̃ can be

performed in replacement of ψ — a feat that is often less tedious. The final

physical wave can then be obtained from taking the real component of ψ̃.

Ultimately, the notion of sinusoidal waves is pivotal in the analysis of

waves even though not all wave forms may take the form of a pure sinusoidal

wave. This is because, any reasonably smooth function can be approximated

by the linear combination of a continuous spectrum of waves with differ-

ent wave numbers via Fourier analysis. Furthermore, this linear combination

must also be a valid solution to the wave equation by the principle of super-

position (if ψ1 and ψ2 are solutions, aψ1 + bψ2 is also a solution for any

constants a and b) which stems from the linearity of the wave equation.

13.2.3 String Wave

Let us provide a concrete example of how the one-dimensional wave equation

can be obtained in the case of a string wave. A traveling string wave can be

produced by perturbing a string under tension. Let the linear mass density

of the string when it is relaxed be μ. It is assumed that the tension in the

string is large enough that any gravitational effects can be neglected and

that each segment of the string produces insignificant longitudinal motion.

Every particle on the string moves essentially vertically and the gradient of

the string at every point is presumed to remain small.
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Figure 13.6: String segment

Consider an infinitesimal section of string between equilibrium

x-coordinates, x and x + dx, at time t (Fig. 13.6). Though the length of

this segment is ds =
√

1 + (dψdx )
2dx, the mass of this segment is still μdx

as the end points are not displaced longitudinally. Instead, the segment is

stretched. In order for this infinitesimal section to not accelerate longitu-

dinally, the longitudinal components must be equal. Since the slope of the

ends are small, the longitudinal component can be taken to be the actual

tension itself (as cos θ is second-order and above in θ). Therefore, the ten-

sion T must be uniform throughout the string. Applying Newton’s second

law to this infinitesimal element in the vertical direction and noting that the

vertical acceleration of this element is ∂2ψ
∂t2 ,

T sin (θ + dθ)− T sin θ = μdx
∂2ψ

∂t2
.

For small angles, sin can be approximated as tan, and

T (tan(θ + dθ)− tan θ) = μdx
∂2ψ

∂t2
.

As the slope of the string is small,

tan θ ≈ ∂ψ

∂x
.

Then,

T

(
∂ψ

∂x

∣∣∣
x=x+dx

− ∂ψ

∂x

∣∣∣
x=x

)
= μdx

∂2ψ

∂t2

∂ψ
∂x

∣∣∣
x=x+dx

− ∂ψ
∂x

∣∣∣
x=x

dx
=
μ

T

∂2ψ

∂t2
.

In the limit where dx→ 0, from the first principles of calculus,

∂2ψ

∂x2
=
μ

T

∂2ψ

∂t2
, (13.6)
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which takes the form of the one-dimensional wave equation. It can be seen

that a string wave travels at a phase velocity v =
√

T
μ where T is the uniform

tension and μ is the linear mass density of the string in the relaxed state.

Linear Energy Density

Since a traveling wave transports energy from a source to its surroundings, it

is useful to calculate the linear energy density or the energy per unit length

of a point on the wave. The energy per unit length of a wave is usually

computed instead of the total energy as most waves that we will consider

will extend to infinity. The linear energy density of a point on a periodic

traveling wave, ε, is generally proportional to the square of the amplitude at

that point, i.e.

ε ∝ A2.

Let us consider the specific case of a string wave. The kinetic energy of an

infinitesimal element of string at coordinate x is

dEKE =
1

2
μdx

(
∂ψ

∂t

)2

εKE =
1

2
μ

(
∂ψ

∂t

)2

.

The origin of the potential energy is more subtle. When an infinitesimal

segment of string is displaced from its equilibrium position, it is stretched

by a certain length Δs.

Δs = ds− dx

=

√
1 +

(
∂ψ

∂x

)2

dx− dx

≈ 1

2

(
∂ψ

∂x

)2

dx.

The work done by the tension in the string that allows the string to reach

this state, dW , is

dW = TΔs =
1

2
T

(
∂ψ

∂x

)2

dx = dU,
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which is equal to the potential energy stored in this string segment. The

potential energy per unit length is then given by

εPE =
1

2
T

(
∂ψ

∂x

)2

.

Finally, the total energy per unit length is

ε(x, t) = εKE + εPE =
μ

2

((
∂ψ

∂t

)2

+
T

μ

(
∂ψ

∂x

)2
)

ε(x, t) =
μ

2

((
∂ψ

∂t

)2

+ v2
(
∂ψ

∂x

)2
)
. (13.7)

For a traveling wave of the form ψ = f(x − vt) or ψ = f(x + vt), the

energy density at a certain point can be rewritten by applying the following

relationship

∂ψ

∂t
= ∓v∂ψ

∂x
,

ε(x, t) = μv2
(
∂ψ

∂x

)2

= μ

(
∂ψ

∂t

)2

, (13.8)

which is evidently proportional to the square of the amplitude of the wave

at that point. Be wary that Eq. (13.7) is valid for a general wave while

Eq. (13.8) only applies to traveling waves. A somewhat counter-intuitive

fact is that segments of string that possess the greatest kinetic energy also

simultaneously possess the greatest potential energy — a similar statement

holds for energy minima.

Power

Since the energy density of a point on a wave is proportional to the square of

the amplitude of the wave at that point, the power transmitted through that

same point on a periodic traveling wave is also proportional to the squared

amplitude of the wave at that point.

P ∝ A2.

Let us derive an expression for the power transmitted by a string wave at

a certain point of coordinate x at time t. Consider a point Q on the string.

The transverse force on point Q due to the string segment on the immediate
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left of Q is −T sin θ = −T ∂ψ
∂x . The power transmitted to Q, which is the rate

of work done by the left string segment on Q is

P = −T ∂ψ
∂x

· ∂ψ
∂t
, (13.9)

as ∂ψ
∂t is the velocity of Q in the transverse direction. Note that we have

neglected the longitudinal motion of point Q which is assumed to be non-

existent. The above is valid for a general wave, but for a traveling wave of

the form ψ = f(x− vt) or ψ = f(x+ vt),

∂ψ

∂t
= ∓v∂ψ

∂x
,

P = ±Tv
(
∂ψ

∂x

)2

= ±μv3
(
∂ψ

∂x

)2

= ±μv
(
∂ψ

∂t

)2

= ±ε(x, t)v.
(13.10)

It is evident from the second to last expression that the power transmitted

to point Q at time t is proportional to the squared amplitude of the wave

at Q. The last expression relating the linear energy density and the speed of

the wave makes physical sense. In a time interval dt, an additional length vdt

of the wave, which was originally on the left of Q, would have propagated to

the right of point Q (we take rightwards to be positive in the x-direction) for

a rightward-traveling wave, while carrying an energy density ε(x, t). Thus,

the rate of increase of energy of the string segments on the right of Q is

ε(x, t)v. Finally, the above equation can also be used to determine the power

delivered by the external agency in maintaining the wave (e.g. by the person

perturbing the string).

13.2.4 Sound Waves

It is also instructive to analyze sound waves which propagate as varying

pressure results in the displacement of gas molecules, which further sparks

varying pressure in neighboring regions as the volume occupied by the gas

molecules is compressed or expanded due to the initial discrepancy in pres-

sure beyond the equilibrium value. Concretely, consider a tube of gas of

uniform density ρ at equilibrium and with cross-sectional area A. We define

ψ(x, t) as the longitudinal displacement at time t of the molecules, which

were originally located at equilibrium coordinate x, such that the molecules

at this instant are at coordinate x+ψ(x, t). Furthermore, let ψp(x, t) denote

the excess pressure (which may be negative) produced by the molecules

at equilibrium coordinate x at time t, beyond the equilibrium pressure p0.
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Figure 13.7: Section of gas with ambient pressure p0

Consider a section of gas with ends at original equilibrium coordinates x and

x+ dx in Fig. 13.7.

The ends are now located at x+ψ(x, t) and x+dx+ψ(x+dx) respectively.

Though the volume of this section is now V ′ = A[ψ(x + dx) − ψ(x) + dx]

instead of the original V = Adx, the mass of air in this section is still ρAdx

as this gas column still corresponds to the molecules that were originally

sandwiched between equilibrium coordinates x and x + dx. Observe that

there is a change in volume

dV = V ′ − V = A[ψ(x + dx)− ψ(x)],

which must be induced by the excess pressure at its ends, ψp. For small

changes in volume, dV is in fact proportional to the original volume V and

the excess pressure ψp (for any arbitrary medium).

dV = −κV ψp,

where κ is known as the compressibility of the medium. !times, the bulk

modulus B = 1
κ is also used to describe the change in volume. The negative

sign above arises from the fact that increasing the excess pressure reduces

the volume of the gas. Shifting V over and substituting the expressions for

dV and V ,

ψ(x+ dx)− ψ(x)

dx
= −κψp.

As dx→ 0,

∂ψ

∂x
= −κψp. (13.11)

Armed with this relationship, we can now apply Newton’s second law to this

gas section. The net force is −[ψp(x + dx) − ψp(x)]A while the mass of gas

in this section is ρAdx. Hence,

−[ψp(x+ dx)− ψp(x)]A = ρAdx
∂2ψ

∂t2
.
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Shifting dx over to the left-hand side,

−∂ψp
∂x

= ρ
∂2ψ

∂t2

1

κ

∂2ψ

∂x2
= ρ

∂2ψ

∂t2

∂2ψ

∂x2
= ρκ

∂2ψ

∂t2
, (13.12)

which is the wave equation for displacement. To obtain the wave equation for

pressure, we can exploit the commutativity of partial derivatives and take

the partial derivative of both sides of Eq. (13.12) with respect to x.

∂2

∂x2

(
∂ψ

∂x

)
= ρκ

∂2

∂t2

(
∂ψ

∂x

)
.

Applying Eq. (13.11),

∂2ψp
∂x2

= ρκ
∂2ψp
∂t2

,

which is analogous to Eq. (13.12). Therefore, whatever we deduce about ψ

or ψp is interchangeable. However, as a consequence of Eq. (13.11), note that

the wave ψp leads ψ by π
2 radians in the direction of propagation in the case

of sinusoidal waves.

It can be seen that the speed of sound is
√

1
ρκ =

√
B
ρ . This is in fact the

general speed of a compressive longitudinal wave in an arbitrary medium —

the assumption of the medium being air was not crucial to our derivation.

To estimate the compressibility of air, we turn to the adiabatic condition

pV γ = c,

where p is the pressure of the gas, V is the volume and c is a constant. The

process that the gas section undergoes is approximately adiabatic as the time

scale of oscillation is much smaller than the time-scale of heat flow. The con-

ductivity σ of an ideal gas is approximately proportional to the product of

the mean free path λ (the average distance covered by a molecule between

collisions) and the average speed 〈v〉; σ ∝ λ〈v〉. Though the average speed

is comparable with the speed of sound, λ is abysmally small (i.e. collisions

impede conduction). Furthermore, the adiabatic condition holds especially

true for periodic sound waves of long wavelengths as the difference in tem-

perature along the wave is stretched over a long distance. Hence, the rate

of conduction is small as the temperature gradient is small — causing the
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process to be approximately adiabatic. We can take the total derivative of

the adiabatic equation to obtain

dpV γ + γpV γ−1dV = 0.

Rearranging,

dV = − V

γp
dp.

In most cases, the excess pressure ψp is much smaller than p0. Hence, p in

the equation above can simply be taken to be p0.

dV = − V

γp0
dp.

Evidently, the compressibility is

κ =
1

γp0
. (13.13)

For atmospheric air, γ ≈ 7
5 as it is mainly constituted by nitrogen and oxygen

which are both diatomic molecules. The speed of a sound wave is thus
√

γp0
ρ .

Volume Energy Density

We can similarly derive the volume energy density ε(x, t) of each volume

element of a sound wave at a certain time t. The kinetic energy component

is evidently

εKE =
1

2
ρ

(
∂ψ

∂t

)2

.

The potential energy component is again indirect. As the compression or

expansion of the gaseous medium is adiabatic, the increase in internal energy

in a section of gas of original volume Adx is simply the work done on the

gas by the external pressure at its ends due to neighboring sections. Let the

total instantaneous pressure on this gas section be p. The increase in internal

energy per unit volume in a section of gas from its equilibrium state to a

state with excess pressure ψp is

− ∫ pdV
Adx

=
−κAdx ∫ p0+ψp

p0
p · −dp

Adx
= κ

∫ p0+ψp

p0

pdp =
1

2
κ(2p0ψp + ψ2

p),

where we have applied the relationship dV = −κV dp = −κAdxdp and p0 is

the equilibrium pressure. The term κp0ψp can be ignored as it averages to
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zero for oscillatory ψp. Then, the potential energy per unit volume stored in

a section of gas is

εPE =
1

2
κψ2

p =
1

2κ

(
∂ψ

∂x

)2

.

The total volume energy density is thus

ε =
1

2
ρ

(
∂ψ

∂t

)2

+
1

2κ

(
∂ψ

∂x

)2

=
1

2
ρ

[(
∂ψ

∂t

)2

+ v2
(
∂ψ

∂x

)2
]
. (13.14)

For traveling waves of the form ψ = f(x−vt) or f(x+vt),
(
∂ψ
∂x

)2
= 1

v2

(
∂ψ
∂t

)2
.

Therefore,

ε = ρ

(
∂ψ

∂t

)2

= ρv2
(
∂ψ

∂x

)2

. (13.15)

Power

The power transmitted through a surface in space via a planar one-

dimensional traveling sound wave can be computed through the rate of work

done on an air section by its neighbors on its left. The pressure on the left

end of a section is p0 + ψp. Therefore, the rate of work done is

P = (p0 + ψp)A
∂ψ

∂t
.

The p0A
∂ψ
∂t is largely irrelevant here as it averages to zero for periodic ψ.

Neglecting this term,

P = ψpA
∂ψ

∂t
= −A

κ

∂ψ

∂x
· ∂ψ
∂t
. (13.16)

For traveling waves of the form ψ = f(x − vt) or f(x + vt), ∂ψ
∂x = ∓ 1

v
∂ψ
∂t .

Then,

P = ± A

κv

(
∂ψ

∂t

)2

= ±ρAv
(
∂ψ

∂t

)2

= ±ρAv3
(
∂ψ

∂x

)2

, (13.17)

where we have applied the relationship κ = 1
ρv2

. As expected, this result is

coherent with ε(x, t)Av.
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13.2.5 Intensity

Since we are on the topic of power, we slightly digress to an analogous

notion for three-dimensional waves. For waves that are inherently three-

dimensional (e.g. that emitted by a point light source), it is natural to define

a quantity known as the intensity at each point in space. The intensity of a

point in space, I, is the average rate at which energy is transported by a wave

per unit area across an infinitesimal surface at that point, whose surface is

perpendicular to its direction of propagation. In other words, it is the power

transmitted per unit area through an infinitesimal surface surrounding a

point in space. Since the power of a wave at a spatial position is generally

proportional to its squared amplitude at that point in space,

I ∝ A2.

This relationship, coupled with the fact that energy should be conserved in

non-dispersive media (which allows you to indirectly determine intensity),

enables us to figure out the amplitude of a symmetric wave without any

tedious calculations.

Problem: A point source emits waves isotropically (in the same manner

in all directions) whose wave fronts are spherical. Assuming that the total

power of the waves does not diminish as they propagate, find the intensity

at a point that is a distance r away from the source in terms of the total

average power P emitted by the source. Hence, find the amplitude of the

wave at that point in terms of A0, which is the amplitude of the wave at a

point that is a distance r0 from the source.

As the power is evenly distributed about the surface area of the entire

sphere with radius r, the intensity at a point on the sphere is

I =
P

4πr2
.

This implies that the amplitude is inversely proportional to the radial dis-

tance

=⇒ A ∝ 1

r
.

Thus,

A =
r0
r
A0.

It is also not hard to see that for long cylindrical waves (e.g. formed by an

infinitely long line of point sources), A ∝ 1√
r
as I ∝ 1

r . Actually, we shall
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also prove that the amplitude of a spherically symmetric wave decays with
1
r directly from the wave equation, in the next section.

13.2.6 Three-Dimensional Waves

The three-dimensional wave equation reads

∇2ψ =
1

v2
∂2ψ

∂t2
,

where ∇2 is known as the Laplacian operator and v is a constant. Note

that the wave function ψ, which represents the displacement at each spatial

location at a certain time, must now be a function of all three dimensions.

Plane Waves

The Laplacian in Cartesian coordinates is

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

which implies that the wave equation becomes

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
=

1

v2
∂2ψ

∂t2
.

As always, we try to look for harmonic solutions as they can be pieced

together to constitute a general function by Fourier analysis. To this

end, suppose that the solution is separable such that ψ(x, y, z, t) =

X(x)Y (y)Z(z)T (t). Substituting this trial solution into the above,

X ′′Y ZT +XY ′′ZT +XY Z ′′T =
1

v2
XY ZT ′′,

where a prime denotes a differentiation with respect to the function’s argu-

ment. Dividing the above by XY ZT ,

X ′′

X
+
Y ′′

Y
+
Z ′′

Z
=

1

v2
T ′′

T
.

Scrutinizing this equation, we find that it consists of terms which are individ-

ual functions of x, y, z and t respectively. For example, X
′′
X is only a function

of x while T ′′
T is strictly a function of t only. For the above to be true for

all (x, y, z, t), each of these terms must be a constant! To see why this is

so, suppose that we vary t while looking at the displacement of a particular

point at equilibrium coordinates (x, y, z) — the right-hand side would have

changed (if it were not a constant) while the left-hand side would remain
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the same. Applying a similar argument to all variables, each term must be

a constant. In fact, each constant must be negative, else the corresponding

function will blow up at positive or negative infinity (the solution will be

exponential). Therefore,

X ′′

X
= −k2x =⇒ X = Axe

ikxx,

Y ′′

Y
= −k2y =⇒ Y = Aye

ikyy,

Z ′′

Z
= −k2z =⇒ Z = Aze

ikzz,

1

v2
T ′′

T
= −ω

2

v2
=⇒ T = Ate

−iωt.

Note that we do not include the other exponential solutions whose exponents

are negative of the current ones (e.g. X = A′
xe

−ikxx or T = A′
te
iωt) as the

final result obtained from considering the most general solutions can be seen

as the superposition of different forms of the solution that we will soon

obtain. Concatenating the above expressions together and taking the real

component,

ψ(x, y, z, t) = A cos(kxx+ kyy + kzz − ωt+ φ) = A cos(k · r − ωt+ φ),

where A and φ are some constants and

k =

⎛
⎜⎝
kx

ky

kz

⎞
⎟⎠ ,

which is known as the three-dimensional wave vector. Finally, notice

that the separation constants introduced are not independent. They must

obey

k2 = k2x + k2y + k2z =
ω2

v2
.

Now, let us interpret the physical meaning of this wave function. First and

foremost, the expression ψ(x, y, z, t) above is known as a plane wave, as all

points along a plane perpendicular to k have the same phase at a particular

juncture in time (the dot products of the position vectors of all points in

such a plane and k are identical). Next, the plane wave is traveling in the

direction of k̂. This is most obvious when we align our x-axis with k̂ such
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that ψ becomes

ψ(x, y, z, t) = A cos(kx− ωt+ φ),

and we retrieve our one-dimensional sinusoidal wave that is traveling towards

the positive x-direction at phase velocity ω
k ! Incidentally, this also means that

the constant v (positive value) in our three-dimensional wave equation refers

to the phase velocity of the wave as v2 = ω2

k2
. Finally, it is also evident that

k = 2π
λ and ω = 2π

T = 2πf where λ is the wavelength, T is the period and f is

the frequency of the plane wave. However, do not let the components of k fool

you into thinking that there exist “wavelengths” in the x, y and z-directions

such that we can form a “wavelength vector.” Remember that the wavelength

of a wave is a scalar quantity and has nothing to do with direction! To

convince yourself of this, suppose that we define the “wavelength along a

certain direction” as the distance that we have to move along that direction

to reach another point that is at the same state of oscillation as the current

point that we are at (at the same instance in time). Orient the x-axis along

the direction of k such that the “x-component of the wavelength” is λ while

the other components tend to infinity. Now, rotate the x and y axes about

the z-axis by a certain angle φ to produce new x’ and y’ axes such that the

“x’ and y’-components of the wavelength” are both finite in general — this

contradicts the rotational transformation of vectors (given by multiplying the

rotation matrix). Another way to see this is that the magnitude of the two-

dimensional vector formed by the “x and y components of the wavelength

vector” is not preserved after a rotation about the z-direction — violating a

crucial property of vectors.

Spherical Waves

It turns out that the Laplacian in spherical coordinates is

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2
.

Assuming that our wave function ψ(r) is spherically symmetric such that it

is independent of θ and φ, the three-dimensional wave equation becomes

∂2ψ

∂r2
+

2

r

∂ψ

∂r
=

1

v2
∂2ψ

∂t2
.
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Introducing a new variable ψ′ = rψ,

∂ψ′

∂r
= ψ + r

∂ψ

∂r

=⇒ ∂2ψ′

∂r2
= 2

∂ψ

∂r
+ r

∂2ψ

∂r2

∂2ψ′

∂t2
= r

∂2ψ

∂t2
,

such that the wave equation becomes

∂2ψ′

∂r2
=

1

v2
∂2ψ′

∂t2
,

which is simply the one-dimensional wave equation that we have analyzed

before! Its general sinusoidal solution traveling in the positive r-direction

(radially outwards from the origin) is

ψ′(r) = A cos(kr − ωt+ φ)

=⇒ ψ(r) =
A

r
cos(kr − ωt+ φ),

where A and φ are constants. We have thus proven that the amplitude of a

spherically symmetric (isotropic) wave decreases with radial distance r.

13.3 One-Dimensional Waves at a Boundary

13.3.1 Reflection and Transmission at a Massless

Boundary

Consider two semi-infinite segments of string of linear mass densities μ1 (in

x < 0) and μ2 (in x > 0) that are connected at x = 0. The tensions in the

segments may even differ, for we can connect them via a massless ring that is

wrapped around a pole (so that it can absorb the discrepancy in longitudinal

tension). Therefore, we let the tensions in the left and right regions be T1 and

T2 respectively. An interesting question to ask is that if an incident traveling

wave propagates from x = −∞ in the positive x-direction, what occurs at

the boundary?

Let ψi(x, t) = ψi(t− x
v1
) for x < 0 be the incident traveling wave emerging

from the left where v1 =
√

T1
μ1

is the speed of the wave in x < 0. Generally,

there will be a reflected wave ψr(x, t) = ψr(t+
x
v1
) traveling towards the left

for x < 0 and a transmitted wave ψt(x, t) = ψt(t − x
v2
) traveling towards
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the right for x > 0 where v2 =
√

T2
μ2
. There isn’t a “reflected” wave moving

towards the left in the region x > 0 as the right segment extends to infinity

such that no reflection occurs at the right end. The net displacements in the

regions x < 0 and x > 0 are respectively ψi + ψr and ψt.

To determine ψr and ψt in terms of ψi, we have to impose certain bound-

ary conditions at x = 0. Firstly, the displacement at x = 0 must be contin-

uous at all times as a disjoint string or ring is implausible.

ψi(0, t) + ψr(0, t) = ψt(0, t).

Furthermore, the transverse components of tensions at the left and right

ends of the boundary at x = 0 must sum to zero, else the massless entity at

x = 0 will experience an infinite acceleration. Therefore,

T1

[
∂ψi
∂x

(0, t) +
∂ψr
∂x

(0, t)

]
= T2

∂ψt
∂x

(0, t),

as T ∂ψ
∂x is the transverse component of force. As these displacements take

the form of traveling waves,

∂ψi
∂x

(0, t) = − 1

v1
ψ′
i

(
t− x

v1

)∣∣∣
x=0

= − 1

v1

∂ψi
∂t

(0, t).

Note that (′) by default denotes differentiation with respect to the function’s

argument. In the above statement, ψ′
i(t− x

v1
) means dψ

d(t− x
v1

) . Similarly, ∂ψr

∂x =

1
v1
∂ψr

∂t and ∂ψt

∂x = − 1
v2
∂ψt

∂t . Then,

−Z1
∂ψi
∂t

(0, t) + Z1
∂ψr
∂t

(0, t) = −Z2
∂ψt
∂t

(0, t),

where

Z =
T

v
=
√
Tμ (13.18)

is known as the impedance. Integrating the above and setting the constant

of integration to be zero as we assume that there is no displacement before
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a disturbance reaches x = 0, we get

Z1ψi(0, t) − Z1ψr(0, t) = Z2ψt(0, t).

Combining this requirement and the previous continuity condition,

ψr(0, t) =
Z1 − Z2

Z1 + Z2
ψi(0, t),

ψt(0, t) =
2Z1

Z1 + Z2
ψi(0, t).

The transmission and reflection coefficients, T and R, are defined as the frac-

tions of the incident amplitude that are transmitted and reflected, respec-

tively. Evidently,

R =
Z1 − Z2

Z1 + Z2
, (13.19)

T =
2Z1

Z1 + Z2
, (13.20)

T = 1 +R. (13.21)

The last condition is enforced by the continuity condition. Before we analyze

a few special cases of these coefficients, we proceed to determine ψt(x, t) and

ψr(x, t) from ψt(0, t) and ψr(0, t). The key is to exploit the fact that the

waves are traveling. Therefore,

ψt(x, t) = ψt

(
0, t− x

v2

)
,

as the displacement at x > 0 at time t would be that at x = 0 at time t− x
v2

(the transmitted wave takes x
v2

time to travel from 0 to x). Then,

ψt(x, t) = ψt

(
0, t− x

v2

)
= Tψi

(
0, t− x

v2

)
.

Now, even though ψi is only valid for x < 0, we can imagine the situation

where the string is homogeneous with tension T and mass density μ1 so that

we are able to extend its domain to x > 0 as well. If ψi continued into the

x > 0 region, its displacement at x-coordinate 0 at time t − x
v2

would be
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equal to that at x-coordinate v1
v2
x at time t. Thus,

ψi

(
0, t− x

v2

)
= ψi

(
v1
v2
x, t

)
.

Then,

ψt(x, t) = Tψi

(
v1
v2
x, t

)
.

That is, the displacement of ψt at coordinate x > 0 at a certain instance is

T times that of the fictitious incident wave at coordinate v1
v2
x at the same

instance. This implies that the transmitted wave is broadened longitudinally

by a factor of v2
v1

as compared to the incident wave while its amplitude is

scaled by a factor of T .

We can apply a similar process to conclude that

ψr(x, t) = Rψi(−x, t),
where the domain of ψr is x < 0. Again, we have extended the domain

of ψi to the x > 0 region as well. The above expression implies that the

reflected displacement at coordinate x < 0 at a certain instance is that of

the imaginary incident wave at −x > 0 (i.e. flipped about the point x = 0)

with an amplitude that is scaled by a factor of R. The “width” of the reflected

wave is identical to the incident wave so it is only shrunk transversely.

Special Cases of Impedances

The relative magnitudes of Z1 and Z2 determine properties of the reflected

and transmitted wave. Before we explore certain special regimes, observe

from the expressions

R =
Z1 − Z2

Z1 + Z2
= −1 +

2Z1

Z1 + Z2
= 1− 2Z2

Z1 + Z2
,

T =
2Z1

Z1 + Z2
= 2− 2Z2

Z1 + Z2
,

that

−1 ≤ R ≤ 1,

0 ≤ T ≤ 2

for non-negative impedances.
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Case 1: Z2 > Z1

When the impedance of the second medium exceeds that of the first, −1 ≤
R < 0 while 0 ≤ T < 1. The negative value of R implies that the reflected

wave first undergoes a π-radian phase shift (so that the displacement at

x = 0 is negated while being scaled) before it is bounced back as shown

in Fig. 13.8. This is best visualized by considering a single incident pulse

approaching the boundary. A string segment at the x = 0 boundary with a

positive incident displacement will be pulled down until it attains a negative

displacement to form the reflected pulse (note that the net displacement is

the superposition of the incident and reflected waves and not only the latter).

The reflected pulse is then the incident wave flipped about the x-axis and

scaled by a factor of |R|. The physical cause of this inversion is the force

exerted by the entity at x = 0 (e.g. massless ring) on the string segment on

its left which wrests it down.

Figure 13.8: Reflected pulse with π-radian phase shift and transmitted pulse

In the limit where Z2 � Z1, R = −1 and T = 0. That is, all of the

incident wave is reflected. A direct consequence of this is that the string

segment at x = 0 cannot budge, as ψi(0, t)+ψr(0, t) = ψi(0, t)−ψi(0, t) = 0.

Conversely, this also provides an intuitive explanation for the π-radian phase

shift as we can coerce the point at the boundary to stay still to achieve infinite

impedance.

Figure 13.9: Incident wave and imaginary reflected wave

Consider an incident pulse traveling towards the right at speed v1 and

imagine the reflected wave to originate from x > 0 and travel towards the left

at speed v1 (Fig. 13.9). The reflected wave is invalid in the x > 0 region but
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the “real” wave emerges in the x < 0 region such that the net displacement

there is produced by the vector sum of the displacements engendered by the

incident and reflected waves. For the node at x = 0 to remain stationary at

all times, the reflected wave must be a flipped version of the incident one so

that their net displacements exactly cancel at x = 0 at all times — hence

accounting for the π-radian phase shift.

Case 2: Z2 < Z1

When Z2 < Z1, 0 < R ≤ 1 and 1 < T ≤ 2. There is no longer a phase shift of

π radians upon reflection. Furthermore, in the limit where Z1 � Z2, R = 1

and T = 2. The displacement at x = 0 is in fact twice the displacement that

would have been produced by the incident wave alone!

Perhaps, the most intuitive explanation can be obtained from expressing

the power transmitted across the boundary (Eq. (13.10)) as P = Z(∂ψ∂t )
2.

Therefore, for small Z2, there must not be any power transmitted across

the boundary (though the transmitted amplitude is larger than normal).

Correspondingly, the entity at x = 0 cannot exert any transverse force on

the string segment on its right and hence also that on its left (for forces

to be balanced) — thus maintaining the shape of the left segment by the

conservation of energy before bouncing it back. Then, the net displacement

at the boundary, which is the vector sum of those due to the incident and

reflected waves, must be twice the individual displacement of the incident

wave at the boundary.

Case 3: Z2 = Z1

When Z2 = Z1, we say that the impedances are matched. Then, R = 0 and

T = 1. That is, there is no reflected wave and the entirety of the incident wave

is transmitted. This is intuitive when the string is homogeneous such that

the tensions and mass densities are identical on both sides on the boundary,

but is less obvious when the two segments are inhomogeneous (e.g. T2 =
1
2T1

and μ2 = 2μ1).

The most important application of this condition lies in the fact that

the maximum amount of energy is transmitted across the boundary (as

none is reflected). A typical example would be the megaphone whose cross-

sectional area is tapered as the impedance of sound propagating across

varying cross-sections is inversely proportional to the cross-sectional area.

Then, sound can propagate along the megaphone and into the atmosphere

with minimal reflection (after sound is channeled and concentrated along

the cone).
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Physical Meaning of Impedance

In general, for a traveling wave, the force F along the direction of oscillation

of a particular point on the wave — exerted by one of its neighbours — is

proportional to the velocity of that point, ∂ψ∂t . The constant of proportionality

between them is known as the impedance and is a property of the medium

which carries the wave.

Z =
F
∂ψ
∂t

. (13.22)

Let us first verify that F is indeed proportional to ∂ψ
∂t for a string. Consider

a point on a homogeneous string at coordinate x that is carrying a traveling

wave moving towards the right or left, ψ(x, t) = ψ(x− vt) or ψ(x+ vt). The

transverse component of tension exerted by the segment on the right of x on

the left segment is

FRonL = T
∂ψ

∂x
= ∓T

v
· ∂ψ
∂t

= ∓Z∂ψ
∂t
, (13.23)

where T is the tension in the string. Evidently, FRonL is proportional to ∂ψ
∂t

with the constant of proportionality being ∓T
v . The impedance of a string is

thus Z = T
v =

√
Tμ where μ is the mass density of the string. The effect of

the right segment is to apply a “damping force” on the left segment with the

damping coefficient being the impedance Z. Conversely, the left segment also

exerts an equal and opposite force on the right which leads to the delivery

of power and the propagation of the wave. The power delivered by the left

segment is FLonR = −FRonL multiplied by the velocity of the relevant point
∂ψ
∂t .

P = −FRonL ∂ψ
∂t
. (13.24)

For rightward and leftward-traveling waves, FRonL = ∓Z ∂ψ
∂t respectively —

implying that

P = ±Z
(
∂ψ

∂t

)2

. (13.25)

Moving on, a crucial observation here is that the left segment does not

know whether the entity on its right is actually a homogeneous string or a

damper with damping constant Z (e.g. a massless plate immersed in water).

Therefore, if we replace the right segment with the latter, there should be no

impact on the evolution of the left segment as they both feel the same to the

left segment. Then, there must be no reflection when the impedance of right
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entity matches the impedance of the left string segment (as it would think

that the medium is homogeneous)! It can then be seen that the impedance

is a natural characteristic of a wave, as opposed to other properties of the

medium. This is similar to how mass is a good representation of an object’s

response to a force rather than the object’s colour or material, as different

objects with the same mass react the same way.

Now, what happens when the impedance is discontinuous at a boundary

at x = 0? Consider an incident wave ψi traveling towards the right from

x = −∞ to x = 0 along a medium of impedance Z1 where it encounters

a massless damper of impedance Z2 that is maintained at equilibrium by

external means. In general, the viscous force exerted by the damper on the

left string segment is not equal to the force required to exactly sustain the

incident wave on the left (−Z1
∂ψi

∂t (0, t)). The excess viscous force then gen-

erates a reflected wave ψr in the x ≤ 0 region such that the net displacement

is ψi + ψr. The damping force on the left segment required to sustain ψr is

Z1
∂ψr

∂t (0, t). Note the absence of a negative sign as this wave is now traveling

towards the left, ψr = ψr(x+ vt). The sum of these forces must be equal to

the actual damping force generated by the damper −Z2(
∂ψi

∂t (0, t)+
∂ψr

∂t (0, t)).

Therefore,

−Z1
∂ψi
∂t

(0, t) + Z1
∂ψr
∂t

(0, t) = −Z2

(
∂ψi
∂t

(0, t) +
∂ψr
∂t

(0, t)

)
.

Solving for ∂ψr

∂t (0, t),

∂ψr
∂t

(0, t) =
Z1 − Z2

Z1 + Z2

∂ψi
∂t

(0, t).

Integrating with respect to time and imposing the condition that there

should be no initial displacement,

ψr(0, t) =
Z1 − Z2

Z1 + Z2
ψi(0, t).

The rest of the derivation for ψr(x, t) follows as above. Finally, we proceed to

the case where a medium of impedance Z2 that extends from x = 0 to x = ∞
supersedes the damper. The first astute observation to make is that the left

segment should respond in the exact same manner as the previous case if

the point at x = 0 remains at equilibrium (i.e. the transverse components

of force on the left and right are continuous) as the left segment cannot
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determine what is going on at the right side. Thus,

ψr(0, t) =
Z1 − Z2

Z1 + Z2
ψi(0, t).

Now, the entity at the interface which provides the viscous force on the

left segment also provides the driving force to produce a transmitted wave

ψt(x, t) in the right segment to remain at equilibrium. Again, there is no

wave traveling towards the left in region x ≥ 0 as the only driving force

is at x = 0. The transmitted wave can be determined by the continuity of

displacement.

ψt(0, t) = ψr(0, t) + ψi(0, t) =
2Z1

Z1 + Z2
ψi(0, t).

Therefore, the reflection and transmission coefficients are R = Z1−Z2
Z1+Z2

and

T = 2Z1
Z1+Z2

respectively. The advantage of this formulation is that it is rather

general. As long as the component of force along the direction of oscillation at

an interface is continuous and the displacement at an interface is continuous

(or their analogs), the reflection and transmission coefficients will be given

by the above expressions. These boundary conditions happen to hold in most

cases — for example, the normal component of velocity dψ
dt and pressure are

continuous across an interface for a sound wave propagating along a constant

cross-section. The relevant coefficients for a normally incident sound wave

are then given by substituting Z = p0
v =
√

ρp0
γ = ρv

γ for the impedance (the

last expression is most common and the γ’s can actually be canceled).

13.3.2 Massive Boundary

Instead of a purely viscous force, inertia could also be incorporated into the

boundary. Then, the boundary condition, in addition to the continuity of

displacement, is that the net force on the mass at the boundary, due to the

neighboring segments, must produce the correct acceleration as governed by

Newton’s second law. Consider the following problem.

Problem: Two strings of mass densities μ1 and μ2 and tensions T1 and T2
are connected via a mediating mass m at x = 0 as shown in Fig. 13.10. The

mass is constrained such that it can only move in the transverse direction.

A continuous and progressive sinusoidal string wave travels towards the right

from x = −∞. Determine the reflection and transmission coefficients. Note

that there will generally be a phase change in the reflected and transmitted

waves, but we are only interested in the amplitudes.
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Figure 13.10: Two strings and mediating mass

Let the incident, reflected and transmitted waves be ψi, ψr and ψt respec-

tively. The continuity of displacement at x = 0 implies

ψi(0, t) + ψr(0, t) = ψt(0, t).

The net transverse force on the mass m is T2
∂ψt

∂x (0, t) − T1
∂ψi
∂x (0, t) −

T1
∂ψr

∂x (0, t). By Newton’s second law,

T2
∂ψt
∂x

(0, t) − T1
∂ψi
∂x

(0, t)− T1
∂ψr
∂x

(0, t) = m
∂2ψ

∂t2
(0, t),

where ψ on the right-hand side can be taken to be either ψi+ψr or ψt as they

are continuous at x = 0. We shall choose ψt for our purposes. Exploiting the

fact that ψi, ψr and ψt refer to traveling waves, the above can be rewritten

as

−Z2
∂ψt
∂t

(0, t) + Z1
∂ψi
∂t

(0, t) − Z1
∂ψr
∂t

(0, t) = m
∂2ψt
∂t2

(0, t).

The next step to solving this differential equation is to guess trial solu-

tions. We know that ψi(x, t) takes the form of a traveling sinusoidal wave

cos(kx−ωt) and thus ψi(0, t) = cos(−ωt). It is then wise to guess sinusoidal

solutions for the other displacements at x = 0. In fact, it is even more expe-

ditious to express the displacements in terms of complex variables, solve for

them and then take the real component to obtain the physical displacement.

Since ψi(0, t) is sinusoidal, let its complex counterpart be ψ̃i(0, t) = eiωt (the

phase offset does not matter as we are only comparing amplitudes; the exact

magnitude does not matter as we are only looking at ratios). Then, we guess

exponential solutions to the complex variables

ψ̃r(0, t) = Aeiωt,

ψ̃t(0, t) = Beiωt,

where A and B are time-independent constants which are possibly complex.

Substituting these expressions into the previous differential equation (after
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replacing ψ’s with the corresponding ψ̃’s),

−Z2Biωe
iωt + Z1iωe

iωt − Z1Aiωe
iωt = m(iω)2Beiωt

−Z2B + Z1 − Z1A = mBiω.

From the continuity condition,

1 +A = B.

Solving,

A =
Z1 − Z2 − imω

Z1 + Z2 + imω
,

B =
2Z1

Z1 + Z2 + imω
.

To obtain the amplitudes of the real waves, observe that for any two complex

numbers, |z1z2| = |z1||z2|. Therefore, the amplitudes of the real waves are

|A| and |B| since |eiωt| = 1. Correspondingly,

R = |A| =
√

(Z1 − Z2)2 +m2ω2√
(Z1 + Z2)2 +m2ω2

,

T = |B| = 2Z1√
(Z1 + Z2)2 +m2ω2

.

Note that these two coefficients no longer need to obey 1 + R = T as

there are phase differences between the incident, reflected and transmitted

waves. These coefficients only represent the amplitudes of the waves and do

not account for their phases, which collectively determine the instantaneous

displacements.

13.3.3 Fixed End

Another common boundary condition comes from restricting the movement

of a point on the wave at one end. The general one-dimensional wave problem

involves determining the displacement ψ(x, t) of all points at all instances

given the initial displacement ψ(x, 0) and velocity ∂ψ
∂t (x, 0). A wave with a

fixed end and zero initial velocity actually provides a convenient avenue for

us to solve this general problem, rather than impeding our progress with an

additional boundary condition. Let the fixed end be located at x = 0 and

the region occupied by the wave be located on the right of x = 0, extending

to infinity (so that the boundary condition on the right can be neglected).
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The crux of our approach here is to decompose the general wave into com-

ponent traveling waves whose superposition satisfy the initial and boundary

conditions. Then, the combination of these waves must produce the correct

solution as the set-up is completely deterministic. Let us analyze the special

case where the initial displacement of the wave is given by

ψ(x, 0) = f(x),

for x ≥ 0 while the initial velocity ∂ψ
∂t (x, 0) = 0 for x ≥ 0. Obviously, f(0) = 0

as the end at x = 0 is fixed. Construct the function g(x) such that

g(x) =

⎧⎨
⎩
f(x)
2 , forx ≥ 0

− f(−x)
2 , forx < 0.

That is, g(x) is the half of the original function, f(x)
2 , in the x ≥ 0 region

but is the negated reflection of f(x)
2 about x = 0 in the x < 0 region. We

claim that the solution to the displacement ψ(x, t) is

ψ(x, t) = g(x + vt) + g(x− vt),

where v is the phase velocity of the wave. Firstly, the above expression is

a linear superposition of two functions whose arguments are (x + vt) and

(x− vt) — in accordance with D’Alembert’s solution. Now, we can check for

the initial conditions.

ψ(x, 0) = 2g(x) = f(x),

∂ψ

∂t
(x, 0) = vg(x)− vg(x) = 0.

These are consistent with the given conditions. Finally, we have to ensure

that the end at x = 0 remains still at all times.

ψ(0, t) = g(vt) + g(−vt) = g(vt) − g(vt) = 0.

Since our constructed solution satisfies the wave equation and the initial and

boundary conditions, it must be the solution that we are seeking. Now that

we have determined this general solution, what does it mean intuitively?

It consists of two waves that are vertically shrunk versions (by a factor of

half) of the initial displacement that are traveling in opposite directions.

This vertical scaling guarantees the validity of the initial displacement while

their motions in opposite directions ensure that the wave profile is initially

stationary. Next, the waves are fictitiously extended into the x < 0 region

by reflections so that they are odd functions. This ensures that as one wave



July 10, 2018 12:25 Competitive Physics 9.61in x 6.69in b3146-ch13 page 715

Waves 715

travels rightwards and the other leftwards, their displacements at x = 0

exactly cancel at all times — thus satisfying the boundary condition. Refer

to the following problem for some depictions.

Problem: A string extends from x = 0 to x = ∞ with a fixed end at x = 0.

It is initially at rest with an initial displacement the shape of a semi-circle

with radius R as shown in the figure below. If the speed of traveling waves1

on the string is a known value v, prove that at time t = R
2v , the displacement

of the string at all points is non-negative (above or lying on the horizontal

line). Next, draw the shape of the string at time t = R
v .

Figure 13.11: Initial displacement

The appropriate g(x) for this wave is

g(x) =

⎧⎨
⎩
√
R2−(x−R)2

2 , forx ≥ 0

−
√
R2−(x+R)2

2 , forx < 0

.

As depicted below, it consists of a scaled version of the original semi-circle

(semi-ellipse) and its reflection.

Figure 13.12: g(x) obtained from extending wave into x < 0 region

The general solution in this case comprises two of such g(x)’s traveling

in opposite directions. At t = R
2v , each wave would have covered distance R

2

and their relative positions are depicted in Fig. 13.13 on the next page (the

leftward-traveling wave is represented by the dotted lines).

The net displacement is given by the superposition of the two component

waves and can only conceivably be negative in the 0 ≤ x < R
2 region. The

1Astute readers may realise that the gradient is definitely not small in this case — an
assumption made in the derivation of string waves. However, we can relax this condition
and show that the wave equation still holds with T being the constant longitudinal tension
(constant so that there is no longitudinal motion). The drawback of this is that the tension
can now vary — complicating the energy associated with the wave.
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Figure 13.13: Waves at t = R
2v

actual net displacement is given by

ψ

(
x,
R

2v

)
= g

(
x+

R

2

)
+ g

(
x− R

2

)
.

For 0 ≤ x < R
2 , x − R

2 is negative which implies that g(x − R
2 ) =

−
√
R2−(x−R

2
+R)2

2 = −
√
R2−(x+R

2
)2

2 .

ψ

(
x,
R

2v

)
=

√
R2 − (x− R

2

)2 −√R2 − (x+ R
2

)2
2

.

This is evidently non-negative for all 0 ≤ x < R
2 as (x − R

2 )
2 ≤ R2

4 while

(x + R
2 )

2 ≥ R2

4 . At time t = R
v , both of the component waves would have

travelled a distance R and be located as shown in the figure below.

Figure 13.14: Waves at t = R
v

The two waves exactly cancel in the region 0 ≤ x ≤ R. However,

the leftward-traveling wave yields zero displacement for x > R while the

rightward-traveling wave brings along the semi-ellipse. Therefore, the resul-

tant shape of the string is a semi-ellipse of width 2R and height R
2 , centered

at x = 2R.

13.4 Other Effects

13.4.1 Polarization

When light is radiated from filament lamps via spontaneous emissions — a

random process where an electron drops from a higher to a lower energy level

while emitting a photon in the process — the electric field (and magnetic

field) of the resultant electromagnetic wave oscillates, seemingly haphaz-

ardly, in many different planes. This is due to the fact that the resultant

electromagnetic wave in a certain direction is a superposition of multiple

waves which are emitted via random processes and have different planes of
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Figure 13.15: Unpolarized and plane-polarized light

oscillation relative to the direction of propagation. Such EM waves with more

than one plane of oscillation are known as unpolarized light.

A linear polarizer can be used to restrict the vibrations in a transverse

wave, such as an EM wave, to only one direction in the plane normal to the

direction of wave propagation. This direction is determined by the direction

of the polarizing axis of the polarizer. Only the component of the wave that

is parallel to the polarizing axis passes through the polarizer. Note that

by this definition, longitudinal waves cannot be polarized as vibrations are

always parallel to the direction of propagation in a longitudinal wave. The

exact mechanisms of polarization will not be discussed here and we shall just

focus on its effects. For an EM wave, the plane of oscillation of its electric

field, from the front view, is represented by pairs of arrows which are 180◦

apart from each other. By convention, only the electric field of an EM wave

is depicted, as the magnetic field can be easily obtained by considering the

directions of the electric field and wave propagation.

The left diagram in Fig. 13.15 above depicts the oscillations of the electric

field of unpolarized light. It shows three planes of oscillations, represented

by three pairs of arrows — the two arrows of each pair are 180◦ apart from

each other. After passing through an ideal polarizer with a polarizing axis

in the vertical direction as shown above, the oscillation of the electric field

of the EM wave that emerges from the polarizer is restricted to the vertical

plane alone.

Note that after passing through a polarizer, the magnetic field of the

EM wave still exists even though we may not draw it in the diagram. The

relationship between the intensities of an initially plane-polarized light before

and after passing through a linear polarizer is given by Malus’ law. Let the

intensities of light before and after passing through the polarizer be I0 and

I respectively. If the angle subtended by the polarizing axis and initially-

polarized plane of oscillation is θ, Malus’ law states that

I = I0 cos
2 θ. (13.26)



July 10, 2018 12:25 Competitive Physics 9.61in x 6.69in b3146-ch13 page 718

718 Competitive Physics: Mechanics and Waves

The squared dependence on cos θ stems from two facts — that the amplitude

of the electric field is modified by a factor of cos θ (component along the

polarizing axis), and that the intensity of a EM wave is proportional to the

squared amplitude of the electric field.

Problem: Light emerges from a polarizer at intensity I0. A second polar-

izer, whose polarizing axis makes a 90◦ clockwise angle with that of the

first, is placed in front of the first polarizer. Determine the orientation of a

third polarizer, placed between the first two, that maximizes the transmitted

intensity. Determine this maximum intensity.

Let the polarizing axis of the middle polarizer subtend a clockwise angle θ

with that of the first. Then, the angle that this makes with the axis of the

final polarizer is 90◦ − θ. The transmitted intensity is thus

I0 cos
2 θ cos2(90◦ − θ) = I0 sin

2 θ cos2 θ =
I0
4
sin2 2θ,

which is maximized when θ = 45◦ or 135◦ (note that we do not include

225◦ or 315◦ which represent the same polarizing axes as the two afore). The

maximum transmitted intensity is I0
4 .

Brewster’s Angle

The reflection of light at a boundary between two distinct media with refrac-

tive indices n1 and n2 can in fact be used to polarize light. Assume that the

light starts from medium 1 and enters medium 2 with an angle of incidence

θi. Let the refracted angle be θr. At the special angle of incidence θi = θb,

such that θi + θr = 90◦ — known as the Brewster’s angle, the oscillation

of the electric field of the reflected light is restricted solely to the direction

perpendicular to the plane of incidence (the plane formed by the direction

of propagation and the normal vector of the interface).

θb can be easily computed via Snell’s law as

θb = tan−1 n2
n1
. (13.27)

Figure 13.16: Reflection and transmission at Brewster’s angle
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We shall only provide a qualitative argument of this phenomenon. Firstly,

we have to understand the physical origin of reflection and transmission.

When an electric field is present in a medium, electric dipoles are induced

via various mechanisms (e.g. the nuclei and electron clouds of atoms are

slightly separated). Due to the oscillating nature of an EM wave, the dipoles

induced by an EM wave oscillate — thus radiating light of their own (as

accelerating charges emit radiation). The transmitted and reflected light

are then constituted by the radiation of the dipoles (the incident light is

ignored as it is diminished due to absorption by the medium). Now, the

crux here is that the plane of oscillation of the electric field of the reflected

or transmitted light can only be aligned with the direction of oscillation of

the dipoles. Furthermore, the plane of oscillation of the electric field must

still be perpendicular to the direction of propagation — like any other EM

wave.

The direction of oscillation of the dipoles is aligned with the electric

field of the refracted wave — which is perpendicular to the direction of the

refracted wave. Therefore, the electric field of the reflected wave cannot have

a component along the direction of the refracted wave as the dipoles do not

oscillate along this direction. Furthermore, the electric field of the reflected

wave also cannot have a component along its own direction of propagation.

This leaves the only possible direction as that perpendicular to the plane

of incidence (perpendicular to the page). Therefore, the electric field of the

reflected ray will be polarized along that direction.

13.4.2 Classical Longitudinal Doppler Effect

In our daily lives, when a moving siren approaches us or when we are travel-

ing towards a siren, we perceive its pitch to be higher than when it is at rest.

Conversely, the pitch of a receding siren is lower. Such perception of pitches

is one of our natural instincts that help us to avoid danger and detect swift

ambulances. The deviation of the perceived frequency of the waves from

its actual frequency of emission from a source is due to the motion of the

observer and the source. Let us be quantitative about this.

Figure 13.17: Moving source and observer
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Consider a source that is traveling at a velocity vs, towards an observer

that is also approaching the source at a velocity vp in the lab frame

(Fig. 13.17). The source emits waves that travel at speed u in the lab frame

at a frequency f . What is the frequency of waves reaching the observer (this

is the frequency perceived by the observer), assuming that the source and

observer are moving directly towards each other? Firstly, we can draw a few

wave fronts to get a rough idea of the situation.

Figure 13.18: Wave fronts emitted by source

The figure above assumes a point wave source for illustrative purposes.

Such an assumption is unnecessary but it is easier to visualize the situa-

tion with spherical wave fronts. As seen from above, the source is off-center

from the spherical wave fronts that have been emitted previously due to the

motion of the source during the time period between successive emissions.

Let T and λ be the period and wavelength of the waves due to a station-

ary source and λ′ be the wavelength of the waves emitted by the moving

source in the lab frame. During a time period T , the wave source would have

traveled a distance vsT . Thus,

λ′ = λ− vsT.

Next, the relative velocity between the waves and the observer is u + vp.

Thus, the frequency of wave fronts hitting the observer, f ′, is

f ′ =
u+ vp
λ′

=
u+ vp
λ
T − vs

f
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=
u+ vp
u− vs

f

f ′ =
u+ vp
u− vs

f. (13.28)

Take note of the directions of vp and vs (towards each other). Otherwise, one

can also deduce the sign of the velocities by considering the fact that the

observed frequency increases if the observer and the source are approaching

each other.

A more in-depth scrutiny of this result would reveal that there must be

something wrong with this theory in the case of a wave that does not require

a medium for propagation (e.g. light) as the dependencies on the speeds of

the observer and source in the lab frame are different! This violates the

principle of relativity — a sacrosanct pillar in physics. Suppose that both an

observer and a light source were stationary in the lab frame. The observer

would receive light of frequency f . Now, the observer goes to sleep and wakes

up the next morning to find that the light source is receding from him or her

at speed v (perhaps he or she fell asleep on a train). For the sake of simplicity,

suppose that we know that it was either the source or the observer which

began to move relative to the lab frame (but not both). If this were to be

the source, the observer would observe light of frequency c
c+vf where c is

the speed of light. In the other case, the observed frequency would be c−v
c f

which is different from the previous expression. Therefore, the observer is

actually able to discern the entity which actually started moving relative to

the lab frame — contravening the supposed uniformity across inertial frames

which forbids the determination of the inertial frame that an observer rests

in. Ultimately, the observed frequency should only depend on the relative

speed between the source and the observer and this loophole in the classical

theory is indeed patched by the more accurate theory of special relativity.

Sonic Boom

The Doppler effect only holds for speeds of the source that are lower than

that of the wave (vs < u). For vs ≥ u, a different phenomenon occurs but

the same approach can be applied.

Consider an isotropic point source traveling at speed vs > u where u is

the speed of wave propagation in the lab frame. The wave fronts are spheres

that enlarge at speed u which are not concentric due to the movement of the

source. The distance between the centers of adjacent wave fronts is vsT —

the distance covered by a source during a period T . Lines can be drawn to

connect the different wave fronts to form a cone of half angle θ as shown
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Figure 13.19: Wave fronts emitted by source

in Fig. 13.19. Since the ratio between the distances covered by a sphere and

the source is u : vs,

θ = sin−1 u

vs
.

Now, observe that the observer only receives a single wave front — this

occurs at the juncture where the cone intersects with the observer (i.e. the

source has already passed overhead with respect to the observer). Then,

the observer perceives a single instantaneous “boom” as the intensity of the

wave (most commonly, the sound from a supersonic jet) suddenly increases

from zero to that emitted by the source and then decreases to zero shortly

afterwards — this stark contrast in intensity leads to a deafening sound.
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Problems

1. Impedance Matching*

A classic example of impedance matching would be the transmission of

energy via perfectly elastic collisions between balls. A massm travels towards

a stationary mass M at speed u and undergoes an elastic, head-on collision.

Determine the final speeds of m and M . What is the impedance in this case

and when is the maximum amount of energy transferred? Finally, devise a

way (an infeasible one is fine) to completely transfer energy from m and M

via elastic collisions only. You can add more balls.

2. Linear Expansion*

A rod, with linear mass density μ, Young’s modulus Y and initial length l,

is attached between two fixed rigid supports. At one temperature, the speed

of a longitudinal wave is found to be v1. When the temperature of the rod

is raised by ΔT and the ends of the rod are attached to two new supports,

the speed increases to v2. If the cross-sectional area of the rod is assumed to

be a constant A, determine the coefficient of linear expansion α of the rod.

Note that the Young’s modulus is the stress per unit strain of a section of

the rod. The stress σ is the tensile or compressive force that a section of the

rod experiences per unit area while the strain ε is the change in the length

of a section divided by its original length.

3. Hanging String*

A string of linear mass density μ and length L is hung vertically from a

wall. A mass m is attached to its bottom end, m � μL. If a traveling

pulse of a small width, that bulges rightwards, is made at the top of the

string and moves towards the bottom end, how does the width of the pulse

change qualitatively as it progresses? In what direction does the string move

towards? Finally, assuming that the string remains reasonably vertical and

stationary (possibly because m is large), determine the time required for the

part of the pulse that began at the top, to reach mass m.

4. Power of Opposite Waves*

Show that the power P (x, t) carried by the superposition of two one-

dimensional mechanical waves ψ1(x, t) = ψ1(x−vt) and ψ2(x, t) = ψ2(x+vt)

traveling in opposite directions at speed v in a homogeneous medium of
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impedance Z is simply the sum of the individual powers. Note that this

result is not true in the case of two waves traveling in the same direction.

5. Reflected Frequency*

A car travels at speed v in the lab frame along horizontal ground and emits

waves of speed u in the lab frame at frequency f . If the car is receding from

a stationary vertical wall (in a direction normal to the wall), determine the

frequency of the reflected waves that are received by the car.

6. Attenuation**

In reality, waves undergo damping such that their amplitudes decay. The

equation describing the waves, obtained from the physical laws (e.g. New-

ton’s laws), then takes the form

∂2ψ

∂t2
+ β

∂ψ

∂t
= c2

∂2ψ

∂x2
,

where β and c are positive constants. Determine the solutions to the above

equation, that are sinusoidal traveling waves with steady amplitudes (not

varying with time). Show that the amplitude is in fact decaying exponentially

with distance. Is the phase velocity still independent of wavelength?

7. Spring Wave**

Determine the speed of a longitudinal traveling wave along a spring of linear

mass density μ, spring constant k and length l.

8. Triangular Wave**

The two ends of a string of mass density μ, relaxed length 2L and tension

F are fixed to two massive walls separated by a horizontal distance 2L.

The string is initially given a triangular displacement of height h, as shown

in the figure below. The string is initially stationary and is then released.

Determine the total energy and the period T of the resultant wave. At time

t = T
8 from the release of the string, draw the shape of the string and label

it with the relevant lengths. (APhO)
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9. Mass in Middle**

Two strings — each of relaxed length L, tension T and mass density μ —

are connected via a mass m in the middle. If the other ends of the strings are

fixed to walls a distance L away from m, determine an equation that can be

used to solve for the fundamental modes of the system. Now, for μL � m

and μL� m, determine the wavelengths of the fundamental modes.

10. String Wave and Spring**

A mass m, located at x = 0, is connected to two identical springs with spring

constant s
2 each and is constrained to move along the y-axis. The springs are

both at their rest lengths when m is at the origin. This mass is also tied to a

string of tension T . A transverse wave in the string ψi(x, t) = A sin(ωt− kx)
is incident to the mass (refer to the diagram below). The reflected wave is

given by ψr = B sin(ωt+ kx+ φ). You may neglect gravity and assume that

the gradient of the string is small at all points in the questions below.

(a) Determine the equation of motion of the mass m in the form of a differ-

ential equation.

(b) Determine the value of m such that φ = 0 and B = A.

(c) This part is not related to (b). Assuming m = 0, determine the expres-

sions for B sinφ and B cosφ in terms of A, s, T and k.

(d) From (c), determine the expressions for B and φ. Comment on whether

the result makes sense if s = 0.

11. Spring-Mass with Wave**

Referring to the figure on the next page, the left end of a massm is connected

to a wall via a massless spring (spring 1) of spring constant s. The right end

of the mass is connected to a very long spring (spring 2). Spring 2 has

mass per unit length μ and the value of its spring constant multiplied by its

length is κ. Neglect gravity and assume the ground to be frictionless in this

problem. Initially, both springs are at their respective equilibrium lengths.

At t = 0, the mass is given an initial velocity v0 rightwards which sets up a

longitudinal wave in spring 2 that travels rightwards.
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(a) Show that the equation of motion of the mass is given by

m
d2X

dt2
+ γ

dX

dt
+ sX = 0

where X is the displacement of the mass (the rightwards direction is

positive). Determine the constant γ.

(b) Solve for X(t) in the regime 4ms > κμ using the given initial conditions.

(c) Find the wave function ψ(x, t), where x = 0 signifies the equilibrium

position of the mass. Note that x here refers to the equilibrium coor-

dinate of a section of spring 2 and ψ(x, t) represents its longitudinal

displacement at time t.

(d) The wave function in (c) is only valid for x < βt. State the constant β

and explain why this is so.

12. Circular Spring Wave**

A spring of spring constant k, length 2L, and mass per unit length μ, is

strung along a ring to form a circle, as shown in the figure below. The two

ends of the spring are connected at x = 0 where the x-coordinate will refer

to the position along the ring’s perimeter in this problem. Initially, point P,

that is located opposite of x = 0, is shifted by distance A in the positive x-

direction (in this case, to the left) from its equilibrium position, whereas the

section at x = 0 is held at its original position. Both are released afterwards.

We will use x ∈ [−L,L] in the problems below.

(a) Express the propagation speed of the wave.
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(b) Write down all the initial conditions and boundary conditions on the

wave function ψ(x, t) that we have for x ∈ [−L,L]. Take the clockwise

direction to be positive for displacements.

(c) Plot ψ(x, 0), the initial displacement of each point on the spring from

its equilibrium position, for x ∈ [−L,L].
(d) Determine the period τ of the wave.

(e) Plot the displacement at t = τ
4 (i.e. ψ(x, τ4 ) for x ∈ [−L,L]).

(f) Determine the total energy of the wave.
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Solutions

1. Impedance Matching*

Let the final velocities of m and M be v1 and v2 respectively. By the con-

servation of momentum,

mu = mv1 +Mv2.

Since the relative velocity between the balls simply reverses during an elastic

collision,

v2 − v1 = u.

Solving,

v1 =
m−M

m+M
u,

v2 =
2m

m+M
u.

The impedance in this case is simply the mass of the balls. The maximum

energy is transferred when v1 = 0 (i.e. m retains no energy). This occurs

when m = M . To completely transfer energy from m to M , we can taper

mass from m to M by interjecting balls with progressively increasing mass

between m and M . We can show that the elastic collision between a ball of

mass m′ and mass m′+ dm completely transfers energy. Let the speed of m′

be v. Substituting m′ for m and m′ + dm for M in the equations above, the

energy carried by m′ + dm is

Et =
2m′2(m′ + dm)

(2m′ + dm)2
v2

=
m′ + dm

2
(
1 + dm

2m′
)2 v2

≈ 1

2
(m′ + dm)

(
1− dm

m′

)
v2

=
1

2
(m′ − dm+ dm)v2

=
1

2
m′v2,

which is the total initial energy carried by m′. For a more general collision

between a moving particle m1 and a stationary particle m2 characterized
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by a coefficient of restitution e, the maximum energy transfer to m2, given

fixed e, in fact occurs when their impedances again match (i.e. m1 = m2).

Scrutinizing this fact, this implies that m1’s final velocity is generally non-

zero in order to maximize energy transfer — a somewhat counter-intuitive

condition. Finally, for a certain range of e, inserting a third mass between

m1 and m2 can in fact increase the maximum energy transferred to m2,

so we can repeat this operation to further increase the maximum energy

transferred. This is despite there being more collisions which dissipate heat.

For more details about this general problem, refer to Ref. [3].

2. Linear Expansion*

The wave equation can be derived for an elastic rod in the exact same manner

as a one-dimensional sound wave, with Y playing the role of the bulk modulus

B. (However, the physics is slightly different. The bulk modulus depends

on pressure which is exerted uniformly on the surface of a section of gas,

but the Young’s modulus depends on the tensile or compressive force in a

medium which is one-dimensional. In general, the former describes a change

in volume while the latter describes a change in length). Therefore, the speed

of a longitudinal wave in the rod is

v =

√
Y A

μ
.

The discrepancy in speeds stems from the difference in linear mass densities.

The length of the rod becomes

l′ = l(1 + αΔT )

after its temperature is increased by ΔT . Therefore, its new linear mass

density is

μ′ =
μl

l′
=

μ

1 + αΔT
.

This implies that

v2 = v1

√
μ

μ′
= v1

√
1 + αΔT ≈ v1

(
1 +

1

2
αΔT

)
.

Solving,

α =
2
(
v2
v1

− 1
)

ΔT
.
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3. Hanging String*

Note that because the tension in the string is now varying, the equation of

motion of the string does not yield the wave equation exactly. However, as

μL � m, the wave equation holds approximately with the traveling wave

having speed
√

T
μ along a segment with tension T and mass density μ. Define

the origin at the top of the wall and the x-axis to be positive downwards.

The tension in the string as a function of x is (for there to be no longitudinal

motion)

T = [m+ μ(L− x)]g.

Therefore, the tension in the string decreases as the pulse travels downwards.

As the phase velocity is v =
√

T
μ , the back of the pulse travels at a greater

speed than the front — implying that the pulse decreases in width. Though

the amplitude of a transmitted wave is equal to that of the incident wave

in this case (the impedance is matched as tension only varies gradually),

the width of the pulse decreases — implying that a smaller mass of string

bulges towards the right. Since the string is initially vertical, there should be

no horizontal force on the string-cum-mass system. Then, the string must

rotate rightwards in an attempt to maintain the position of the center of

mass. Moving on, the phase velocity of the wave as a function of x is

v =

√
[m+ μ(L− x)]g

μ
.

Separating variables and integrating from x = 0 (top end) to x = L (bottom

end),

∫ L

0

1√
m
μ + L− x

dx =

∫ t

0

√
gdt

2

√
m

μ
+ L− 2

√
m

μ
=

√
gt.

The time taken for the pulse to travel from the top to the bottom end is

t =
2
[√

m
μ + L−

√
m
μ

]
√
g

.
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4. Power of Opposite Waves*

The power of a wave is generally given by Eq. (13.24) as

P = −FRonL ∂ψ
∂t
,

where FRonL is the force exerted by the right section of the wave on the left

section along the direction of oscillation. ψ in this case is ψ1 +ψ2. Referring

to Eq. (13.23), FRonL is −Z ∂ψ
∂t for a rightward-traveling wave and Z ∂ψ

∂t for a

leftward-traveling wave. The net FRonL is given by the superposition of the

forces associated with ψ1 and ψ2, i.e.

FRonL = −Z
(
∂ψ1

∂t
− ∂ψ2

∂t

)
.

Substituting this expression into the above,

P = Z

(
∂ψ1

∂t
− ∂ψ2

∂t

)(
∂ψ1

∂t
+
∂ψ2

∂t

)
= Z

[(
∂ψ1

∂t

)2

−
(
∂ψ2

∂t

)2
]
,

which is the sum of the two individual powers Z(∂ψ1

∂t )
2 and −Z(∂ψ2

∂t )
2

(Eq. (13.25)).

5. Reflected Frequency*

The frequency of waves impinging on the wall is given by the Doppler shift

formula as

f ′ =
u

u+ v
f,

because the source (the car) is receding. Now, f ′ is also the frequency of the

reflected waves “emitted” by the wall. Therefore, the frequency of reflected

waves that is received by the car is

f ′′ =
u− v

u
f ′ =

u− v

u+ v
f,

as the car now acts as the observer while the stationary wall is the source.
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6. Attenuation**

We express a trial sinusoidal solution in terms of complex variables. Substi-

tuting

ψ̃ = Aei(Kx−ωt),

where A is a possibly complex constant into the given equation,

−ω2Aei(Kx−ωt) − iωβAei(Kx−ωt) = −c2K2Aei(Kx−ωt)

c2K2 = ω2 + iωβ.

Now, notice that we can afford for K to be complex but not ω, as a complex

component of ω would lead to a real exponential in ψ̃ and hence, a time-

varying amplitude. Expressing the previous equation in Euler form,

c2K2 =
√
ω4 + ω2β2ei tan

−1 β
ω

K =
4
√
ω4 + ω2β2

c
e

i
2
tan−1 β

ω .

Let the real and complex components of K be k and α respectively. Then,

k = Re(K) =
4
√
ω4 + ω2β2

c
cos

(
1

2
tan−1 β

ω

)

=
4
√
ω4 + ω2β2

c

√√√√cos
(
tan−1 β

ω

)
+ 1

2

=
4
√
ω4 + ω2β2

c

√
ω

2
√
ω2 + β2

+
1

2

=
1

c

√
ω2 + ω

√
ω2 + β2

2
.

Similarly, one can show that

α = Im(K) =
1

c

√
ω
√
ω2 + β2 − ωβ

2
,

but the exact expression is not particularly edifying either. The crucial point

is that in general (after expressing A as Beiφ where B is real),

ψ̃ = Be−αxei(kx−ωt+φ).
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The real wave is

ψ = Re(ψ̃) = Be−αx cos(kx− ωt+ φ).

The phase velocity is

v =
ω

k
= c

√√√√ 2

1 +
√

1 + β2

ω2

,

which is a function of ω and thus indirectly, wavelength.

7. Spring Wave**

Define ψ(x, t) as the longitudinal displacement of a point on the spring with

equilibrium coordinate x. Consider a section of the spring between equilib-

rium coordinates x and x+dx with mass μdx. Its ends are currently located

at x+ ψ(x, t) and x+ dx+ ψ(x+ dx, t). The extension of this section is

ds = x+ dx+ ψ(x+ dx, t)− [x+ ψ(x, t)] − dx = ψ(x+ dx, t) − ψ(x, t).

Now, what is the spring constantK of this infinitesimal section? Observe that

if we break a spring of spring constant k into two identical pieces connected

in series, the extension of each piece is half of that of the original spring

but the tension must remain the same — implying that the spring constant

doubles. In general, the spring constant of a section multiplied by the length

of the section is a constant. Therefore,

Kdx = kl.

Now, apply Newton’s second law to this spring section. The force on this

section due to its right neighbor is K[ψ(x + dx, t) − ψ(x, t)] while that due

to its left neighbor is −K[ψ(x, t)− ψ(x− dx, t)]. By Newton’s second law,

μdx
∂2ψ

∂t2
(x, t) = K[ψ(x+ dx, t)− ψ(x, t)]−K[ψ(x, t) − ψ(x− dx, t)],

where ψ(x, t) can be taken to be the displacement of the center of mass

of this section as dx is small. Substituting K = kl
dx and applying the first



July 10, 2018 12:25 Competitive Physics 9.61in x 6.69in b3146-ch13 page 734

734 Competitive Physics: Mechanics and Waves

principles of calculus,

μdx
∂2ψ

∂t2
= kl

(
∂ψ

∂x

∣∣∣
x=x+dx

− ∂ψ

∂x

∣∣∣
x=x

)
.

Shifting μdx over to the right-hand side and applying the first principles of

calculus again,

∂2ψ

∂t2
=
kl

μ

∂2ψ

∂x2
.

The phase velocity of the spring wave is evidently
√

kl
μ .

8. Triangular Wave**

The total energy carried by the wave is the initial potential energy stored,

as energy is conserved. Define the origin to be at the left end of the string.

The equations of the left and right segments are y = h
Lx and y = h − h

Lx

respectively. The magnitude of the gradients is h
L . Therefore, the stored

potential energy is

E =

∫ 2L

0

1

2
F

(
∂ψ

∂x

)2

dx

=

∫ 2L

0

Fh2

2L2
dx

=
Fh2

L
.

Figure 13.20: Shape of component wave

To determine the period of the resultant wave, observe that the resultant

wave can be decomposed into the superposition of two smaller triangular

waves (scaled down vertically by a factor of 1
2 and extended beyond the walls,

as shown in Fig. 13.20) traveling in opposite directions at speed v =
√

F
μ .

The actual wave is composed of two of the above “sub-waves” traveling

in opposite directions. After the two waves have “covered” 4L distance each
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(this is the wavelength), the string returns to its original state. Therefore,

the period is

T =
4L

v
=

4L
√
μ√

F
.

At time t = T
8 , the two waves would have traveled distance L

2 in opposite

directions — their positions at this juncture are depicted below.

Figure 13.21: Component waves at t = T
8

Their superposition yields the following trapezoid.

Figure 13.22: Superposition

Note that the interval where the two gradients of the component waves

are opposite consists of a flat plateau. Also, each component wave has a

maximum height h
2 .

9. Mass in Middle**

Set the origin at the mass and the coordinates of the fixed ends to be −L
and L respectively. Let the waves on the left and right of m be represented

by ψL and ψR. Since the end at −L is fixed, the expression for ψL must take

the form

ψL = A sin(k(x+ L) + nπ) sin(ωt+ φ)

where n is an integer and φ is a constant phase offset (see next chapter

for the equation for standing waves or the superposition of two identical

waves traveling in opposite directions). Similarly, as the end at L is fixed,
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the expression for ψR must take the form

ψR = A sin(k(L− x) + nπ) sin(ωt+ φ).

The amplitude of ψR must be equal to that of ψL to ensure the possibility of

continuity at x = 0 at all times. Furthermore, the time-dependences of ψR
and ψL must be identical to ensure continuity. Actually, the nπ in ψR can be

replaced by the addition of any even multiple of π to nπ to enforce continuity,

but this yields the same expression. Now, the net force on the mass m must

be coherent with its acceleration as given by Newton’s second law.

T
∂ψR
∂x

(0, t)− T
∂ψL
∂x

(0, t) = m
∂2ψ

∂t2
(0, t),

where ψ on the right-hand side can be taken to be either ψL or ψR as they

are continuous at x = 0. Substituting the expressions for ψL and ψR and

choosing ψ = ψL,

−2TkA cos(kL+ nπ) sin(ωt+ φ) = −mω2A sin(kL+ nπ) sin(ωt+ φ).

Applying ω2 = v2k2 = Tk2

μ and rearranging,

tan(kL+ nπ)kL =
2μL

m
.

Now, we can remove nπ from the argument of tan since it has a period of π.

Note that we added the nπ initially as a precaution — if the final result

involved a cos, it would matter if n were even or odd.

tan(kL)kL =
2μL

m
.

When μL� m, tan(kL) must tend to infinity. Then,

kL =
π

2
+ pπ,

where p is a non-negative integer. Using k = 2π
λ , the possible wavelengths

are

λ =
4L

2p+ 1
,

which makes intuitive sense as these correspond to the cases where an antin-

ode is located atm (so that it oscillates wildly). When μL� m, the situation
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is rather special. When kL itself is reasonably small, tan kL ≈ kL. Then,

k2L2 =
2μL

m
,

λ = π

√
2mL

μ
.

This is the longest wavelength of the system. For other larger values of kL,

tan(kL) itself must tend to zero. That is,

kL = pπ

for some positive integer p. Then,

λ =
2L

p
.

This also makes sense as such values of λ correspond to the modes where a

node is located at m (as it is too ponderous to move).

10. String Wave and Spring**

Let the vertical displacement ofm be ψ(0, t). The vertical forces onm are the

spring force −sψ(0, t) and the vertical component of the tension on m due

to the left string segment, −T ∂ψ
∂x (0, t) (note that we are using tan θ where θ

is the angle subtended by the string segment at x = 0 and the horizontal,

instead of the more precise sin θ, as θ is small when the gradient of the string

is small). The equation of motion of m is thus

m
∂2ψ

∂t2
(0, t) = −sψ(0, t)− T

∂ψ

∂x
(0, t).

For part (b), the solution for ψ(x, t) is

ψ(x, t) = ψi(x, t) + ψr(x, t) = A[sin(ωt− kx) + sin(ωt+ kx)],

when B = A and φ = 0.

=⇒ ∂ψ

∂x
(x, t) = −kA sin(ωt− kx) + kA sin(ωt+ kx),

∂ψ

∂x
(0, t) = 0.

Furthermore,

∂2ψ

∂t2
(0, t) = −ω2ψ(0, t).
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Therefore, for this solution ψ(x, t) to satisfy the boundary condition at m,

(s−mω2)ψ(0, t) = 0

=⇒ m =
s

ω2
.

For part (c), the boundary condition at x = 0 becomes

sψ(0, t) = −T ∂ψ
∂x

(0, t)

when m = 0. Substituting ψ(x, t) = A sin(ωt− kx)+B sin(ωt+ kx+φ), the

above becomes

s[A sin(ωt) +B sin(ωt+ φ)] = T [Ak cos(ωt)−Bk cos(ωt+ φ)].

To solve for B sinφ and B cosφ, we can substitute ωt = 0 and ωt = π
2 to

obtain

B(s sinφ+ Tk cosφ) = ATk,

B(s cosφ− Tk sinφ) = −sA.
Solving the above simultaneously,

B sinφ =
2ATks

s2 + T 2k2
,

B cosφ =
(T 2k2 − s2)A

s2 + T 2k2
.

Solving for B and φ,

B = A,

φ = cos−1 T
2k2 − s2

s2 + T 2k2
.

When s = 0, B = A and φ = 0. This makes sense as the situation, when the

springs are absent, reduces to that of the reflection of a wave that approaches

a medium with zero impedance at x = 0 for which the reflection coefficient

is R = 1 (bounce the incident wave back without a vertical flip).

11. Spring-Mass with Wave**

The forces that m experiences are due to the two springs. When m is at an

instantaneous displacement X from its equilibrium position rightwards, the

force exerted on it by spring 1 is evidently −sX. The force due to spring
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2 can be computed as follows. Consider the section of spring 2 whose ends

were originally between equilibrium x-coordinates 0 and dx. After the spring

wave has propagated, its ends are located at coordinates 0+ψ(0, t) and dx+

ψ(dx, t). Evidently, this section has been stretched by a distance ψ(dx, t) −
ψ(0, t). Referring to the solution to Problem 7, the spring constant of this

section is κ
dx . Therefore, the tension at its ends and the force that it exerts

on m are

F = κ
ψ(dx, t) − ψ(0, t)

dx
= κ

∂ψ

∂x
(0, t),

by Hooke’s law. For a general rightward-traveling wave ψ(x, t) = f(x − vt)

where v is the phase velocity of the wave, we have

∂ψ

∂x
(x, t) = −1

v

∂ψ

∂t
(x, t)

=⇒ F = −κ
v

∂ψ

∂t
(0, t).

Substituting v =
√

κ
μ for a spring wave (see Problem 7) and ψ(0, t) = X(t)

(boundary condition at x = 0),

F = −√
κμ
dX

dt
.

Applying Newton’s second law to m,

m
d2X

dt2
= −sX −√

κμ
dX

dt

m
d2X

dt2
+

√
κμ
dX

dt
+ sX = 0,

which shows that γ =
√
κμ. This equation simply describes a damped oscil-

lation. Its general solution, in the regime 4ms > κμ which corresponds to

light damping, was derived in the chapter on oscillations as

X = e−
√

κμ

2
tc sin

(√
s

m
− κμ

4
t+ φ

)
,

where c and φ are constants determined by initial conditions. Substituting

X = 0 at t = 0, we obtain φ = 0. Substituting this into the above and
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differentiating it with respect to time t,

dX

dt
= −

√
κμ

2
e−

√
κμ

2
tc sin

(√
s

m
− κμ

4
t

)

+e−
√

κμ

2
t

√
s

m
− κμ

4
c cos

(√
s

m
− κμ

4
t

)
.

Imposing the initial condition dX
dt = v0 at t = 0,

c =
v0√
s
m − κμ

4

=⇒ X = e−
√

κμ

2
t v0√

s
m − κμ

4

sin

(√
s

m
− κμ

4
t

)
,

ψ(x, t) can be determined by exploiting the fact that the wave is traveling

rightwards at velocity v =
√

κ
μ .

ψ(x, t) = ψ
(
0, t− x

v

)
= ψ

(
0, t−

√
μ

κ
x

)
,

ψ(x, t) = e−
√

κμ

2 (t−
√

μ
κ
x) v0√

s
m − κμ

4

sin

[√
s

m
− κμ

4

(
t−
√
μ

κ
x

)]
.

This expression is only valid for x ≤ vt =
√

κ
μt as the traveling wave evi-

dently has yet to reach x > vt.

12. Circular Spring Wave**

The phase velocity v of a spring wave was derived in Problem 7 as

v =

√
2kL

μ
.

Initially, we can divide the spring into two sections x ∈ [−L, 0] and x ∈ [0, L]

which are each stretched or compressed uniformly for a total distance A each.



July 10, 2018 12:25 Competitive Physics 9.61in x 6.69in b3146-ch13 page 741

Waves 741

Therefore,

ψ(x, 0) = −Ax
L
, (−L ≤ x ≤ 0)

ψ(x, 0) =
Ax

L
. (0 ≤ x ≤ L)

Furthermore, all sections of the spring are initially stationary, hence

∂ψ

∂t
(x, 0) = 0. (−L ≤ x ≤ L)

The boundary conditions are that the displacement and velocity must be

continuous at x = −L and x = L as they correspond to the same physical

section:

ψ(−L, t) = ψ(L, t),

∂ψ

∂t
(−L, t) = ∂ψ

∂t
(L, t).

ψ(x, 0) is plotted below.

Figure 13.23: ψ(x, 0) against x

For part c), the general solution to the wave function can be seen as the

superposition of two component waves which are traveling at phase velocity

v in opposite directions (positive and negative x-directions). The shape of

one component wave ψc at t = 0 is depicted in Fig. 13.24 (it extends to

positive and negative infinity but the physical wave is only valid in the

regime −L ≤ x ≤ L).

One can easily check that this superposition yields the correct initial

and boundary conditions, but let us explain the intuition behind such a

construction. Firstly, the component wave should be a version of the original

wave scaled down by a factor of half in the region x ∈ [−L,L] initially,
such that two component waves traveling in opposite directions will satisfy



July 10, 2018 12:25 Competitive Physics 9.61in x 6.69in b3146-ch13 page 742

742 Competitive Physics: Mechanics and Waves

Figure 13.24: Shape of component wave

the initial conditions on displacement and velocity. To develop the shape of

the component wave beyond this region, we notice that if the component

wave traveled rightwards for a distance d, the part of the wave originally

between [L − d, L] would have vanished. This part that disappears should

now reappear on the left, in the region [−L,−L+ d], because the real wave

is cyclical such that the parts that traveled rightwards beyond x = L should

be continued at x = −L. A similar statement holds for a component wave

traveling towards the left. Finally, observe that with this construction, the

displacement of each spring section repeats itself after the component waves

have traveled a distance 2L each. Therefore, the period of the original wave is

τ =
2L

v
=

√
2Lμ

k
.

At t = τ
4 , each component wave would have traveled a distance L

2 . Their

shapes at this juncture are thus illustrated in Fig. 13.25 — their superposi-

tion yields a horizontal line with displacement A
2 .

Figure 13.25: Shape of component waves at t = τ
4
and superposition
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Finally, as the total energy of the wave is conserved, the total energy

is simply the initial potential energy — this is the potential energy of two

springs with spring constant 2k (2k such that they produce the original

spring constant k when they are connected in series) which are each uni-

formly compressed and extended by a total distance A. Therefore,

E = 2 · 1
2
· 2kA2 = 2kA2.
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Chapter 14

Interference

The previous chapter discussed the properties of a single traveling wave,

with a focus on sinusoidal wave forms. In general, a wave form can take

the form of an arbitrary shape. However, it can always be approximated

by the linear, algebraic summation of multiple sinusoidal waves that are

overlapping via Fourier analysis. Hence, understanding how a myriad over-

lapping sinusoidal waves, of the same type, can be “added” is pivotal in

the study of waves and shall be the crux of this chapter. Such coincid-

ing waves are known to be interfering with one another or undergoing

interference.

14.1 The Principle of Superposition

To study how waves of the same type “interact” with one another, consider

the following example. Person A wiggles the left end of a uniform rope and

creates a wave form traveling towards the right while person B wiggles the

right end of the rope and creates a wave form traveling to the left. Both

people constantly pull the rope such that the rope is taut with a constant

tension along its segments.

Figure 14.1: Approaching waves

What will be the resultant displacement of the portion of rope at which

the waves overlap or partially overlap at a particular instant? It turns out

that the resultant displacement at a point at a particular instant, due to

multiple overlapping waves of the same nature, is simply the vector sum of

745
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the displacements that each individual wave would have caused at that point

in space and time. This is known as the principle of superposition.

Figure 14.2: Intersecting waves

After the two wave forms pass each other, they retain their “shape” and

continue their motion as if they have never met.

Figure 14.3: Departing waves

This property of waves is rather unique as they can pass through each

other and be at the same place at the same time — a stark contrast with the

characteristics of particles. However, this is also to be expected as a traveling

wave is not a physical entity that exists and translates in space. It is merely

a coordinated and coupled movement of points, similar to a Mexican wave

performed by ardent sports fans. Using the same analogy, if the peaks of

two identical human waves that travel in opposite directions coincide in the

middle of the crowd, the fans at the center will simply jump twice the normal

height with twice the enthusiasm.

The principle of superposition stems from the linearity of the wave

equation

∂2ψ

∂x2
=

1

v2
∂2ψ

∂t2
.

If ψ1(x, t) and ψ2(x, t) are individual solutions to the wave equation,

ψ1(x, t) + ψ2(x, t) is also a valid solution. Referring to the previous situ-

ation, ψ1(x, t) and ψ2(x, t) may be produced individually by persons A and

B respectively. If they were to perturb the rope concurrently (at the same

location and time), the displacement would be ψ1(x, t)+ψ2(x, t) at any point

in space and time.

Finally, multiple waves of the same type (e.g. two sound waves) that

overlap at a particular point in space and time are said to be interfering.
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The resultant displacement1 at any point in space and time is given by the

principle of superposition.

14.1.1 Constructive and Destructive Interferences

Consider a snapshot of two sinusoidal waves, P and Q, that travel in

the positive x-direction, have the same wavelength λ and frequency f but

are not necessarily “perfectly in sync” at a particular time. That is, we are

considering how the displacement of various points of the waves look like at

a particular instant.

Figure 14.4: Overlapping waves

As observed from the diagram above, a point on wave P at a particular

x-coordinate has a phase (state of oscillation) that is different from that of

the corresponding point on wave Q. This is evident from the disparity in the

locations of the peaks and troughs — when a point at a certain x-coordinate

on Q has reached the maximum, the point with the same x-coordinate on

P has yet to reach it. This implies a phase difference, Δφ between every

pair of corresponding points on the waves that are at the same x-coordinate.

Mathematically, recall that the general equation of a sinusoidal wave travel-

ing in the positive x-direction is

ψ(x, t) = A sin(kx− ωt+ φ), (14.1)

where k = 2π
λ is the wave number, ω is the angular frequency ω = 2πf and

φ is an arbitrary constant phase offset. Since we are only considering the

traveling wave at a certain instance, we substitute a constant for t to remove

the dependence of the above equation on t. Let the individual displacement

1In the case of light, there is no medium that carries it and hence no displacement of
physical particles. It is actually the electric and magnetic fields that oscillate but we shall
still refer to them as “displacements” for the sake of convenience.
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of a particle at coordinate x due to wave P be

ψP (x) = A sin(kx). (14.2)

We can always choose a time t such that the form above holds — this does not

affect our calculation of the phase difference as the two waves have the same

wavelength and travel at the same speed (v = fλ) such that the distance

Δx between consecutive peaks and troughs is preserved (the importance of

this will be revealed soon). Next, the individual displacement of a particle

at coordinate x due to wave Q is

ψQ(x) = B sin(kx−Δφ) (14.3)

for some constant Δφ, which is known as the phase difference. Wave Q is said

to lead wave P in this case (this statement is made while taking into account

the direction of travel). Δφ can be expressed in terms of Δx by observing

that the phases of the points on wave Q at this instance are identical to

those of the points on wave P after it has travelled an additional distance

Δx. Thus,

ψQ(x) = B sin(k(x−Δx)),

2π

λ
(x−Δx) =

2π

λ
x−Δφ,

Δφ

2π
=

Δx

λ
. (14.4)

Equation (14.4) describes the phase difference Δφ between one wave that

leads another. The reason behind the head start is irrelevant — perhaps, the

source of Q was located at a larger x-coordinate than that of P or perhaps,

the sources of P and Q were at the same position but the source of Q emitted

waves that already had a constant phase difference with respect to those

produced by the source of P. Incidentally, there is another disparate effect

that is described by Eq. (14.4). Consider two points on the same wave at

two different x-coordinates x and x + Δx. By Eq. (14.1), the difference in

the phase angle Δφ of these two points is also given by Eq. (14.4). We shall

encapsulate all of these factors into the single equation above.

Moving on, in this chapter, all wave sources are assumed by default to be

coherent — a condition which means that the phase difference between the

waves emitted by the sources remains constant over time. In order for two

sources to be coherent, they must have the same frequency. The coherency

of waves P and Q enabled us to consider an arbitrary time at which wave P

took the form of Eq. (14.2). Furthermore, we shall now see that coherency

ascribes meaning to the phase difference.
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There are two special cases of Δφ to consider. When the phase difference

is an even multiple of π (i.e. Δφ = 2nπ, n ∈ Z), the two waves are “fully

aligned” (Fig. 14.5).

Figure 14.5: Constructive interference

Then, waves P and Q are said to be in phase as each pair of corresponding

points at the same x-coordinate literally has the same phase. When corre-

sponding points on different waves have the same phase at a certain location,

the waves are said to interference constructively at that point. In this case,

waves P and Q interfere constructively at all points along the x-axis (along

the line of propagation). The superposition of these two waves produces a

bigger resultant wave with the largest possible amplitude, A+B — depicted

by the dotted lines. As the resultant wave travels, the amplitude of oscilla-

tion of each particle attains the maximum value A + B. The coherency of

the two waves ensures that they are lined up at all instances — otherwise,

the amplitude of oscillation of each point will be a function of time and it

would be meaningless to say if the amplitude is the largest or smallest.

Well, the larger amplitude above may seem obvious at first. After all,

the addition of results of two things should intuitively be greater than the

individual results. However, consider the second scenario where the phase

difference between two waves is an odd multiple of π (i.e. Δφ = (2n + 1)π,

n ∈ Z) as depicted in Fig. 14.6.

Figure 14.6: Destructive interference
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Waves P and Q are said to be out of phase.2 The superposition of these

two waves produces a resultant wave with the smallest possible amplitude,

|A−B|. Similar to the definition of constructive interference, waves are said

to interfere destructively at a location if corresponding points at that location

are out of phase. In this case, waves P and Q are said to undergo destructive

interference at all points along the x-axis. In Fig. 14.6, the amplitude of

the resultant wave (in dotted lines) is actually smaller than that of the

individual waves! In fact, when the amplitudes of waves P and Q are equal,

they will completely cancel out and the displacement will be zero in all

space at all times. This is surprising in that if we had two speakers3 that

produce one-dimensional waves of a single frequency along the same line such

that we currently hear sound of the greatest intensity between the speakers,

positioning one speaker half a wavelength further from us would produce no

sound at our location, though there are multiple sources of sound! In fact,

destructive interference is widely applied in noise-cancellation systems which

usually measure ambient sounds and produce sound waves that are out of

phase with the ambient sounds to neutralize them.

We shall prove mathematically that the resultant amplitude of oscillation

of a point due to two individual coherent waves is the largest and smallest

when the phase difference between them is an even and odd multiple of π,

respectively. It is assumed that the directions of displacement due to the two

waves are identical. Let the two displacements at a particular point P be

ψ1 = A sin(kx+ ωt),

ψ2 = B sin(kx+ ωt+Δφ).

Note that the waves only need to intersect at P — they do not necessarily

overlap elsewhere. Again, the coherency of the two waves enables us to pick

an origin in time for which the displacements are as above. The resultant

2The term “out of phase” shall be used to mean “perfectly out of phase.”
3This set-up is actually not related to waves P and Q. It consists of two waves travelling

in opposite directions and us measuring the intensity at one point between the two speak-
ers. However, one interesting question to ponder is whether energy is conserved in this
set-up when constructive or destructive interference occurs at our location. If the speak-
ers individually produced waves of amplitude A at our location, the resultant wave will
have amplitude 2A when constructive interference occurs — seemingly suggesting that the
instantaneous energy at our location should be 4 times that which is individually produced
by one speaker. However, we know from the conservation of energy that the instantaneous
energy at our location should only be 2 times that of the individual one produced by each
speaker. What is wrong here? The solution to this is presented later in this section.
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displacement at P is

ψR = A sin(kx+ ωt) +B sin(kx+ ωt+Δφ)

= A sin(kx+ ωt) +B sin(kx+ ωt) cosΔφ+B sinΔφ cos(kx+ ωt)

= (A+B cosΔφ) sin(kx+ ωt) +B sinΔφ cos(kx+ ωt).

Applying the trigonometric R-formula,

ψR =
√
A2 +B2 + 2AB cosΔφ sin(kx+ ωt+ θ), (14.5)

where θ = tan−1 B sinΔφ
A+B cosΔφ . The amplitude of ψR is the largest and smallest

when cosΔφ = 1 and −1 respectively — corresponding to even and odd

multiples of π respectively.

Finally, it is important to understand why constructive and destruc-

tive interferences produce the greatest and smallest intensities (e.g. loudest

and softest sound or brightest and dimmest light) at a point, respectively.

You may look at Fig. 14.5 and think that the location of the first non-

zero x-intersect corresponds to zero intensity as the point there currently

exhibits zero displacement. However, remember that the intensity of a wave

at a location is proportional to the time-averaged squared displacement at

that location. We have paused our movie in drawing Fig. 14.5 to observe the

wave at a certain instance — resuming it would cause the resultant wave to

continue traveling rightwards and the point at the first non-zero x-intersect

to be displaced vertically. The final outcome is that the time-averaged dis-

placement of that particular point is proportional to the squared amplitude

of the wave at that point, (A + B)2. Therefore, constructive interference

between waves at a point corresponds to an intensity maximum — a similar

logic holds for destructive inference.

We shall prove this claim mathematically. Consider two waves which

individually produce displacements

D1 = A1 cos(ωt+Δφ),

D2 = A2 cos(ωt),

at a certain point P respectively. The phase of the first displacement leads

that of the second by Δφ — this is not to be confused with wave Q leading

wave P previously as that was a description of the entire wave. We write

the displacements as vectors to accommodate the possibility of the planes of
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oscillations being different. The resultant vector displacement is

Dr = D1 +D2.

The intensity I at point P is proportional to the time-averaged squared

displacement at P over a single period. However, there is an important qual-

ification to be made here. The previous statement is valid in the case of

mechanical waves only if the two waves travel in the same direction and

their displacements lie along the same line, but it is generally true for elec-

tromagnetic waves. This is because the kinetic energy of a medium generally

does not directly scale with its displacement owing to the fact that we have

to take into account the direction of motion. Yet, there is no kinetic energy

term in the energy density of the electromagnetic wave — this is actually a

hint to the resolution of the paradox presented in Footnote 3. If the angle

between the individual vectorial displacements produced by the two sources

is a constant θ (note that this is not necessarily the angle between the two

rays joining the sources of the waves to P as electromagnetic waves are not

longitudinal),

I ∝ 〈D2
r〉

= 〈(D1 +D2) · (D1 +D2)〉
= 〈D2

1〉+ 〈D2
2〉+ 2〈D1 ·D2〉

=
A2

1

2
+
A2

2

2
+ 2〈A1A2 cos(ωt+Δφ) cos(ωt) cos θ〉

=
A2

1

2
+
A2

2

2
+ 〈A1A2 cos(2ωt+Δφ) cos θ〉+ 〈A1A2 cosΔφ cos θ〉

=
A2

1

2
+
A2

2

2
+ 0 +A1A2 cosΔφ cos θ

=
A2

1

2
+
A2

2

2
+A1A2 cosΔφ cos θ.

When the directions of oscillation are aligned such that cos θ = 1,

I ∝ 1

2
(A2

1 +A2
2 + 2A1A2 cosΔφ),

where the term in brackets is the squared amplitude of the resultant wave

that we have derived previously. Now, we can also express the resultant

intensity in terms of the individual intensities of the waves. Let I1 and I2 be

the individual intensities of the waves at P due to the two waves. Note that



July 10, 2018 12:25 Competitive Physics 9.61in x 6.69in b3146-ch14 page 753

Interference 753

I1 ∝ 〈D2
1〉 = A2

1
2 and I2 ∝ 〈D2

2〉 = A2
2
2 . Then,

I = I1 + I2 + 2
√
I1I2 cosΔφ cos θ. (14.6)

Evidently, the maximum and minimum intensities occur at P for acute θ

when the conditions for constructive and destructive interferences are satis-

fied respectively at P (so that cosΔφ = 1 and −1).4 In the case of transverse

waves, such as light waves, the directions of oscillations are usually aligned —

causing cos θ = 1 and the above equation to become

I = I1 + I2 + 2
√
I1I2 cosΔφ.

Let us digress for a bit to resolve an apparent paradox that befuddles many.

In the case of constructive interference of the previous waves P and Q when

they have the same amplitude and no phase difference, the resultant wave

is a version of wave P or Q, scaled by a factor of 2. Therefore, one may

think that we have obtained a contradiction as the instantaneous energy

of each point on the resultant wave has 4 times its corresponding energy

on each component wave — thus “violating the conservation of energy” as

we expect the instantaneous energy to be the sum of that produced by the

two component waves. Similarly, when waves P and Q interfere destructively

to annihilate each other completely, the instantaneous energy of each point

seemingly vanishes, though each point has a certain instantaneous energy on

the component waves! Well, the resolution to this paradox is that the real

physical wave is given by the superposition of waves P and Q. Therefore,

it is correct to say that the instantaneous energies are 4 times and 0 times

that produced by each component wave above. However, there is no meaning

in ascribing energy to the component waves as the current physical wave is

neither of the component waves. It is correct to say that each component

wave results in a certain instantaneous energy when they are present alone

but it is incorrect to say that the instantaneous energy of the resultant

wave produced by their superposition is the addition of their individual

instantaneous energies, as energy is not a linear function. Perhaps, the best

illustration of this fact is that the driver of the resultant wave delivers power

according to the resultant wave at its location and not the sum of the powers

of the component waves.

But wait! What if the component waves have yet to reach the drivers

such that the drivers do not yet know of their existence? For such a case

to exist, the wave must travel in different directions. An example would

4Note that if θ is obtuse, the conditions are flipped as cos θ is now negative.
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be the two identical string pulses produced by two far away sources that

travel in opposite directions in Fig. 14.1. Persons A and B each produce

a wave pulse carrying a certain amount of energy, without regard for the

wave produced by the other. Is energy still conserved when the two wave

pulses overlap in this case? Well, the answer had better be yes and we will

indeed reach this conclusion if we consider the different components of energy

meticulously. For example, you might think that the total potential energy

of the resultant wave when the two pulses completely overlap (see Fig. 14.2)

is 4 times that of each individual pulse (as the amplitude doubles such that

the gradient at each point and the amount that each section of string is

stretched by, follows suit) and thus claim that the conservation of energy is

violated. However, under closer scrutiny, you would notice that the kinetic

energy of the resultant pulse at this juncture is zero but the component waves

originally possessed a certain amount of kinetic energy each. In fact, we know

from the previous chapter that for a traveling wave, the instantaneous kinetic

and potential energies of a section of string are identical! Therefore, the

kinetic energies of the individual pulses (which constitute twice the potential

energy of an individual pulse) have been converted to potential energy5 to

produce a resultant pulse with 4 times the potential energy of an individual

pulse at the juncture where the two pulses completely coincide.

To show the conservation of energy in the general case (when the pulses

do not completely overlap and are non-identical), we can exploit the result of

Problem 4 in Chapter 14 which states that the power delivered across a point

on a mechanical wave, produced by the superposition of two waves traveling

in opposite directions, is simply the sum of the individual powers delivered

by each component wave. That is, in the overlapping region between the two

waves,

P (x, t) = P1(x, t) + P2(x, t),

5This is in fact the solution to the question posed in Footnote 3 as the instantaneous
kinetic energies carried by the two component waves produced by the speakers have been
supplemented to the potential energy of the air section at our location, when constructive
interference occurs. That is, the potential energy at our location is 4 times the individual
one that would have been caused by each wave alone but there is still a local conservation
of energy as the kinetic energy of the resultant wave at our location is zero. In conclusion,
both the total energy density and amplitude at our location doubles as compared to those
produced by a single speaker. In retrospect, the fallacy in Footnote 3 stems from the claim
that the intensity at a point is proportional to its squared amplitude for a superposition
of mechanical waves traveling in different directions, when it is only valid for a single
traveling wave.
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where P (x, t), P1(x, t) and P2(x, t) are the instantaneous powers delivered

from the left to the right of a point at equilibrium x-coordinate x by the

resultant wave and the first and second component waves respectively. The

rate of increase of the linear energy density ε(x, t) (which includes both

kinetic and potential energies) carried by a section of string between equi-

librium coordinates x and x+ dx is thus

∂ε(x, t)

∂t
dx = P (x, t)− P (x+ dx, t),

∂ε

∂t
= −∂P

∂x
= −∂P1

∂x
− ∂P2

∂x
,

where −∂P1
∂x and −∂P2

∂x are the individual rates of change that would have

been engendered by the first and second component waves. The above equa-

tion hence encapsulates the conservation of energy; it states that the change

in energy of a section is equal to the sum of the individual powers delivered

to it by the two component waves. In fact, it is a stronger statement than

the conservation of energy as it implies that conservation of energy is local.

That is, not only is energy conserved as a whole, the net energy entering

into one section from its neighbours must become its increase in mechanical

energy such that there is a continuity of energy. Energy cannot suddenly

disappear from one end of a wave and appear at another (which results in

energy conservation that is not local).

Returning to our main topic, waves may generally travel in different

directions and cross at a particular point.6 In light of the fact that our

previous equations for intensity are only valid for electromagnetic waves

when the waves travel in different directions, all sources in the rest of this

section will only refer to light sources. As seen from our previous analysis, the

phase differences between different waves at a particular point are factors

in determining the intensity at that point. Only the interference between

two wave sources will be considered for now. As a recap, spatial positions at

which the phase difference between corresponding points on the waves is an

even multiple of π are known as regions of constructive interference while

those at which the phase difference is an odd multiple of π are defined to

be regions of destructive interference. Since the two sources are assumed to

be coherent (i.e. their phase differences at these locations are invariant with

respect to time), regions of constructive and destructive interferences remain

so at all times.

6Only waves whose paths intersect are of interest to us. If their paths do not intersect,
such as in the case of skew lines, no interference occurs — causing them to be uninteresting.
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The phase difference between two waves may arise from the different

paths they travel as the phase of a point on a wave varies with its position

at a fixed time. We shall now derive the conditions for constructive and

destructive interferences to occur at a particular point in space P due to

coherent light sources.

Figure 14.7: Interference between two sources at P

Suppose that the waves leaving the two sources are initially in phase and

that the relevant θ (angle between the directions of oscillation) is acute. At

point P, the waves from sources S1 and S2 would have traveled path lengths

of r1 and r2 respectively. There is a path difference of δ = r1 − r2. Since the

phase angle of a point on a wave at a particular instant increases by 2π for

every additional distance λ along the wave by Eq. (14.4), the condition for

constructive interference to occur at point P is

δ = r1 − r2 = nλ. (n ∈ Z)

Then, the condition for destructive interference to occur at point P is

δ = r1 − r2 =

(
n− 1

2

)
λ. (n ∈ Z)

If the two sources are not perfectly in phase, the above conditions have to

be modified. If we let source S1 lead source S2 by a phase of φo, the waves at

point P due to S1 have essentially traveled an additional path length of φo2πλ.

The set-up is identical to a hypothetical experiment in which a source S′
1 is

placed φo
2πλ behind7 S1. Thus, the conditions for constructive and destructive

7We take the direction of S1 to P to be the forward direction.
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interferences become

r1 +
φo
2π
λ− r2 = nλ, (n ∈ Z)

r1 +
φo
2π
λ− r2 =

(
n− 1

2

)
λ, (n ∈ Z)

respectively. To determine the resultant intensity at P in terms of the

individual intensities, observe that the phase difference between the waves

produced by S1 and S2 is Δφ = k(r1− r2)+φo. Substituting this expression

for Δφ into Eq. (14.6) would yield the desired result.

14.1.2 Young’s Double Slit Experiment

Thomas Young demonstrated the wave nature of light with his famous dou-

ble slit experiment. A monochromatic light source S is placed in front of a

board with a small slit which is presumed to be long (into the page). Source S

illuminates the board with plane waves of wavelength λ, which is physically

attainable by placing the source very far away. Huygen’s principle asserts

that every unobstructed point on a wave front is a point source of spherical

waves which interfere with each other. By Huygen’s principle, we can con-

sider each point on the slit to be a spherical source (due to the transmitted

wave fronts). Since the slit S0 is long, the spherical waves produced by each

point on the slit interfere to yield an essentially cylindrical wave. Hence,

we can ignore the direction perpendicular to the plane of the page in the

following analysis.

Figure 14.8: Double slit experiment
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Next, another board, with two long slits of infinitesimal thickness that

are parallel to the first slit, is positioned symmetrically about the vertical

position of S0 — they are separated by a distance d. The two infinitesi-

mal slits S1 and S2 then develop into two sources of cylindrical waves that

are coherent. Furthermore, these two sources are in phase, assuming that

S1 and S2 are equidistant from S0 and that the plane waves emitted by S

are parallel to the first board.

The light waves produced by the two cylindrical sources S1 and S2 inter-

fere and produce an interference pattern as they impinge on a distant screen.

How should this pattern look like? There should be alternating bright and

dark regions due to progressive changes in the phase difference between the

rays emanating from the slits that impinge on the screen. We can first identify

the regions of constructive and destructive interferences which correspond

to regions of maximum and minimum amplitudes and thus, intensities.

Figure 14.9: Far field approximation

Before we adopt the most rigorous method of summing the individual

contribution of each source, observe that in the far field scenario in which

the screen is distant from the two slits (explicitly, d � L where L is the

horizontal distance between the two slits and the screen), the paths taken

by two waves, which originate from S1 and S2 and coincide at the same

position on the screen, are essentially parallel. Furthermore, the ratio of the

distances traveled by rays from the sources to the same point on the screen

is essentially 1 ( r1r2 ≈ 1). However, the additive difference r2 − r1 is non-

negligible as we will compare it to λ, which is small as well, when we are

determining the conditions for constructive and destructive interferences. If

θ is the angle that these parallel rays make with the horizontal and d is the

vertical distance between the two slits, the path difference between the two
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waves is (see Fig. 14.9)

δ = r2 − r1 = d sin θ.

Therefore, the values of θ at which constructive and destructive interferences

occur are

d sin θ = nλ, (n ∈ Z)

d sin θ =

(
n− 1

2

)
λ, (n ∈ Z)

respectively. At points of constructive and destructive interferences, the

resultant amplitude will be a local maximum and minimum correspondingly.

Since the intensity8 at a point is proportional to the squared amplitude at

that point, regions of constructive and destructive interferences correspond

to bright and dark fringes respectively.

At points where neither constructive nor destructive interference occurs,

their intensities attain intermediate values. Therefore, the intensities of var-

ious points on the wall at different vertical positions can be plotted as in

Fig. 14.10.

Figure 14.10: Intensity pattern

The positions of bright and dark fringes correspond to the local intensity

maxima and minima respectively. The intensities of the bright fringes are

lower the further they are from the center. This is due to the decreasing

amplitudes9 of the waves as they traverse longer distances with increasing θ.

However, note that the waves almost annihilate completely at the intensity

8Take note that the brightness of a point is quantified by the intensity, rather than the
amplitude, at that point.

9The amplitude of a cylindrical wave decreases as 1√
r
, where r is the distance from the

source.
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minima as the distances traveled by the waves are essentially equal in the

multiplicative sense (r2r1 ≈ 1), for a given θ in the far field approximation.

The quantity n in the equations, describing the conditions for construc-

tive and destructive interferences above, indicates the |n|th order bright and

dark fringes, or |n|th order maximum and minimum, respectively. For exam-

ple, substituting n = 0 in the equation for constructive interference governs

the zeroth-order maximum, or bright fringe which is at the center. The two

adjacent bright fringes are then first-order bright fringes.

Next, we can determine the approximate vertical positions of the bright

and dark fringes when θ is small by using the small angle approximation

sin θ ≈ tan θ ≈ y

L
,

where y is the vertical coordinate with respect to the origin defined at the

vertical center of the two slits and L is the distance between the screen and

the slits. Substituting this expression for sin θ in the equations for construc-

tive and destructive interferences yields

ybright = n
λL

d
, (n ∈ Z)

ydark =

(
n− 1

2

)
λL

d
. (n ∈ Z)

Most notably, the above equations imply that the separations between suc-

cessive bright fringes and dark fringes are both

Δy =
λL

d
.

Problem: Why must the source be monochromatic for bright and dark

fringes to be clearly observed?

If the light consists of various wavelengths, the interference pattern of each

wavelength of light would involve bright and dark fringes at different loca-

tions on the screen. The mashing of these interference patterns via the prin-

ciple of superposition would obscure the interference pattern.

Problem: If the monochromatic light waves emitted by the slit on top ini-

tially lead those emitted by the one on the bottom by a phase of π
2 , and

given that a second-order maximum occurs at a positive vertical coordinate

y2 from the center of the screen, what is the wavelength of the light? The

origin is defined to be at the same position as before, and y2 � L where L

is the horizontal distance between the screen and the two slits.
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The π
2 -radian phase lead is essentially equal to an additional distance λ

4

traveled by the waves emanating from the top slit. Therefore, for constructive

interference, the path difference must satisfy

d sin θ − λ

4
= nλ

=⇒ d sin θ =

(
n+

1

4

)
λ.

By the small angle approximation,

sin θ ≈ tan θ ≈ y

L
.

Substituting y = y2 when n = 2 and solving,

λ =
4y2d

9L
.

Intensity

Label each point on the distant screen with a coordinate θ which denotes

the angle subtended by a line, joining the center of the slits to that point

on the screen, and the horizontal. The intensity profile on the screen Itot(θ)

can be determined by applying Eq. (14.6) (with θ = 0 in the equation10 as

the waves from the slits originated from the same source).

Itot(θ) = I1(r1) + I2(r2) + 2
√
I1(r1)I2(r2) cos(kd sin θ),

where the phase difference Δφ = 2π
λ d sin θ = kd sin θ in this case. I1 and I2

are the intensities that would have been produced by the waves emanat-

ing from the slits and landing on the point on the screen corresponding

to θ, individually. They are functions of the path lengths traversed by their

respective rays, r1 and r2. Concretely,

I1(r1) ∝ 1

r1
and I2(r2) ∝ 1

r2

for cylindrical waves. As r1
r2

≈ 1 and the individual intensities at the point

corresponding to θ = 0 are identical, the individual intensities are essentially

equal for a given θ. Then, we can represent them in terms of a common

10Do not confuse this with the θ coordinate in this section.
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intensity that is a function of θ, I(θ).

I1(r1) = I2(r2) = I(θ).

Observe that with this new definition,

I(θ) = I(0) cos θ,

where I(0) is the individual intensity at the center of the screen as the ratio

of the path length covered by a ray to θ = 0 and that to θ is cos θ. Thus,

Itot(θ) = 2I(0) cos θ(1 + cos kd sin θ) = 2I(0) cos θ cos2
(
kd sin θ

2

)
.

Usually, we compare Itot(θ) to the net intensity at the center of the screen

Itot(0) to visualize the shape of the intensity profile.

Itot(θ)

Itot(0)
= cos θ cos2

(
kd sin θ

2

)
. (14.7)

It is evident from this expression that the intensity maxima correspond to

points where

kd sin θ

2
= nπ (n ∈ Z)

=⇒ d sin θ = nλ.

The intensity minima occur when

kd sin θ

2
=

(
n− 1

2

)
π (n ∈ Z)

=⇒ d sin θ =

(
n− 1

2

)
λ,

which confirms our conditions obtained from the previous heuristic method.

14.1.3 Diffraction Gratings

A diffraction grating consists of many fine, parallel slits that are separated by

a standardized distance, commonly inscribed on a sheet of glass or metal. A

typical diffraction grating has several hundreds to thousands of slits per mm,

resulting in a slit distance d which is much smaller than that in double slit
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Figure 14.11: Diffraction grating

experiments. Usually, N , the number of slits per mm of a diffraction grating,

is given. Then, the slit separation can be calculated as

d =
1

N
.

Again, we consider the ideal scenario where each slit is infinitely long but

infinitesimally thin. As always, the slits act as cylindrical sources that are in

phase when the grating is illuminated with plane waves whose wave fronts

are parallel to the grating.

The monochromatic waves from each slit overlap to produce an interfer-

ence pattern on a screen that is a distance L away. In the far field approx-

imation, the rays — each originating from a single slit and coinciding at

the same point P on the screen — essentially propagate along parallel lines.

Then, the path difference between adjacent rays is still δ = d sin θ.

Evidently, all of these waves interfere constructively when

δ = d sin θ = nλ (n ∈ Z)

as they will all be in phase at that particular point P on the screen — bright

fringes are produced on points on the screen that correspond to such θ. How-

ever, these are not the only local intensity maxima on the screen — there

are also low-intensity maxima (this is to be expected as we only considered

the ideal case where all rays interfere constructively and left out other com-

binations). Next, the previous condition for destructive interference cannot

be used to determine the locations of dark fringes here for the following

reason. Suppose that the top ray annihilated the middle ray in the above

diffraction grating consisting of three slits — the bottom ray will still sur-

vive. Ultimately, the cancellation of pairs of waves does not guarantee the

minimization of the effect of the group.
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Intensity

In this section, we will determine the intensity profile Itot(θ) due to M slits.

Before we embark on this goal, let us introduce the following idea which is

rather general. Recall from the previous chapter that a traveling wave of the

form ψ = A cos(kr − ωt+ φ) can be represented in complex form as

ψ̃ = Aei(kr−ωt+φ).

Then, linear operations can be performed on this complex representation —

the real, physical result can then be retrieved by taking the real component

of the final complex result. Since the planes of oscillations of the electric

fields due to the slits are aligned, the net complex electric field at a point

on the screen, Ẽtot(θ), is given by the sum of the individual complex electric

fields, i.e.

Ẽtot(θ) =

M∑
j=1

Aj(rj)e
i(krj−ωt+φ),

where Aj(rj) is the real amplitude of the wave produced by the jth slit on

the point on the screen corresponding to angle θ and rj is the path length

traversed by that wave front from the jth slit in doing so. φ is a constant

phase offset which is uniform across all slits as we assume that the waves

emanating from the slits are initially in phase. Finally, the real net electric

field can be obtained from the real component of Ẽtot(θ). Since the ratios of

pairs of rj’s are all essentially 1 for a given θ and because Aj ∝ 1√
rj

for a

cylindrical wave,

A1(r1) ≈ A2(r2) ≈ . . . ≈ AM (rM ),

and we can instead define A(θ) as the common amplitude that is solely

dependent on θ. Then,

Ẽtot(θ) = A(θ)e−i(ωt−φ)
M∑
j=1

eikrj .

The real net electric field is then

Etot(θ) = Re
[
Ẽtot(θ)

]
= A(θ) cos(ωt− φ)Re

⎡
⎣ M∑
j=1

eikrj

⎤
⎦

+A(θ) sin(ωt− φ)Im

⎡
⎣ M∑
j=1

eikrj

⎤
⎦.
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For the sake of convenience, denote x as Re
[∑M

j=1 e
ikrj

]
and y as

Im
[∑M

j=1 e
ikrj

]
. The net intensity I(θ) is proportional to the time average

of the squared electric field.

Itot(θ) ∝ 〈E2
tot(θ)〉

= 〈A2(θ) cos2(ωt− φ)x2〉+ 〈A2(θ) sin2(ωt− φ)y2〉
+ 〈2A2(θ) sin(ωt− φ) cos(ωt− φ)xy〉

=
1

2
A2(θ)(x2 + y2) + 0

∝ A2(θ)

∣∣∣∣∣∣
M∑
j=1

eikrj

∣∣∣∣∣∣
2

,

as x2 + y2 simply yields the squared magnitude of
∑M

j=1 e
ikrj . At this point,

we can substitute our expression for A(θ) in terms of A(0). For cylindrical

waves,

A(θ) = A(0)
√
cos θ,

with the repercussion that

Itot(θ) ∝ cos θ

∣∣∣∣∣∣
M∑
j=1

eikrj

∣∣∣∣∣∣
2

.

Therefore, the remaining task is to determine |∑M
j=1 e

ikrj |2. To tackle this,

observe that rj+1 − rj = d sin θ for any 1 ≤ j ≤M − 1. Consequently,

M∑
j=1

eikrj = eikr1
M∑
j=1

ei(j−1)kd sin θ

= eikr1 · 1− eiMkd sin θ

1− eikd sin θ

= eikr1 · e
iMkd sin θ

2

ei
kd sin θ

2

· e
−iMkd sin θ

2 − ei
Mkd sin θ

2

e−i
kd sin θ

2 − ei
kd sin θ

2

= e
i
(
kr1+

(M−1)kd sin θ
2

)
sin

(
Mkd sin θ

2

)
sin

(
kd sin θ

2

) ,
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where we have applied the geometric series formula in writing the second

equality. It can be seen that the squared magnitude of the above is∣∣∣∣∣∣
M∑
j=1

eikrj

∣∣∣∣∣∣
2

=
sin2

(
Mkd sin θ

2

)
sin2

(
kd sin θ

2

)

=⇒ Itot(θ) ∝ cos θ
sin2

(
Mkd sin θ

2

)
sin2

(
kd sin θ

2

) .

To determine the ratio between Itot(θ) and Itot(0), we have to evaluate

Itot(θ)

Itot(0)
= cos θ

sin2
(
Mkd sin θ

2

)
sin2

(
kd sin θ

2

) · lim
θ→0

sin2
(
kd sin θ

2

)
sin2

(
Mkd sin θ

2

) .
Since sinx ≈ x for small x, the last term yields 1

M2 .

Itot(θ)

Itot(0)
= cos θ

(
sin

(
Mkd sin θ

2

)
M sin

(
kd sin θ

2

)
)2

, (14.8)

which is a rather neat result. Since the minima occur when Itot(θ) = 0, you

may think that the relevant condition is

Mkd sin θ

2
= nπ

=⇒ d sin θ =
n

M
λ.

However, this is not entirely correct for the cases when d sin θ = n′λ for some

integer n′ as the denominator also tends to zero. Such scenarios in fact result

in the high-intensity maxima as argued heuristically before. Otherwise, one

can also use the Taylor expansion sin(nπ + x) ≈ x to show that

lim
kd sin θ

2
→n′π

sin
(
Mkd sin θ

2

)
sin

(
kd sin θ

2

) =
Mkd sin θ

2 −Mn′π
kd sin θ

2 − n′π
=M.

This is in fact the global maximum of the above expression. Correspondingly,
Itot(θ)
Itot(0)

= cos θ in such cases. The cos θ term only acts as a slowly-varying

envelope for the wildly oscillating11
(

sin(Mkd sin θ
2 )

M sin( kd sin θ
2 )

)2

term so it does not

affect the positions of the extrema12 significantly. Therefore, cases where

11d is usually a few orders of magnitude above λ such that kd is significant.
12The cos θ term slightly affects the positions of the maxima but not the minima (where

the net intensity is zero).
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d sin θ = n′λ correspond to high-intensity peaks while the intensity minima

occur when

d sin θ =
n

M
λ | n �M.

Evidently, there are (M −1) minima between successive high-intensity max-

ima. Finally, the d sin θ values of the low-intensity maxima are in fact situated

approximately in between those of two adjacent intensity minima for large

M (i.e. d sin θ = 2n+1
2M ) — aggregating to yield (M − 2) low-intensity peaks

between two neighboring high-intensity peaks.

If we plot Itot(θ) for M = 3 slits, we obtain the following graph.

Figure 14.12: Intensity graph

It can be seen that the exact locations of the intensity minima are not par-

ticularly enlightening for the following reason. Due to the relatively large dis-

tances between high-intensity peaks and the preponderance of low-intensity

maxima (small bumps) between high-intensity peaks, the locations of dark

fringes are usually neglected as the width of the low-intensity region, which

includes both low-intensity maxima and intensity minima, is large. The low-

intensity maxima and the intensity minima are often indistinguishable when

M is large.

Lastly, there are certain differences between the interference pattern pro-

duced by a diffraction grating and a board with two slits.

• As d is often smaller for a diffraction grating, the angle θ for bright fringes

is usually much larger. Hence, the small angle approximation sin θ ≈ y
L

does not hold. It is not meaningful to determine the fringe separation

between consecutive high-intensity peaks as it is not a constant. In fact,

it increases as the order increases.

• As the number of slits M increases, the high-intensity maxima (bright

fringes) become narrower and appear sharper on the screen. Quantita-

tively, for small θ, Itot(θ) is periodic for every 2π-increment of kd sin θ.

Therefore, the width of the central bright fringe is a good representation



July 10, 2018 12:25 Competitive Physics 9.61in x 6.69in b3146-ch14 page 768

768 Competitive Physics: Mechanics and Waves

of the neighboring ones. Its angular width is twice the angle θ correspond-

ing to the first-order minima and thus 2λ
Md . Evidently, this angular width

decreases with increasing M — causing the fringe to be concentrated.

Thus, the contrast of the interference pattern becomes more stark.

• Interestingly, for small values of kd sin θ, the ratio Itot(θ)
Itot(0)

does not vary

with M — implying that the relative brightnesses of the fringes do not

change even though the absolute intensity of the entire profile increases

with M (as more light passes through a larger number of slits).

Resolving Power

Since a diffraction grating is often applied to separate a bundle of light

with different wavelengths into a spectrum, a rather practical question to

ask is: what is the minimum value of Δλ > 0 such that we are able to

distinguish between the nth order maxima of the waves with wavelengths λ

and λ+Δλ? A widely accepted standard for the resolvability of two objects

is that the peak of the interference pattern of one image lies beyond the

adjacent minimum of the other image — this is known as the Rayleigh

criterion. Applied to this situation, the boundary case occurs13 when the

nth order high-intensity maximum of λ+Δλ coincides with the (nM +1)th

order minimum of λ (the minimum nearest to the nth order bright fringe of

the other wavelength). The respective conditions for these are

d sin θ = n(λ+Δλ)

d sin θ =
nM + 1

M
λ

=⇒ 1 +
Δλ

λ
=
nM + 1

nM
.

The (spectral) resolving power R of an optical apparatus is defined as

R =
λ

Δλ
= nM.

A larger resolving power for fixed λ indicates a greater ability in resolving

features of different wavelengths (as Δλ decreases). The resolving power of a

diffraction grating hence increases with the number of slits M and the order

of the observed high-intensity maximum.

13One may wonder why we do not favor the boundary case where the nth order high-
intensity maximum of λ overlaps with the (nM −1)th order minimum of λ+Δλ. Proceed-
ing with the same process in this scenario would show that the condition in our current
case is slightly stricter (though not significantly when M is large).
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14.1.4 Fraunhofer Diffraction

Diffraction refers to the wave pattern formed when a wave scatters around

a small aperture, whose width is comparable to the wavelength of the wave.

As a wave is incident on a hole on a wall, some portions are absorbed or

reflected by the wall while the others pass through the hole safely. From the

perspective of Huygen’s principle, diffraction is quintessentially the interfer-

ence of the spherical waves produced by points on the wave fronts that are

transmitted.

Figure 14.13: Incoming plane waves

In light of the above discussion, a single slit of non-negligible width can

also exhibit an interference pattern. Consider a set of plane waves that pass

through a long aperture of non-negligible width w. Every thin line on the

slit (extending into the plane of the paper) acts as a cylindrical source which

interferes with one another — thus producing bright and dark regions on a

screen that is far away.

Observe that two point sources on the slit that are equidistant from the

midpoint are equidistant from the center of the screen — implying that they

interfere constructively there. This occurs for all pairs of points on the slit

that are equidistant from the midpoint. Though the waves due to different

pairs have slightly different phases at the center of the screen, the overall

effect still produces a bright fringe. Unfortunately, the general locations of

intensity maxima other than the center are difficult to determine without

rigorously summing the contributions from each point source. However, it

turns out that the magnitude of the other intensity maxima are negligible

as we shall see later — implying that we are not at a real disadvantage here.

The dark fringes can thankfully be generally determined via the following

argument. Divide the slit into two equal halves and consider two points

A and B on the top and bottom halves. The distance between A and the
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Figure 14.14: Two equal segments

top of the slit is equal to that between B and the midpoint such that the

distance between A and B is w
2 (Fig. 14.14). Again, we are considering the

far field approximation where the rays from points on the slit to the screen

are parallel — this requires the distance between the slit and the screen to be

much larger than w. The diffraction pattern under such conditions is known

as Fraunhofer diffraction.

Consider a point on the screen at which parallel rays from A and B

subtend an angle θ with respect to the horizontal. We understand from the

previous analysis that the waves from A and B interfere destructively when

w

2
sin θ = ±λ

2
.

We do not include values such as ±3λ
2 , ±5λ

2 , . . . on the right-hand side as

they will be encapsulated later. The above destructive interference occurs

for all pairs of corresponding points w
2 apart — as θ is identical with respect

to all points on the slit in the far field approximation. Therefore, the point

on the screen corresponding to such an angle θ is a dark fringe.

A similar analysis can be performed for any division of the slit into an

even number of segments. For example, we can divide the slit into four and

consider four corresponding points w
4 apart (Fig. 14.15).

Again, destructive interference occurs between the waves produced by

the two adjacent pairs A, B and C, D at angle θ when

w

4
sin θ = ±λ

2
,

and holds for all such quadruples. In the general case where we split the slit

into 2n > 0 segments, the destructive interference condition is

w

2n
sin θ = ±λ

2
.
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Figure 14.15: Four equal segments

The overall condition for destructive interference within a single slit

is thus

w sin θ = nλ, (14.9)

where n is a non-zero integer.

Intensity

We can extend the method introduced in the previous section for a diffrac-

tion grating to calculate the intensity pattern Itot(θ) produced by a sin-

gle slit. Instead of evaluating
∣∣∣∑M

j=1 e
ikrj

∣∣∣2, we now have to compute the

continuous integral
∣∣∫ eikr(x)dx∣∣2 where r(x) denotes the path length tra-

versed by a wave emanating from coordinate x on the slit (the x-axis is

defined to be positive upwards along the slit) and ending at the point on

the screen corresponding to angle θ, as each infinitesimal section of the

slit acts as a source of cylindrical waves. Defining our origin at the cen-

ter of the slit (any origin would work) and observing that the path differ-

ence between a wave from coordinate x and one from the origin is x sin θ,

we have ∫ w
2

−w
2

eikr(x)dx = eikr(0)
∫ w

2

−w
2

eikx sin θdx

= eikr(0)
[
eikx sin θ

ik sin θ

]w
2

−w
2
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= eikr(0)
ei

kw sin θ
2 − e−i

kw sin θ
2

ik sin θ

= eikr(0)
sin

(
kw sin θ

2

)
k sin θ

2

.

The squared amplitude of this is evidently

(
sin( kw sin θ

2 )
k sin θ

2

)2

. Piecing this com-

ponent together with the cos θ factor associated with the decreasing ampli-

tude of A(θ) for cylindrical waves,

Itot(θ) ∝ cos θ

(
sin

(
kw sin θ

2

)
k sin θ

2

)2

,

Itot(θ)

Itot(0)
= cos θ

(
sin

(
kw sin θ

2

)
k sin θ

2

)2

÷ lim
θ→0

(
sin

(
kw sin θ

2

)
k sin θ

2

)2

.

We can use14 the small angle approximation sinx ≈ x to prove that the last

term is simply w2. Hence,

Itot(θ)

Itot(0)
= cos θ

(
sin

(
kw sin θ

2

)
kw sin θ

2

)2

. (14.10)

For small angles of θ (this assumption will soon be justified),

Itot(θ)

Itot(0)
=

(
sinα

α

)2

= sinc2 α, (14.11)

where a new variable α = kw sin θ
2 has been introduced and the function sincα

represents sinα
α . The function sinc2 α is plotted in Fig. 14.16.

It can be seen that the intensity plunges rapidly as the 1
α term decays the

amplitude of sinα. Most of the total energy is concentrated within the central

bright fringe — justifying our analysis of small θ as the cos θ term would

only further decrease the intensities of already-negligible off-central regions.

As a comparison, the intensity of the first-order maxima is approximately
4

9π2 ≈ 0.0450 times the intensity of the central maximum. This estimation

is obtained from substituting α = 3π
2 , which is a rough value and not the

true value for the first-order maxima, into Eq. (14.11) (the true value is

actually around α = 4.4934 radians). In fact, one can show numerically that

14A more rigorous approach would use L’Hospital’s rule to show that lim
x→0

sinx
x

= 1,

which is a well-known result.
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Figure 14.16: Plot of sinc2 α against α

roughly 90% of the energy is captured within this central fringe. In light of

this, the angular half-width θ of the single slit diffraction pattern is said to

correspond to

α = π =⇒ sin θ =
λ

w
.

For small θ,

θ ≈ λ

w
,

which shows that w must be on the order of λ to produce an observable

diffraction pattern. Furthermore, since θ is inversely proportional to w, a

narrower slit would produce a wider diffraction pattern. Incidentally, the

angular half-width of the diffraction pattern produced by a circular aperture

of diameter D is

θ ≈ 1.22
λ

D
.

The angular half-widths of diffraction patterns have profound ramifications

on the resolvability of points in front of a slit. Firstly, observe that if the

incident parallel rays on a slit are inclined at an angle α above the horizontal,

the entire diffraction pattern simply shifts downwards by an angle α. Then, if

the parallel rays from two far-away objects subtend an angle θ, the angular

distance between the two peaks of their diffraction patterns is also θ. By

the Rayleigh criterion, two objects are said to be resolved if the central

maximum of one diffraction pattern lies beyond the first-order minimum

of the other. Therefore, the minimum θ between two objects that can be

successfully resolved is

θ ≈ 1.22
λ

D



July 10, 2018 12:25 Competitive Physics 9.61in x 6.69in b3146-ch14 page 774

774 Competitive Physics: Mechanics and Waves

for a circular aperture of diameter D, and

θ ≈ λ

w

for a long slit of width w. Finally, note that the presence of a lens (usually

spherical) which fills up an aperture does not affect the minimum angular

distance of two resolvable objects as the effects of focusing by the lens and

diffraction across the aperture can be decoupled and analyzed separately.

One can first remove the lens, find the diffraction patterns of the distant

objects projected on a screen infinitely far away, behind the slit, and then

reflect them about the slit (flip both horizontally and vertically) so that

they lie infinitely far away in front of the slit. Subsequently, these reflected

diffraction patterns act as the new objects for the lens — the rest is simply a

geometrical optics problem. Most notably, the discussion in this paragraph

implies that the resolving power R of a telescope with an objective diameter

D, defined as the minimum angular distance between two resolvable distant

objects, is

R ≈ 1.22
λ

D
,

where λ is the observed wavelength of light.

14.1.5 Interference of Two Wide Slits

Finally, let us return to a more realistic form of the double slit experiment

with slit separation d and a non-negligible slit width w. A plane wave is

incident on the slits.

Figure 14.17: Two wide slits



July 10, 2018 12:25 Competitive Physics 9.61in x 6.69in b3146-ch14 page 775

Interference 775

Consider a pair of points, one from each slit, that are a distance d apart.

Again, the conditions for constructive and destructive interferences between

these points are, respectively,

d sin θ = nλ, (14.12)

d sin θ =

(
n− 1

2

)
λ. (14.13)

This holds for all pairs of points a distance d apart. Evidently, the overall

condition for destructive interference due to the two slits is

d sin θ =

(
n− 1

2

)
λ.

Similarly, without taking into account the phase differences of the waves

produced by different pairs of points, the overall condition for constructive

interference is

d sin θ = nλ.

We are expecting this condition for constructive interference to not be

entirely valid as we have not taken into account the phase differences between

different pairs. However, the overall condition for destructive interference

should be valid as the waves produced by a pair of sources that satisfies the

condition annihilate completely — summing these negligible contributions

across all pairs should result in zero amplitude and intensity, in spite of

the slight phase differences in the contributions across pairs. As anticipated,

certain bright fringes that are predicted by the constructive interference con-

dition are not observed empirically.

To take into account the phase difference between pairs and to explain

these missing fringes, observe that certain locations on the screen correspond

to diffraction minima due to a single slit. Therefore, though the waves from

different slits may interfere constructively at a location on the screen, the

effect formed on the screen will still be a dark fringe if the diffraction across

a single slit results in a diffraction minimum!15 Thus, the missing fringes

occur when the condition for the constructive interference between two slits

coincides with the condition for destructive interference within a single slit.

These requirements are, respectively,

d sin θ = nλ,

w sin θ = mλ,

150 + 0 is still 0.
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where m �= 0. Therefore, the nth bright fringe that satisfies

n =
dm

w
(14.14)

for some non-zero integer m is missing. Finally, note that we did not really

consider the maxima and minima associated with the diffraction across each

slit as the intensity plummets from the central fringe of the diffraction pat-

tern such that these off-center maxima and minima become indistinguishable

(refer to Fig. 14.16).

Intensity

In this section, we will solve the more general problem of determining the

intensity pattern Itot(θ) for M wide slits of width w and slit separation

d > w. Define the origin at the center of the bottom-most slit. We have

to evaluate the sum of the terms associated with the phases of the waves

emanating from each infinitesimal section of all slits. Hence,

∫ w
2

−w
2

eikr(x)dx+

∫ w
2
+d

−w
2
+d
eikr(x)dx+ · · ·+

∫ w
2
+(M−1)d

−w
2
+(M−1)d

eikr(x)dx,

which can be rewritten as

eikr(0)

(∫ w
2

−w
2

eikx sin θdx+

∫ w
2
+d

−w
2
+d
eikx sin θdx+ · · ·+

∫ w
2
+(M−1)d

−w
2
+(M−1)d

eikx sin θdx

)
.

The second integral in the brackets is the first integral multiplied by eikd sin θ

as its x-coordinates are simply those of the first integral, shifted upwards by

a distance d. Concretely, make the substitution y = x − d into the second

integral such that it becomes
∫ w

2

−w
2
eik(y+d) sin θdy = eikd sin θ

∫ w
2

−w
2
eiky sin θdy,

which makes our claim clear. Similarly, the third integral is ei2kd sin θ times

the first and so on. The above sum then becomes

eikr(0) ·
∫ w

2

−w
2

eikx sin θdx · (1 + r + r2 + · · · + rM−1),

where r = eikd sin θ. Observe that
∫ w

2

−w
2
eikx sin θdx has been determined in

the section on a single wide slit and while the geometric series was com-

puted in the section on diffraction gratings. Applying the previous results,
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the above is

e
i
(
kr(0)+

(M−1)kd sin θ
2

)
sin

(
kw sin θ

2

)
k sin θ

2

· sin
(
Mkd sin θ

2

)
sin

(
kd sin θ

2

) .

Amalgamating the squared amplitude of the above expression with the cos θ

term associated with the decay in amplitude of a cylindrical wave,

Itot(θ) ∝ cos θ

(
sin

(
kw sin θ

2

)
k sin θ

2

· sin
(
Mkd sin θ

2

)
sin

(
kd sin θ

2

)
)2

.

Following from this, it can be shown that

Itot(θ)

Itot(0)
= cos θ

(
sin

(
kw sin θ

2

)
kw sin θ

2

· sin
(
Mkd sin θ

2

)
M sin

(
kd sin θ

2

)
)2

, (14.15)

which is a remarkable result — the intensity ratio of a collection of M wide

slits is simply the product of those associated with the diffraction due to

a single wide slit and the interference of M thin slits. Since d � w under

common circumstances, the term associated with diffraction simply acts as

a slowly varying envelope (which quickly decays beyond the first diffraction

minimum) for the term associated with interference. The observable16 dark

fringes are those associated with the interference term — implying that they

occur when d sin θ = (n− 1
2)λ. Similarly, the observable bright fringes appear

when d sin θ = nλ, except for the unusual case where n = dm
w for some

non-zero integer m such that the diffraction term yields zero. That said,

remember that only an insignificant number of observable bright fringes are

missing as the diffraction envelope rapidly decays beyond the first diffraction

minimum — implying that the locations, where bright fringes are supposed

to appear due to interference but simultaneously correspond to higher-order

diffraction minima, are too dim anyway.

14.1.6 Reflection and Refraction

Sometimes, waves from a single source (even point sources) can interfere

with each other due to reflection and refraction. We shall only be considering

light, whose reflection and refraction will be extensively studied later, in our

analysis.

Consider the following situation in Fig. 14.18: a monochromatic point

source S is placed above an infinite plane mirror. What is the condition for

16These are observable precisely because of the contrast with neighboring bright fringes
(i.e. they lie within the central diffraction fringe).
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Figure 14.18: Source and mirror

constructive interference to occur at point P, which is at the same height as

the source relative to the mirror?

First, we have to identify the waves that interfere at point P. Trivially,

one such wave takes a horizontal path from the source to P. Other waves

that can possibly reach P are waves that are reflected from the mirror. Since

the angle of reflection must be equal to the angle of incidence in the case

of reflection, the only path that a reflected beam, which arrives at P, can

take is that along the two equal sides of an isosceles triangle, as shown in

the diagram above.

A crucial point to note in approaching problems with reflected waves is

that there may be a π-radian phase change after reflection. In the case of light

waves, if a beam is originally traveling from an optically less dense medium

to an optically denser medium, there will be an additional π-radian phase

“added” to the reflected wave (besides a change in direction). Otherwise

if the beam is traveling from an optically denser medium to an optically

less dense medium, the reflected wave will not have an additional π-radian

phase change. In this case, the mirror is optically denser than air. Thus, the

phase of the reflected wave increases by π radians, which is equivalent to the

reflected wave having traveled an additional path length of λ2 . The condition

for constructive interference to occur at point P is then

2
√
L2 + h2 +

λ

2
− 2L = nλ, (n ∈ Z+)

where we have rejected the cases where n ≤ 0 as the left-hand side is always

greater than zero. If h� L, a slick analysis exists. Consider the mirror image

S’ of the source that is a distance h below the mirror (Fig. 14.19). The path

distance traveled by a reflected ray from the real source S to an arbitrary point

P is equal to a ray that emanates from the virtual source S’ and directly travels

to P. However, S’ is effectively perfectly out of phase relative to S due to the

π-radian phase shift at the mirror. Then, we can apply a procedure similar to

the double slit experiment with the slit separation d = 2h to determine the

condition for constructive interference at any point P which is a horizontal

distance 2L away from the source (not necessarily aligned with S now).
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Figure 14.19: Source S and virtual source S’

If we define θ to be the angle between the intersection of the mirror with

the line joining the two sources and point P,17 the condition for constructive

interference is

2h sin θ =

(
n− 1

2

)
λ (n ∈ Z+)

where the −1
2λ accounts for the virtual source being out of phase with the

real source. One can show that this is consistent with the previous equation

for sin θ = h
2l (point P is on the same vertical level as S as tan θ ≈ sin θ for

small θ), after performing a binomial expansion for
√
L2 + h2 and discarding

higher-order terms in h2

L2 .

Bragg’s Law

It was discovered that crystalline solids produced intensity maxima and min-

ima of reflected radiation when illuminated by X-rays of specific wavelengths

and incident angles. A model was proposed to explain this strange phenom-

ena— a crystal is imagined to be a set of myriad, discrete and one-atom-thick

planes of atoms separated by a uniform distance d.

Figure 14.20: Layers of atoms

17If h � L, θ should really also be the angle between the emitted rays to P and the
horizontal.
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The incident EM waves are scattered by the layers of atoms, indicated

by black circles in Fig. 14.20. Then, the Bragg peaks were proposed to occur

at positions where the reflected beams from these atomic layers interfere

constructively (the rays are not exactly parallel but intersect far away as

the incident rays are also not exactly parallel if they came from the same

source). As seen from the diagram on the previous page, the path difference

of rays between two adjacent layers is

δ = 2d sin θ.

Even though there is a phase change of π radians during reflection, it occurs

for all of the reflected waves. Hence, the condition for constructive interfer-

ence is still

δ = 2d sin θ = nλ, (n ∈ Z+)

while the condition for destructive interference is

δ = 2d sin θ =

(
n− 1

2

)
λ. (n ∈ Z+)

Thin Film Interference

When white light is shone on a thin soap film, it appears iridescent. The

cascade of colours is a result of the constructive and destructive interferences

between certain reflected waves from the two surfaces (a soap film has a top

and a bottom surface). Thus, some reflected colours are “canceled” out and

the remaining colors are observed — certain colors may even be amplified.

Consider the following diagram.

Figure 14.21: Thin film

Monochromatic light of wavelength λ in vacuum and frequency f travels

from an optically less dense medium, with an absolute refractive index n1, to



July 10, 2018 12:25 Competitive Physics 9.61in x 6.69in b3146-ch14 page 781

Interference 781

an optically denser medium, of an absolute refractive index n2, at an angle

of incidence θi. Part of the light is transmitted and part of it is reflected at

the top surface. The transmitted light wave then propagates in the medium

before being partially reflected at the bottom surface and being partially

transmitted into the less dense medium again — the reflected rays then

interfere (though they are parallel, they are usually focused at a single point

by an optical apparatus, such as the lenses in our eyes). In this analysis, it

is important to note that light slows down in an optically denser medium.

Furthermore, since

c = fλ

in vacuum and the phase velocity of light in a denser medium is c′ = c
n ,

where n is the absolute refractive index of the medium, the wavelength of

light in a medium of refractive index n must be

λ′ =
λ

n
,

as the frequency is an intrinsic property of the wave source and should not

vary when transiting across a stationary interface. This means that a certain

amount of path length in the optically denser medium corresponds to an

effective phase change that is larger by a factor of n as compared to the

corresponding phase change if the wave were to travel the same path length

in vacuum. Therefore, it is useful to define a quantity known as the optical

path length (OPL) in a medium, which is given by

OPL = nl,

where l is the path length traversed by the light in that medium. Then, the

relationship between the optical path length covered and the phase change is

Δφ

2π
=
OPL

λ
,

where λ is the wavelength of the light in vacuum or air. In light of this, the

optical path difference between the two emerging reflected rays is

δOPL = n2
(
AC + CD

)− n1AB.

The length of path ADC is given by

AC + CD =
2d

cos θr
,

where d is the thickness of the soap film. The length of AD is

AD = 2d tan θr.
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The length of AB is then

AB = AD sin θi = 2d tan θr sin θi.

Furthermore, by applying Snell’s law,

n1 sin θi = n2 sin θr,

the optical path difference can be expressed as

δOPL = 2n2d

(
1

cos θr
− sin2 θr

cos θr

)
= 2n2d cos θr.

Lastly, since the reflected wave at the top undergoes a π-radian phase shift

while that at the bottom does not, the condition for constructive interference

between the two emerging reflected waves is

2n2d cos θr =

(
n− 1

2

)
λ. (n ∈ Z+)

Remember that λ refers to the wavelength of the light in a vacuum. Next,

the condition for destructive interference is simply

2n2d cos θr = nλ. (n ∈ Z+)

Alternatively, these conditions can be expressed in terms of n1 and θi but

the above form looks neater.

Problem: If an infinitesimally thin soap film is illuminated by white light

normal to its surface, what do you expect to observe? The two surfaces of

the film form interfaces with air.

You would expect to observe a black soap film. This is because the optical

path difference is insignificant, in this case. Only the phase shift of π radians

matters, resulting in destructive interference between pairs of reflected rays

of all wavelengths.

14.2 Standing Waves

Consider two coincident one-dimensional waves with displacement functions

ψ1(x, t) = A sin (kx− ωt+ (φ1 − φ2)),

ψ2(x, t) = A sin (kx+ ωt+ (φ1 + φ2)).

These equations represent two traveling waves of equal amplitude, speed and

wavelength but opposite directions of travel. The phase offsets look rather

ugly now, but they are expressed as such for future simplicity. Applying
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the trigonometric identity sinA + sinB = 2 sin A+B
2 cos A−B2 , the resultant

displacement due to these waves is

ψ(x, t) = A sin (kx− ωt+ (φ1 − φ2)) +A sin (kx+ ωt+ (φ1 + φ2))

(14.16)

= 2A sin (kx+ φ1) cos(ωt+ φ2). (14.17)

From this expression, we see that each point on the resultant wave oscil-

lates about its equilibrium position with an amplitude |2 sin (kx+ φ1)| and
an angular frequency ω, where x is the x-coordinate of that point. φ2 is

a constant that only depends on the choice of the origin of time and can

be tweaked to be whatever we want. On another note, the time-component

of Eq. (14.17) is largely irrelevant in our analysis, which will focus on the

amplitude of oscillation.

Figure 14.22: Resultant displacements at two instances

The graph above shows the displacement against position of the points on

the resultant wave at two different times, t1 and t2 (with φ1 = 0). Evidently,

the wave profile does not advance with time (it is merely squashed or enlarged

with time), so no net energy is transferred from one point in space to another,

on average.18

Furthermore, there are some locations at which the points on the resul-

tant wave do not oscillate at all. These correspond to points known as

nodes whose x-coordinates satisfy x = nλ
2 , n ∈ Z in this case. On the other

hand, points on the wave which oscillate at the maximum amplitude 2A are

known as antinodes. In this case, the x-coordinates of the antinodes fulfil

x = (n2 − 1
4)λ, n ∈ Z.

There is always an antinode in the middle of two nodes and vice-versa.

Half of the common wavelength of the two original waves, λ2 , is equal to the

distance between two adjacent antinodes or nodes. Lastly, the phase of a

18We have shown in Problem 4 (Chapter 13) that the power transmitted across a point
due to the superposition of two waves traveling in opposite directions is simply the sum of
the individual powers. Taking the time-average would yield zero. However, note that there
may still be instantaneous net power transmitted across a point.
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particular point on the resultant wave depends on the sign of sin (kx+ φ1).

If sin (kx+ φ1) is positive, the phase of that point is (ωt + φ2). Otherwise,

it is (ωt + φ2 + π), as an additional π radians in phase angle would negate

the instantaneous displacement of a point. Since the sine function is positive

and negative for π radians each in a single period, and the distance between

consecutive nodes is λ
2 , the phases of all points between 2 adjacent nodes

are the same while the phases of points in adjacent segments between nodes

differ by π radians.

The resultant wave above is known as a standing wave and is formed

when two identical waves — of the same amplitude, frequency and speed but

opposite directions of travel — are superposed. Standing waves are pervasive

and play an essential role in musical instruments, as we shall see. In general,

waves are not necessarily sinusoidal but a general wave can be expressed as

an algebraic sum of an infinite series of sinusoidal waves via Fourier analy-

sis (thus, sinusoidal waves are useful). Different linear combinations of the

sinusoidal standing waves in an instrument produce the unique sounds that

we hear. Finally, the wavelengths and thus frequencies of standing waves in

an object are actually restricted by its physical parameters to a certain set

of values — explaining why many instruments can be tuned, by varying its

physical characteristics, to produce a certain pitch. This will be explored in

the next section.

14.2.1 Boundary Conditions

Now, we will analyze the sinusoidal solutions in certain set-ups which set

a foundation for more general solutions. For a single sinusoid, the value of

φ1 in Eq. (14.17) is determined by a single boundary condition such as the

location of a node or antinode. Additional boundary conditions then impose

constraints on the possible values of k, as we shall see.

Figure 14.23: Guitar string with clamps

Consider a uniform guitar string that is clamped on both ends a dis-

tance L apart and plucked. Transverse waves travel along the string and
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are completely reflected from both ends to produce a stationary wave (hard

reflection). Figure 14.23 shows the resultant displacement of the string at

different times if the string was initially plucked in the middle to form a

sinusoidal wave profile.

Regardless of how the string was actually disturbed initially, the two

ends of the string must remain stationary and must thus be displacement

nodes. If we let the origin of the x-axis be at the left end of the string, the

condition for the left end to be fixed at all times for a single sinusoid can be

obtained from Eq. (14.17). Since the amplitude of oscillation at a coordinate

x is |2A sin(kx + φ1)|, the node condition for the left end at which we set

x = 0 is satisfied if

sinφ1 = 0.

Whether φ1 = 0 or π does not matter as we are only concerned about

the amplitude of oscillation. A π-phase shift only introduces an additional

negative sign. Therefore, we choose φ1 = 0 and substitute it into Eq. (14.17)

to get

ψ(x, t) = 2A sin kx cos(ωt+ φ2).

Since the point at x = L must also be a displacement node,

sin kL = 0

=⇒ k =
nπ

L
, (n ∈ Z+)

λ =
2π

k
=

2L

n
.

Let v be the speed of the string which is independent of the boundary con-

ditions, as v =
√

T
μ where T is the tension in the string and μ is the linear

mass density. Thus, from v = fλ,

f =
nv

2L
.

The above equation implies that the frequencies produced by a string

clamped on both ends can be changed by tightening the clamps (to vary

the tension and thus vary v) or changing the length of the string L. Moving

on, each value of n corresponds to a different mode of oscillation of the string

with a unique wavelength as shown in Fig. 14.24, for which the string has an
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Figure 14.24: Guitar string with clamps

infinite number.19 The figure above depicts the standing waves at different

instances — however, for all diagrams in the future, we will only draw the

amplitude envelope for the sake of brevity.

All possible standing wave configurations on the string in this case have

two nodes at its ends and any number of nodes distributed evenly between

its ends. The midpoint between every two successive nodes corresponds to an

antinode. Evidently, since the wavelengths of the standing waves can only

take on certain values, the pure frequencies that can be produced by the

string also take on certain discrete values. These are known as the resonant

frequencies or natural frequencies of the system, aptly termed as such

because the system will respond with the largest amplitude at a particu-

lar resonant frequency when the frequency of the external source matches

that particular resonant frequency. Otherwise, a negligible response will be

obtained.

The fundamental frequency, f1, corresponds to the lowest possible reso-

nant frequency of a system. In this case, f = v
2L . The nth (n ∈ Z+) harmonic

refers to the frequency that results from a certain mode of oscillation that

is n times the fundamental frequency, i.e. fn = nf1. In this particular case,

all harmonics are present, but this may not be true in general.

19This is to be expected, as we can consider each segment to be an oscillator. The
continuous string is then an infinite array of coupled oscillators which has an infinite
number of modes.
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Overtones are the possible resonant frequencies that can be produced by

a system — excluding the fundamental frequency. Again, they are sorted and

numbered in ascending order. In this case, the first overtone of the string

corresponds to the 2nd harmonic.

Sound Waves in Pipes

When air is blown into a pipe, a certain sound is heard. Furthermore, the

sound seems to differ across different pipes. A familiar example would be

acoustic performances where artists blow into beakers containing different

levels of water to produce different tunes. This effect is due to the sound

being a mixture of certain attainable frequencies which are dependent on

the physical parameters of the tube.

Figure 14.25: Displacement of air molecules

The graph in the diagram above shows the amplitudes of oscillation of

the air molecules in a pipe that is closed at one end, due to a possible

sinusoidal standing wave at a certain instance in time. Note that even though

the amplitude envelope is depicted in the transverse direction for purposes

of illustration, the air molecules are actually displaced in the longitudinal

direction.

At the closed end of the pipe, the air molecules can neither penetrate

the wall nor escape from it as the resulting vacuum would pull it back —

implying that they are unable to oscillate. Thus, the closed end must corre-

spond to a displacement node. The displacement wave undergoes a π-radian

phase change after reflection and “cancels” the incident wave. Another reason

would be that the pressure wave undergoes no phase change after reflection

from the wall as the closed end has a higher acoustic impedance.20 Thus,

20The reader should convince himself or herself that when the displacement wave under-
goes a π-radian phase change upon reflection, the pressure wave undergoes no phase change
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the reflected pressure wave will interfere constructively with the incident

pressure wave at the closed end of the pipe — causing the closed end of

the pipe to correspond to a pressure antinode and hence, a displacement

node.

Most intuitively, the air molecules at the open end should be free to

move — causing a displacement antinode to be located there. A more rig-

orous explanation is that the pressure of air at the open end of the tube

does not deviate much from the external air pressure due to the enormous

volume of air in the surroundings. We do not expect to produce a signifi-

cant change in its pressure through actions such as blowing into the tube.

Thus, the point at the open end must be a pressure node. A better reason

would pertain to the phase shift of π radians of the pressure waves that

are reflected at the open end of the pipe,21 which causes them to interfere

destructively with the incident waves at the open end — producing a pres-

sure node at the open end and thus a displacement antinode. Definitely, the

incident pressure wave is not reflected completely and partially escapes —

evident from the fact that sound is still heard which implies energy transfer

into the surroundings. However, a displacement antinode at the open end is

still a decent approximation in this situation.

Define the origin to be located at the closed end of the tube and the

x-coordinate of the open end to be x = −L. Again, φ1 = 0 in Eq. (14.17) for

the displacement standing wave to ensure that the closed end corresponds

to a displacement node. Next, in order for x = −L to be a displacement

antinode,

| sin kL| = 1

kL =

(
n− 1

2

)
π (n ∈ Z+)

k =
2n− 1

2L
π,

λ =
4

2n− 1
L

upon reflection. Keep in mind that the pressure and displacement waves are π
2
out of phase.

This phase difference is amplified by a factor of two when the displacement wave reflects,
which leads to there being no phase change in the pressure wave.

21Yes, sound waves are partially reflected at the open end of the pipe as it travels into
a region of a lower impedance (as the air outside the pipe is generally less dense) — akin
to how light is partially reflected when incident upon a medium with a lower refractive
index. The reflected displacement wave does not experience a phase shift — causing the
reflected pressure wave to undergo a π-radian phase shift.
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Figure 14.26: Harmonics and overtones

These are the possible wave numbers and wavelengths of the sinusoidal stand-

ing waves inside the pipe. Figure 14.26 depicts the modes of oscillations for

n = 1, 2, 3.

As seen from above, there can be any number of displacement nodes and

antinodes between the open and closed ends of the pipe, which correspond

to a displacement antinode and node respectively. The standing wave, with

the mode of oscillation conforming to a value n, has n antinodes and nodes

each.

The fundamental frequency in this case is

f1 =
v

4L
.

It is important to observe that only the odd harmonics are present in a tube

with one closed and one open end. An example of such an instrument would

be the flute. To play a flute, one blows into the side of the flute near the top,

which is similar to an open end, while the other end of the flute is blocked

and is hence a closed end.

Similarly, for a pipe of length L that is open on both ends, the two

ends are displacement antinodes and the standing waves can only take on

specific wavelengths too. To determine the attainable wavelengths, consider

the fact that the amplitude of the displacement wave at a certain point with

coordinate x is given by Eq. (14.17) as |2A sin (kx+ φ1)|. Therefore, if we
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choose the origin at the left end of the pipe, the displacement function must

satisfy the following condition for the open end at x = 0 to be an antinode:

sinφ1 = 1,

which implies that φ1 = π
2 and |2A sin(kx + φ1)| = |2A sin(kx + π

2 )| =

|2A sin(π2 − kx)| = |2A cos kx|.
For the end at x = L to also be an antinode,

| cos kL| = 1

k =
nπ

L
, (n ∈ Z+)

λ =
2L

n
.

Figure 14.27 shows the different displacement modes of oscillation for n =

1, 2, 3.

Contrary to a pipe with a single closed end, an open pipe can produce

all possible harmonics. Once again, there can be any number of nodes in

between the two ends as long as the two ends remain as antinodes. In this

case, there must at least be one node between the two ends as there must

be a minimum of one node between two antinodes.

Ultimately, we do not usually consider the equations of standing waves

when solving for the possible modes of oscillation, the way we did in this

Figure 14.27: Harmonics and overtones
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section. Instead, drawing the possible displacement waves in a system, while

considering whether the boundaries are constrained to be nodes or antinodes,

is often more intuitive, edifying and efficient. Thus, this method should be

adopted in most problem-solving practices.

A Comment

In reality, an antinode is not situated perfectly at the open end of a pipe. In

fact, it occurs slightly outside of a pipe. This is known as the end correction

for open pipes which is experimentally determined to be of distance 0.6r for

a cylindrical pipe, where r is the radius of the pipe. Thus, it is a property

of the pipe itself and is independent of the frequency of the standing wave.

When solving problems, it is paramount to choose methods that can account

for such end corrections if possible. Consider the following example.

An air column in a cylindrical glass pipe is blocked by a movable piston on

one end and is open on the other end. A tuning fork of frequency f is placed

at the open end of the tube. The movable piston is then slowly extracted to

increase the distance between the closed and open ends. Resonance is first

heard when the piston is of the minimum distance d1 away from the open

end, and next heard when the piston is distance d2 away from the open end.

Determine the speed of sound using these parameters.

Well, we might say that the situation when resonance is first heard cor-

responds to the fundamental mode of oscillation and conclude that

λ = 4d1

=⇒ v = fλ = 4fd1.

However, this does not account for possible end effects which may be signif-

icant if the radius of the pipe is large. That is, d1 �= λ
4 but rather, d1 =

λ
4 − c

where c is the end correction term that is independent of the mode of oscil-

lation. Instead, it is more accurate to consider the difference between the

distances in the two situations. During the second time resonance is heard,

there is now an additional displacement node in the middle of the two ends

as compared to the first situation. Thus, this must correspond to an increase

of λ
2 in the length of the pipe.

d2 − d1 =
λ

2
,

v = fλ = 2f(d2 − d1),

where we have accounted for possible end effects.



July 10, 2018 12:25 Competitive Physics 9.61in x 6.69in b3146-ch14 page 792

792 Competitive Physics: Mechanics and Waves

14.3 Beats

Another application of the principle of superposition in music is the overlap

of two sinusoidal traveling waves of slightly different frequencies. Then, a

periodic “beat” or a fluctuation in the intensity of the sound wave can be

heard. Quantitatively, consider two waves at a certain point in space which

result in individual displacements at that point of the form

ψ1 = A cos (2πf1t+ φ1),

ψ2 = A cos (2πf2t+ φ2).

Superposing these waves, we obtain the resultant displacement at that point

ψR.

ψR = ψ1 + ψ2

= A[cos (2πf1t+ φ1) + cos (2πf2t+ φ2)]

= 2A cos

(
2π
f1 + f2

2
t+

φ1 + φ2
2

)
cos

(
2π
f1 − f2

2
t+

φ1 − φ2
2

)
.

Scrutinizing this expression, if f1 ≈ f2, A cos
(
2π f1−f22 t+ φ1−φ2

2

)
can be

treated as a slowly varying amplitude which acts as an envelope for the other

oscillatory term. The resultant displacement at that point then seemingly

oscillates with a frequency f1+f2
2 under the envelope. Plotting this function

on a graph, we expect a large sinusoidal envelope with rapid sinusoidal fluc-

tuations within the envelope.

Figure 14.28: Graph of resultant displacement

In the graph above, the horizontal axis indicates time while the vertical

axis indicates the instantaneous displacement of the resultant wave at that

particular location. As observed from the graph above, the envelope of the

graph traces out a sinusoidal function with a large period and encapsulates

rapid fluctuations.
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There are global intensity maxima (where the displacement is largest in

absolute value) and minima (where the displacement is zero) on the envelope.

A beat is heard when there is a transition from one global maximum to

another. Thus, the beat frequency is fbeat = |f1 − f2| rather than |f1−f2|
2

which is the frequency of the slowly oscillating cosine function. This is due to

the fact that one complete cycle of oscillation of the envelope corresponds to

two intensity jumps (maximum positive displacement to maximum negative

displacement and back to maximum positive displacement) and thus two

beats.

Musical beats are pivotal in tuning instruments. One can vibrate a tuning

fork and a piano string at the same time. If their frequencies are out of sync,

a periodic beat will be heard. Then, one can adjust the tension in the piano

string so that the frequency of beats decreases until they eventually become

virtually undetectable. Then, the string is tuned.

Experiment: Go to http://onlinetonegenerator.com and play a sinusoidal

sound at 440 Hertz. With the current tab open, open a duplicate tab and play

a sound at 441 Hertz to hear a rhythmic beat. Now, increase the frequency

of the sound from 441 Hertz to 442 Hertz and empirically verify that the

frequency of the beat increases.
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Problems

1. Double Standing Waves*

Two in-phase monochromatic lasers of wavelength λ are located at (−l1, 0)
and (0,−l2) in the xy-plane. They simultaneously fire horizontal and vertical

beams respectively which are then reflected by perfectly reflective mirrors

at (l1, 0) and (0, l2), whose planes are perpendicular to the incoming rays —

setting up two standing waves. The directions of oscillation of the standing

waves are aligned. If the two antinodes of the standing waves nearest to the

mirrors attain their maximum displacements (in the same direction) simul-

taneously at all times, determine the respective conditions for the intensity

at the origin to be larger and smaller than the individual intensity caused

by either standing wave.

2. Ives’ and Wiener’s Experiments*

The left and right set-ups are used by Ives and Wiener to measure the

wavelength λ of incident light respectively. Monochromatic light is normally

incident on the two mirrors in the two experiments. If the photographic film

is transparent and can capture regions of different intensities, how can λ be

determined? Form an equation for λ in terms of the measurable quantities

on the photographic films and angle α in the case of Wiener’s experiment.

In Wiener’s set-up, the photographic film is inclined by a small angle α� 1;

what is the advantage of this?

3. Displaced Slit*

Consider Fig. 14.8. If the light source S and slit S0 are both shifted down-

wards so that they are aligned with the bottom slit, quantitatively describe

the changes to the locations of the bright and dark fringes for small θ (the

definition for θ is retained). Let the horizontal distance between S and S0
be w such that λ � w but the squared slit separation d2 is comparable

with λw. L � d is the horizontal distance between the double slit and the

screen.
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4. Glass Plate*

A thin glass plate of refractive index n and thickness t is placed directly in

front of the top slit of a double slit experiment with slit separation d and

wavelength λ in vacuum. Quantitatively describe the resultant change in the

locations of the bright and dark fringes on a screen located far away at a

distance L, such that L � t and L � d, for small values of angle θ (for

which the conventional definition is adopted).

5. Wedge*

A glass wedge with an unknown small wedge angle α is suspended with its

tip at the top. Consider a uniform triangular cross-section of the wedge. A

movable source emitting a narrow, horizontal beam of monochromatic light

is then shone from the left side of the wedge, with a progressively increasing

vertical distance y from the tip of the edge. At a small distance y = y2, the

second-order intensity maximum is observed from the left of the wedge. At

what distance y′3 will the third-order intensity minimum be observed?

6. Newton’s Rings**

A thin plano-convex lens with a large radius of curvature R lies on the

surface of a table as shown below. There is a thin air gap between the

surface of the lens and the table, at points other than the vertex of the lens.

Monochromatic light of wavelength λ is then shone normally on the lens

(vertically downwards) and a series of bright and dark circles are observed

when the lens is viewed from above. Determine the radii of the nth bright

and dark rings.

7. Fresnel’s Biprism**

A monochromatic cylindrical source S of wavelength λ is placed a distance w

in front of a thin, infinitely long biprism (two prisms glued together to form

an isosceles triangle) of small angle α. The refractive index of the biprism is

n. A screen is placed far away from the source S and an interference pattern

is observed. By considering the notion of virtual sources, explain why an

interference pattern is formed despite there being only a sole point source.

Then, let θ denote the angle subtended by a line joining S to a point on
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the screen and the horizontal. Determine the θ coordinate of the mth-order

bright fringe. Finally, each virtual source has a limited angular range of illu-

mination. Determine the total number of bright fringes formed on the screen

while assuming w � L, where L is the distance between S and the screen.

8. Mirror Interference**

A monochromatic point source S of wavelength λ is placed at a distance

w = kλ away from an infinite vertical mirror. A screen is then placed a

distance L � w from S on the other side. Determine the total number of

bright rings produced by this set-up.

9. Slanted Mirrors**

A monochromatic point source S of wavelength λ and two mirrors are

arranged as shown in the set-up on the next page (where α is small). S is

a vertical distance L above the horizontal mirror. A thin blockade is placed

on the left on the middle line to prevent horizontal rays from S from pass-

ing through. The bottom of the blockade is aligned with S. Determine the

condition for constructive interference at a point P, which is at the same

vertical level as S and a horizontal distance y rightwards from the center

line. Determine the total number of possible points P (with different y) at

which constructive interference can occur.
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10. Sagnac Interferometer**

Three mirrors and a beam splitter are arranged into a square of side length

L as shown in the figure below. A sinusoidal light source of period T first

emits a ray into the beam splitter which splits the incident ray into two that

travel upwards and rightwards respectively. These rays then travel one round

along the edges of the square before being recombined again by the beam

splitter. Suppose that the mirrors rotate about the center of the square O

with angular frequency ω (ωL � c where c is the speed of light), the two

recombined rays will have a phase difference. If L is the smallest length for

which constructive interference occurs on the screen, determine ω.

11. Accelerating Cars**

Two cars are initially located on the x-axis at x = −l and x = l respectively.

The sirens on the cars are in-phase and emit high-frequency sound waves

of small period T , in the frame of the sirens, along the x-axis. The sound

waves propagate at speed c in air. For t ≥ 0, the cars travel towards each

other at speed v(t) = v0 − at where v0 > c is the initial velocity and a is a

constant acceleration. At an unknown time t′, a stationary observer at x = d

where 0 < d < l receives waves from the two sources that have zero phase

difference. Find t′. Then, determine the conditions for the observer to only

receive one wave from each source at time t′, as well as the times at which

the cars emitted the waves that reached the observer at time t′, under these
conditions.



July 10, 2018 12:25 Competitive Physics 9.61in x 6.69in b3146-ch14 page 798

798 Competitive Physics: Mechanics and Waves

Solutions

1. Double Standing Waves*

Due to their perfectly reflective properties, the mirrors produce nodes as

hard reflection causes the reflected wave to annihilate the incident ray at

the point of reflection. Next, since the antinodes of the two standing waves

closest to the mirrors attain their maximum displacements simultaneously,

the two time-dependent terms (refer to Eq. (14.17)) of the two standing

waves must be identical. Therefore, we can simply consider their amplitudes

in determining the resultant intensity.

We know that two adjacent segments between nodes in a single standing

are π radians apart in phase. Therefore, the point at the origin is either an

odd or even multiple of π radians apart in phase from the segment contain-

ing the mirror node for each standing wave. We simply need to determine

whether the segments of the two standing waves that contain the origin are

an even or odd multiple of π radians in phase apart to determine if the

combined intensity is larger or smaller than either of the individual inten-

sities — an even multiple leads to a larger resultant intensity while the

converse holds as well. Since the nodes of a standing wave are λ
2 apart, for

the horizontal wave, the segment containing the origin is the
⌈
2l1
λ

⌉
th segment

from the mirror. A similar statement holds for the vertical wave. Therefore,

for the two segments at the origin to be an even multiple of π radians apart

and the resultant intensity to be larger than the individual intensities,

2 |
⌈
2l1
λ

⌉
+

⌈
2l2
λ

⌉
.

Otherwise, for the resultant intensity to be smaller,

2 �

⌈
2l1
λ

⌉
+

⌈
2l2
λ

⌉
.

Note that if either standing wave forms a node at the origin (2l1λ or 2l2
λ is an

integer), the resultant intensity will equal to the individual intensity of the

other wave. Thus, we must exclude such possibilities.

2. Ives’ and Wiener’s Experiments*

The incident ray is reflected by the mirror which sets up a vertical standing

wave with a node located at the mirror (due to the π-radian phase shift owing

to hard reflection). The photographic film then records the regions of high
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intensity and low intensity, which correspond to antinodes and nodes respec-

tively. Since we know that the vertical distance between adjacent antinodes

must be λ
2 apart, we can determine λ by measuring the distance between

adjacent high intensity regions on the photographic film, Δd (we can also

compute the total distance between many high intensity regions and take the

average to reduce the percentage error of measurement). For Ives’ set-up,

λ = 2Δd.

For Wiener’s set-up, we have to take the inclination into account. The dis-

tance between adjacent high intensity regions on the photographic film is

Δd =
λ

2 sinα
≈ λ

2α
.

Note that we divide by sinα to obtain the “hypotenuse” from the “adjacent

side”. The advantage of having a small angle of inclination is that Δd is

greatly amplified such that the percentage error in measuring it is reduced.

λ can then be expressed in terms of Δd and α as

λ = 2αΔd.

3. Displaced Slit*

Due to the displaced slit S0, the rays that travel to the top slit cover a longer

path length than those that travel to the bottom slit — this additional path

length is
√
w2 + d2 − w. Therefore, the path difference between rays that

emanate from S and end at a point P on the screen through the two slits is

d sin θ −√
w2 + d2 + w. For constructive interference,

d sin θ −
√
w2 + d2 + w = nλ.

We can perform a binomial expansion for the square root term:

√
w2 + d2 = w

√
1 +

d2

w2

= w

(
1 +

d2

2w2
− d4

8w4
+ · · ·

)

= w +
d2

2w
− d4

8w3
+ · · ·

≈ w +
d2

2w
.

Since we will be comparing the terms with λ, we note that since d2 is com-

parable with wλ, d2

w is comparable with λ, and we keep the second term.
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However, we do not keep higher-order terms, such as d4

w3 ∼ w2λ2

w3 = λ2

w ,

which is negligible when compared to λ as λ � w. Then, the condition for

constructive interference is

d sin θ = nλ+
d2

2w
.

For small θ, sin θ ≈ y
L where y is the vertical coordinate of the point on the

screen at which the rays converge, above the center of the two slits. Then,

y =
nλL

d
+
dL

2w
.

By comparing this with the location of bright fringes in a normal double

slit experiment, it can be seen that the bright fringes are displaced by dL
2w

vertically upwards. A similar statement can be made for the dark fringes.

4. Glass Plate*

The effect of the glass plate is to increase the optical path length of a ray from

the top slit, though it essentially travels the same distance. The conditions

for constructive and destructive interferences are then for the difference in

OPL to be an integer multiple and half-integer multiple of λ respectively.

For small angles of θ, the incident angle on the glass plate and the refracted

angle are both small. The optical path length that a ray covers in the glass

plate is just nt. Next, the parallel shift of a ray through the glass plate is

negligible as t� L — the rest of the path taken by a ray from the top slit is

identical to that in a normal double slit experiment. Therefore, the optical

path length of the top slit effectively increases by (n − 1)t. The respective

conditions for constructive and destructive interferences then become

d sin θ − (n− 1)t = mλ,

d sin θ − (n− 1)t =

(
m− 1

2

)
λ.

For small values of θ,

sin θ ≈ tan θ =
y

L
,

where y is the vertical coordinate of a point on the screen, with respect to

the center. Therefore, the locations of the bright and dark fringes for small
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θ are respectively,

y =
mλL

d
+

(n− 1)tL

d
,

y =

(
m− 1

2

)
λL

d
+

(n− 1)tL

d
.

Evidently, the glass plate shifts the fringes at small θ upwards by a distance
(n−1)tL

d .

5. Wedge*

As the wedge angle is small, the distance between the two isosceles edges

of the wedge is small for small vertical distances from the tip. Therefore,

the effect of refraction on the path length covered inside the wedge can be

neglected in this regime. As a ray impinges on the left face of the wedge,

part of it is reflected while another part is transmitted. The transmitted

portion then travels to the other face and part of it is reflected from that

again — later interfering with the first reflected portion. This interference

produces the intensity maxima and minima. The additional optical path

length covered by the secondary reflected ray is 2 × 2y tan α
2 ≈ 2yα. How-

ever, remember that the primary reflected ray undergoes a π-radian phase

shift during reflection (while the secondary ray doesn’t) which is equiva-

lent to it having covered an additional optical path length of λ
2 where the

monochromatic wavelength is defined as λ. The conditions for constructive

and destructive interferences are then, respectively,

2yα =

(
n− 1

2

)
λ,

2yα = nλ,

where n is the order number. Substituting y = y2 when n = 2 into the first

equation,

2y2α =
3

2
λ.

Let the third intensity maximum occur at y = y′3. Then,

2y′3α = 3λ

=⇒ y′3 = 2y2.
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6. Newton’s Rings**

Consider the side view of the lens (including the complete circle of radius

R) and let the thickness of the air gap as a radius r from the vertex

be h.

The intersecting chords theorem states that

h(2R − h) = r2.

As the air gap is thin, h2 is negligible as compared to r2. Then,

h ≈ r2

2R
.

Consider a vertical ray that impinges normally on the lens at a radius r.

Part of the ray is reflected off the concave surface of the lens while some is

transmitted. The transmitted portion is then reflected off the surface of the

table and then transmitted back into the lens — interfering with the portion

that was reflected the first time. The path difference between these portions

is 2h (there is a negligible angle of deviation due to refraction as h is small).

Therefore, the conditions for constructive and destructive interferences, while

taking into account the π-phase shift due to the reflection off the table (there

is no π-phase shift for the reflection off air which is optically less dense than

the lens), are

2h =

(
n− 1

2

)
λ,

2h = (n− 1)λ,

respectively where n is a positive integer and corresponds to the order num-

ber. Expressing h in terms of r, while using the subscripts b and d to denote
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bright and dark rings, the respective radii of the nth bright and dark rings

are

rb =

√(
n− 1

2

)
Rλ,

rd =
√

(n− 1)Rλ.

7. Fresnel’s Biprism**

Consider a ray that is emitted from S at a small angle θ with respect to the

horizontal. Its angle of incidence with the slanted surface of the biprism

is θ + α. The angle of refraction within the biprism is given by Snell’s

law as

r =
θ + α

n
,

where we have used the small angle approximation sinx ≈ x. The second

angle of incidence is r − α. Therefore, the angle that the transmitted ray

subtends with the horizontal is

θ′ = n(r − α) = θ − (n− 1)α.

The original ray is deflected by an angle (n−1)α. Now, consider the following

diagram where the ray emitted at angle θ above the horizontal is effectively

produced by a virtual source S’ above S.
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We know that the ray exiting from the biprism subtends an angle θ′ =
θ − (n− 1)α. Therefore, the distance between S’ and S is

w tan θ − w tan[θ − (n− 1)α] ≈ w(n− 1)α,

by the small angle approximation tanx ≈ x. Furthermore, it can be seen

that all rays with small θ above the horizontal seemingly emanate from S’,

as the above expression is independent of θ. By symmetry, there should also

be a virtual source S” below S, due to refraction with the bottom slanted

surface. The two sources act as two infinitesimal slits in the double slit exper-

iment and thus produce an interference pattern. The “slit separation” in this

case is

d = 2w(n − 1)α.

The condition for constructive interference is

d sin θ = mλ.

For small θ, the mth-order bright fringe corresponds to an angle

θ =
mλ

d
=

mλ

2w(n − 1)α
.

Each virtual source has a limited angle of illumination. S’ is produced due to

refraction with the top slanted side of the biprism. Its rays cover all positive

θ′ ≤ π
2 + (1 − n)α but only a small region for negative θ′. In the boundary

case, a ray emitted at an infinitesimal positive angle above the horizontal

leaves the biprism at an angle (n− 1)α below the horizontal. Therefore, the

interference region corresponds to |θ| ≤ (n−1)α (this inequality justifies the
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small angle assumption too). Since θ = mλ
2w(n−1)α , the maximum m is then

m =

⌊
2w(n − 1)2α2

λ

⌋
.

The total number of bright fringes is then

2

⌊
2w(n − 1)2α2

λ

⌋
+ 1,

(plus one for the zeroth-order maximum).

8. Mirror Interference**

The mirror image of S is a virtual source S’ depicted in the diagram below.

The rays produced by S and S’ overlap and interfere on the screen.

Consider a point on the screen that is at an angle θ with respect to S.

The path length travelled by a wave from S is

r =
l

cos θ
,

while that from S’ is given by the cosine rule (discarding the second-order

term w2

l2 en route) as

r′ =
√
r2 + 4w2 + 4rw cos θ =

l

cos θ

√
1 +

4w cos2 θ

l
≈ l

cos θ
+ 2wcosθ.

The path length difference is thus

δ = 2w cos θ.

The condition for constructive interference is

δ +
λ

2
= nλ,
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where the additional half wavelength takes into account the π-radian phase

shift due to reflection off the mirror. Substituting the expression for δ in

terms of cos θ and w = kλ,

cos θ =
n

2k
− 1

4k
.

Since 0 ≤ | cos θ| ≤ 1, the maximum order n satisfies

0 ≤ n

2k
− 1

4k
≤ 1

1

2
≤ n ≤ 2k +

1

2
.

Therefore, the total number of bright rings is 2k.

9. Slanted Mirrors**

The two mirrors produce two mirror images S’ and S” each, as shown in the

figure below.

The horizontal distance between S and the center line is

L tanα ≈ Lα

for small α. Therefore, the distance between the two virtual sources is 2Lα.

Furthermore, they are in phase as the reflected rays from the corresponding

mirrors both undergo a π-radian phase shift due to hard reflection. The two

virtual sources S’ and S” then act as a double slit source with slit separation

d = 2Lα that impinge on a screen a distance 2L away. For constructive

interference,

d · sin θ = nλ,
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where θ is the angle subtended by a ray from either virtual source to point

P (note that the far field approximation holds as 2L� 2Lα). Applying the

small angle approximation,

sin θ ≈ tan θ =
y

2L
.

Then,

αy = nλ (n ∈ Z+)

is the condition for constructive interference (note that n = 0 is invalid as the

ray from S’ is blocked). Now, notice that the angular range of S’ is limited —

the maximum y that its rays can reach is Lα and this occurs when the ray

from S hits the intersection of the two mirrors. Therefore, the total number

of locations where constructive interference occurs is⌊
Lα2

λ

⌋
.

10. Sagnac Interferometer**

For the clockwise cycle of light, the velocities of the mirrors due to rotation,

along the edges of the square, are aligned with the light ray. For the anti-

clockwise cycle, the velocities of the mirrors oppose that of the light ray. The

velocities of the mirrors along the edges are
√
2
2 · ωL ·

√
2
2 = ωL

2 . Therefore,

the time taken for the clockwise beam to be recombined at the splitter is

t1 =
4L

c− ωL
2

.

The time taken by the anti-clockwise beam is

t2 =
4L

c+ ωL
2

.

This difference in time taken and thus difference in distance traveled by the

beams leads to a phase difference. Constructive interference occurs when the

time difference is a multiple of the period. As L is the smallest length for

which constructive interference happens,

t1 − t2 =
4L

c− ωL
2

− 4L

c+ ωL
2

= T.
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Performing a binomial expansion for the middle expression,

4L

c
(
1− ωL

2c

) − 4L

c
(
1 + ωL

2c

) ≈ 4L

c

(
1 +

ωL

2c
− 1 +

ωL

2c

)
=

4ωL2

c2
.

Thus,

4ωL2

c2
= T

ω =
c2T

4L2
.

11. Accelerating Cars**

Let the waves that destructively interfere (as they are traveling in opposite

directions and have zero phase difference) and are received by the observer at

t′ be emitted by the cars with negative and positive x-coordinates at times t1
and t2 respectively. The total distances traveled by the emitted waves, before

they reach the observer, are c(t′ − t1) and c(t
′ − t2). Now, to determine the

phase shift due to one wave, we simply have to divide the corresponding path

length by the wavelength and multiply it by 2π. However, the wavelength

must be Doppler-shifted. The speed of a car at time t is

v(t) = v0 − at.

Therefore, the wavelength of an emitted wave at time t is

λ(t) = cT − vT = (c− v0 + at)T,

where cT is the wavelength if the sources were not moving and vT is the

distance covered by the sources in a single period. Note that the wavelength

can be defined only because the frequency of the source is high such that

waves can be envisaged to be emitted at every instance. The phase difference

between the two waves emitted at t1 and t2 by the left and right cars when

they reach the observer at x = d is then

2πc(t′ − t1)

λ(t1)
− 2πc(t′ − t2)

λ(t2)
=

2πc(t′ − t1)

(c− v0 + at1)T
− 2πc(t′ − t2)

(c− v0 + at2)T

=
2πc(t2 − t1)[at

′ + (c− v0)]

(c− v0 + at1)(c − v0 + at2)T
.

Equating the numerator to zero and noting that t1 �= t2 (waves emitted at

the same time would not reach the observer simultaneously),

t′ =
v0 − c

a
.
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Now, let us adopt another perspective to the problem. We can express t1
and t2 in terms of t′. For t1, the distance covered by the left car from time

0 to time t1 plus the distance covered by the wave from t1 to t′ should be

equal to l + d. Thus,

v0t1 − 1

2
at21 + c(t′ − t1) = l + d.

Solving and substituting t′ = v0−c
a ,

t1 =

v0 − c+

√
(c− v0)2 − 2a

(
l + d− c(v0−c)

a

)
a

,

where the other solution is infeasible when l+d− c(v0−c)
a < 0 or v0 >

a(l+d)
c +c

such that the expression in the square root is larger than v0− c (causing the

other root to be negative). Similarly, the solution

t2 =

v0 − c+

√
(c− v0)2 − 2a

(
l − d− c(v0−c)

a

)
a

uniquely exists when v0 >
a(l−d)
c + c. The overall condition for the observer

to only receive one wave from each source at time t′ is hence v0 >
a(l+d)
c + c.
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1-D linear drag, 100

1-D quadratic drag, 101

action, 623

angular impulse-momentum theorem, 279

angular momentum, 219

about axis of rotation, 219

about general axis, 223

Archimedes’ Principle, 473

Atwood machines, 161

Bragg’s law, 779

Brewster’s angle, 718

Cartesian coordinates, 38

center of mass, 141

calculation by integration, 143

calculation by rotation, 145

calculation by scaling, 146

linear property, 141

center of mass frame, 301

kinetic energy transformation, 303

circular motion, 77

coherent sources, 748

collisions, 303

1-D elastic collisions, 303

equal relative speeds, 303

2-D elastic collisions, 306

angle between resultant velocities,
310

center of mass frame, 307

general case, 308

maximum deflection angle, 309

perpendicular departure angles of
two equal masses, 306

collisions with rigid body, 314
inelastic collisions

center of mass frame, 312
coefficient of restitution, 312

perfectly inelastic collisions, 311

conic sections, 437
circle, 438

ellipse, 438
general equation and definitions, 437

hyperbola, 441

parabola, 440
connections and supports, 373

conservation of angular momentum, 276
conservation of energy, 285

deriving equation of motion, 297
conservation of linear momentum, 275

conservative forces, 286

D’Alembert’s method, 687

decoupling differential equations, 543
degree of freedom, 376

determinants, 547
dimensional analysis, 1

Doppler effect, 719

eigenvectors, 546
EM wave, 683

equivalent frames, 9

Euler’s theorem of homogeneous
functions, 643

Euler-Lagrange equation, 624

conservation laws, 642

cyclic coordinates, 645
energy, 642

Noether’s theorem and continuous
symmetries, 646
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holonomic constraints, 635

Lagrange multipliers, 638

transformation of coordinates, 628

fluid, 469

deformation under shear forces,
469

in moving containers, 474

pressure and its isotropy, 469

pressure variation with height, 472

fluid dynamics, 494

Bernoulli’s principle, 495

mass continuity, 494

force triangle, 171, 380

free-body diagrams, 153

friction, 377

Galilean transformations, 299

gravitational properties of mass
distributions, 451

Hamilton’s principle, 623

Hamiltonian, 643

holonomic and non-holonomic systems,
635

Hooke’s law, 150

impending motion, 379

friction in boundary cases, 381

normal force in boundary cases,
383

impulse-momentum theorem, 276

inertial frames, 137

infinitesimal elements, 25

cylindrical coordinates, 40

double integrals, 33

line element, 28

surface elements, 31

triple integrals, 38

volume elements, 38

interference

beats, 792

constructive and destructive, 747

diffraction grating, 762

double slit, 757

Fraunhofer diffraction, 769

thin film, 780

wide slits, 774

missing fringes, 776

Kepler’s laws
one-body, 446
two-body, 451

kinematic quantities, 60
kinetic energy

rigid body about general point, 223
rigid body about ICoR, 220

Lagrangian, 623
leaning ladder, 96
limiting cases, 5
linear differential equations, 532

guessing solutions, 533
linear momentum, 137

Malus’ law, 717
moment of inertia, 228

calculation by integration, 228
calculation by scaling arguments, 237
calculation by squashing, 233
parallel axis theorem, 230
perpendicular axis theorem, 232
slanted axis, 236

motion on inclined plane, 167

Newton’s law of gravitation, 431
Newton’s laws, 137

in different coordinate systems, 148
net force on a system of particles, 139

non-conservative forces, 296
non-inertial frame, 577

centrifugal force, 589
centrifugal potential, 591
equatorial bulge, 592

Coriolis Force, 596
deflection of projectiles, 601
Foucault pendulum, 602

general equation of motion, 589
inertial force, 577
tidal force, 582

oscillations
coupled, 542

general solution, 544
normal frequencies, 549
normal modes, 550

damped, 532
critical damping, 537
heavy damping, 536
light damping, 535
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driven, 539
resonance, 541

simple, 521

pendulum
Foucault pendulum, 602
physical pendulum, 526
simple pendulum, 524

polar coordinates, 72, 168
potential energy, 285

effective potential for central force
systems, 531

gravitational potential energy, 288
potential energy diagrams, 288
potential energy in spring, 288
relation to simple harmonic motion,
529

total potential enregy in systems of
particles, 292

projectile motion, 66
with drag, 70

Rayleigh criterion, 768, 773
resolving power, 768, 773
reversibility, 9
rigid body, 79

addition of angular velocities, 87
angular acceleration, 89
angular velocity, 79
constraints, 82, 91, 171
instantaneous center of rotation, 83

rolling without slipping, 93
rotation matrix, 73

scaling arguments, 6, 146, 156, 237
simple harmonic motion, 521

conservation of energy, 524
slinkies, 156
sonic boom, 721
spherical coordinates, 38
stability of equilibrium, 402
static equilibrium, 363

coincidence of two forces, 370
concurrency of three forces, 371

static indeterminacy, 389
strings, 385

around rough pole, 386
surface tension, 475

capillary action, 488
floating objects, 492

pressure discontinuity, 479
Young-Laplace equation, 482

symmetry, 8

taking torques about convenient points,
369

torque, 225
total energy of elliptical orbit, 445
trajectory of planets, 434
two-body problem, 448
types of fluid flow, 469
typical forces, 149

friction, 150
gravity, 153
normal force, 150
spring force, 150

equivalent spring constant, 151
tension, 152

univariate differential equations, 99
integrating factor, 103
making equations separable, 102
separable, 100

upthrust, 473

varying amounts of moving mass, 174
falling chain, 177
rocket, 316

vector algebra, 52
cross product, 55
dot product, 54
triple product, 56

virtual work, 393
applications, 395, 480
potential energy, 398
principle of virtual work, 395

vis-viva equation, 445

waves, 681
1-D travelling sinusoidal wave, 689

complex representation, 690, 764
at boundary

fixed, 713
massive, 711
massless, 703

definitions, 684
linear polarization, 716
longitudinal and transverse, 683
principle of superposition, 745
sound wave, 694
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standing wave, 782
end correction, 791
natural frequencies, harmonics and

overtones, 786, 789, 790
nodes and antinodes, 784

string wave, 690
wave equation, 687

wettability, 484
work, 280

particle, 280
rigid body, 281
work-energy theorem, 283
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